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A sequence of independent nonnegative random variables with com-
mon distribution function F is censored on the right by another sequence
of independent identically distributed random variables. These two
sequences are also assumed to be independent. We estimate the
density function f of F by a sequence of kernel estimators f,(¢) =
(/= K ((t ~ x)/h(n)) dF (x)) /h(n), where h(n) is a sequence of numbers,
K is kernel density function and £, is the product-limit estimator of F. We
prove central limit theorems for [JIf(t) — f()P du(t), 1 <p <=, 0<
T < «, where u is a measure on the Borel sets of the real line. The result is
tested in Monte Carlo trials and applied for goodness of fit.

1. Introduction and results. Let X0, XJ, ... be a sequence of indepen-
dent, nonnegative random variables with common distribution function F.
Another sequence (independent of the {X?, i > 1}) Y|, Y,,... of independent
random variables with common continuous distribution function R censors
the preceding one on the right, so that the observations available to us at the
nth stage consist of the pairs (X;,8,), 1<j<n, where X = XJO NY;
[a A b = min(a, b)] and 8, is the indicator of the event {X =X jo}. Survival
data in clinical trials or failure time data in reliability studies, for example, are
oiten subject to such censoring [cf., e.g.,, Kalbfleisch and Prentice (1980)].
Based on these randomly censored data, the nonparametric maximum likeli-
hood estimator of F is the product-limit estimator F'n, first introduced by
Kaplan and Meier (1958) and defined by

Js
1- Fn(t) = {1sjsn:stt}( n— ZVj,
0, iftxX,

n—-N, , —1\%
22 T ift<X,,,

where X, , =X; V.- VX, and N, , = #{k: 1 <k <n: X, <X}, with a v
b = max(a, b).
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In survival and failure time data analysis, the random censorship model
is one of the most accepted and popular models in use. The asymptotic
and finite sample properties of F and the product-limit process a,(¢) =

n'/2(F (t) — F(t)) have been 1nvest1gated in a series of papers. For surveys on
this topic, we refer to Chapter 8 in M. Cs6rg6 (1983) and Chapter 7 in Shorack
and Wellner (1986), as well as to Gu and Lai (1990), where a number of new
results are also proven of course.

The estimation of the density function f(¢) = F'(¢) is also an important tool
in stochastic analysis. For recent advances in this area, we refer to Devroye
(1987), Devroye and Gyorfi (1985) and Gyorfi, Hiardle, Sarda and Vieu (1989).
In his preface, Devroye (1987) explains where and how density estimates are
applied. He, for example, lists exploratory data analysis, probability theory,
detection problems, pattern recognition, estimating a tail probability, cluster-
ing analysis and simulation as areas of application. In this paper, we are
interested in estimating the density function f under random censorship by a
sequence of kernel estimators f, defined by

(1.1) fult) = h(n)j (h(n))dﬁn<x),

where h(n) is a sequence of positive numbers and K is a density function
(kernel). Such kernel estimates of a density, based on complete samples, were
introduced by Rosenblatt (1956) and have been extensively studied in the
literature, for example, in the just quoted three books, since the appearance of
Parzen (1962). Limit theorems for the L, (i.e., sup-norm) and L, deviations
between f, and f under random censorship can be found in Blum and
Susarla (1980), Burke (1983), Burke and Horvath (1984), Yandell (1983) and
in the references of these papers.
In this exposition we study the L, distance

(1.2) I(T,p) = /OTl f.(t) — F(O)F du(t), 1<p<e,

where 0 < T < « and u is a measure on the Borel sets of R. The books of
Devroye and Gyorfi (1985) and Devroye (1987) contain several results on the
L, consistency of density estimators based on complete samples. A remarkable
central limit theorem for the L, distance of Grenander’s maximum likelihood
estimate [Grenander (1956)] for monotohe densities concentrated on a bounded
interval [0, B] is due to Groeneboom (1985). It is discussed in Devroye and
Gyorfi (1985) and studied in-depth by Devroye (1987). However, the asymp-
totic distribution of the L, deviation between the density function and its
kernel estimator has been an open problem. Recently, M. Csérgé and Horvath
(1988) obtained a central limit theorem for L, distances (1 < p < %) of kernel
estimators based on complete samples.

The main aim of this paper is to prove a similar result for I (T, p). The
most important implications of our general results are for the L, error,
I.(T, 1), which is always between 0 and 2 if u(#) = ¢t and K is a density itself.
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It also has many further desirable properties. For example, monotone transfor-
mations of the coordinate axes leave the L, distance unaffected. This means
that I (T, 1) with u(¢) = ¢ is a universal measure of closeness between densi-
ties. In contrast, the L, distance with p # 1 is not even invariant under a
simple rescaling of the axes. Also, the total variation of the measures induced
by the densities f, and f is just half of the L, distance between f, and f.
For details and further discussion on distances between densities, we refer to
Devroye and Gyorfi (1985), Chapter 1, and Devroye (1987), Chapter 1. The L,
distance is not only easily 1nterpreted it is also easily visualized. The Vlsua.l
impression of the distance between the plots of f, and f is precisely I (T, 1),
the area between the curves. These and further arguments in Devroye and
Gyorfi (1985) and Devroye (1987) lead us most convincingly to conclude that
L, is the natural place for studying densities. This remains true in random
censorship models as well, and for the very same reasons. However, when
estimating a density under random censorship, the presence of the usually
unknown distribution function R of the censoring r.v.’s inevitably results in
creating additional difficulties. Nevertheless, our Theorems 1 and 3 also cover
the optimal case of nh(n) — a constant when T of I (T, p) is finite, and
possibly infinite respectively. Theorem 2 can be viewed as a generalization of
Bickel and Rosenblatt (1973).

Theorems 1, 2 and 3 can, for example, be used to test for goodness of fit
whenever both F and R are completely specified. However, Theorems 1 and 2,
as well as a special case of Theorem 3, remain valid (cf. Corollary 2 and
Remark 1 respectlvely) if we replace the unknown R by its product-limit
estimator R in their respective statements.

The use of weighted L, distances [du(¢) instead of df in the L, integrals]
enables us to transform Theorem 2 into such a form where the asymptotlc
mean and variance of I,(T, p) do not depend on the unknown distribution
function R of the censoring r.v.’s (cf. Corollary 1 and Section 2 for application
of the latter to goodness of fit). In a similar vein, in L, the asymptotic variance
of Theorem 3 can be made independent of not only R, but also of F as well in
a special case (cf. Remark 1).

Before stating our result we introduce further notations and then list all the
assumptions used in the first part of this paper. Let G(t) = P{X, < 1}, F(¢) =
P{X; <t and 8, =1} and d(¢) = [{(1 — G(s))"2dF(s). Then, by indepen-
dence, we have ,

(1.3) 1 - G(t) = (1 - F(2))(1 - R(t)),
(1.4) F(e) = [0‘(1 — R(s)) dF(s)

and

(1.5) d(t) = [0’(1 — F(s)) %1 - R(s)) "'dF(s).

When studying (T, p) of (1.2) in the case of 0 < T < , we assume that,
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concerning the distributions F and R, the following conditions hold true:

Cl G(T*)<1,0<T<T* <,

C.2. (i) f is continuous [0, T*];
(i) supg <, p+If @) /f172()] < oo
(iii) supy., p+r() < oo;
(iv) supg ., p+lf @) < o, where f® and f® are the first and second
derivatives of f, r = R' and T < T*, G(T*) < 1.

C.3. du(t) = w(¢) dt, where w(t) > 0 and continuous on [0, T*)], where T < T*
and G(T*) < 1.

The kernel function satisfies:

C.4. K is bounded and vanishes outside of a finite interval;
Ch. [ K(@)dt =1,

C6. [ . K¥t)dt > 0;

C.7. [2ltldIK(#)] < oo

C8. [ K@) dt = 0;

Throughout this paper N = N(0, 1) stands for a standard normal r.v. Let
okt = sy K ey 4o
¢(x) = (27) " exp(-22/2),
¥(u,x,y) = (2m) (1 - u?)”? exp(—(Z(l —u?)) (x? - 2uxy +y2)),
- \1/2 1
D= ([—sz(t) dt) . L=5f wK(u)du,
1(#) = (1= F())(d'(1)* = (L= R())*(£(£))"",
miT,p) = [~ ["[e®)Dx + (nh(m))*(ust) - () w(t)b(3) ditd,

J2.K(u)K(t +u)du
2 K%(u)du ’

n(t) =

o¥(p) = (2m) " f_:{ [ P = mw)) ™

1
Xexp| — m(xz = 2xyn(u) + y?)| dxdy
—(EINI”)z} du

o(T,p) = of(p) (1= R) ™ p(tywi(e) e [ K3 () du |
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and
0T, p) = [ 113 D%y + 1) DLFO(0)a + 9)Co + CRLA(F P

xw?(2)(¢(n(w), %,5) — ¢(x)d(y)) dudydxdt.
Now we can state the main result of our paper when 0 < T < o,
TuEOREM 1. Let 1 < p < . We assume that C.1-C.8 hold and
(1.6) h(n) -0, n~Y2%(h(n)) 'logn >0, n- .
@) Ifnh%(n) > 0, n > «, then, as n — «, we have
(h()o™(T, p))""*{(rh(r))**I(T, p) = m,(T, p)} =5 N(0,1).

(i) If nh®(n) > CZ > 0, n — =, then, as n — », we have
(R(n)6%(T, p))” " *{(nh(n))**I(T, p) = m (T, p)} 5 N(0,1).

We say that the estimation is undersmoothed when nh®(n) — 0. A popular
choice of h(n) is the value which minimizes EI (T,2) or EI(T,1). The
“optimal” choice of h(n) satisfies nh®(n) —» C¢ > 0, where C, depends on F
and R in a very intricate way.

In Theorem 1 the centralizing sequence depends on the numerical error
f(n)(t) — f(¢). Adding a little bit more to our conditions on & in (1.6), we get the
following theorem which is a generalization of an earlier result of Bickel and
Rosenblatt (1973). Let

® p/2
m(T,p) = BNF([" K20y de| [1(1 - F(0) (40" du(t

I p/2
-Ene([" KA a) [T H@) ) duo).

THEOREM 2. Let 1 < p < o, Assume that C.1-C.8 hold and
(1.7) k(n) =0, n 2(h(n)) 'logn -0,
n(h(n))* >0, n-w
Then, as n —> «, we have

(h(n)oX(T, p))”*{(nh(n))"*1,(T, p) — m(T, p)} =45 N(0,1).

We note that if A(n) = n™* with ; < @ < 3, then (1.7) holds.
A natural choice for w(¢)dt = du(t) is
(1.8) w(t) dt = du(t) = (1 - R(¢))"* dt,
for then the normalizing constants m (7T, p) and o(T', p) do not depend on R,
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which is usually unknown. Namely by (1.8) and the above definitions of
m(T, p) and o*(T, p) respectively, we have

(1.9) m(T,p) = EINI”([:Kz(t) alt)p/2 [OT( f(£))"* dt
and, with o2(p) as before,
(1.10) o¥(T, p) = af(p)jonp(t) dt(fioKz(u) du) .

These normalizing constants are like those of the noncensored case on
taking u(z) = ¢ there [cf. Theorem of M. Csérgdé and Horvath (1988)]. But now
we have (1 — R(¢))?/2dt for du(¢) in the definition of I (T, p). It is, however,
easy to estimate R from the sample by its product-limit estimator R n-
Namely, under condition C.1, the embedding theorem of Burke, S. Csérgé and
Horvath (1981, 1988) (cf. Lemma 4 in Section 3 here) implies

(1.11) sup |R,(¢) — R(¢)| = Op(n=172).
T

O<t<

Let [cf. (1.2) with du(#) as in (1.8)]

I(T.p,R) = [ " £(0) ~ FOP (L = R(£)* dt

and
L(T.p R,) = [I£() ~ O P(L - R0
Then
|1.(T,p, R,) - 1(¢, p, R)|
’ o (1= R(0)) - (1= R(t)”
< [1106) = £ (‘1(_ Rn(t))p)/z " El - R(t);pL @
(1.12)

Op(n—l/z)
(1-RA(T))"" + (1 - R(T))""*

<

L1546 = FoF e

= 0p(n2) [ "I f8) - F(O)F pat,

where we have used the inequality | |al” — [b°| < p2?P~la — b +
p22 bl Ya — b, p = 1, in combination with (1.11). Qur Theorem 2 is true
for (T, p) = [JIf, (&) — f(£)° dt, and the latter combined with (1.12) gives

((nk(n))??/(R(n))"))| 1T, p, R,) - I(T, p, R)|
= Op((rh(n))™"*) = 0p(1).

Hence we have the following corollary.
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CoroLLARY 1. Let 1 <p < », assume C.1-C.8 [C.3 with du(t) as in (1.8)]
and (1.7). Then with m(T, p) and o*(T, p) as in (1.9) and (1.10) respectively,
we have

(h(r)o™(T,p))” "*{(nh(n))**1,(T,p, R,) = m(T,p)} =5 N(0,1).

When working with complete samples, the beauty of the mentioned central
limit theorem of Groeneboom (1985) for the L,; distance of Grenander’s
maximum likelihood estimate for monotone densities concentrated on a
bounded interval [0, B], and also that of Theorem of M. Csérgé and Horvath
(1988) in the case of u(¢) =t for the L, distance of kernel estimators for
smooth densities over the whole real line, is that the respective asymptotic
variances of these L, distances are constants which are independent of f. The
comparable case under random censorship is summarized by Corollary 1
above. Here [cf. (1.10)]

o¥(T,1) = o2(1) fo Tr(e) dt f:Kz(u) du

would reduce to ¢2(1)/* . K*(u) du, if we could only take T = . In any case,
the latter is of course an upper bound for the former. For a solution of this
problem, we refer to Theorem 3 and Remark 1.

Another way of looking at the problem of dependence on R is to continue
working with the definition of I, as in (1.2) while estimating m(T, p, R) ==
m(T, p) and ¢ T, p, R) = 0T, p) in Theorem 2 by

m,(T,p) =m(T,p, R,)

© 9 p/2 T R —p/2 /2
- e[ kA a] [T - R(0) (1) duto)
and

oX(T,p) = m(T,p,R,)

=20 [ (1 = Bu0) " P at( [ K2 () |

respectively. Similarly, in the case of Theorem 1, we may want to continue
working with I (T, p) as in (1.2) while estimating m (T, p, R) ==m (T, p),
o¥T, p, R) = X T, p) and 6%T, p, R) = 6%T, p) by (T, p) =
m (T, p,R,), oXT,p)=oXT,p, R) and 6XT,p) = 6XT, p, R ) respec-
tively. Now (1.11) and an argument like that preceding Corollary 1 yield
|m(T, p) — m(T, p)| = Op(n™*?)
and

|6 (T, p) — (T, p)| = Op(n~1?),
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as well as

(T, p) = m (T, p)| = Op(n~1?)
and

02(T, p) — 6%(T, p)| = Op(n™/2).
Hence, as n — «,

O'n(T’ p)/a'(T,p) _)P 1’ ﬂn(T,p)/ﬂ(T, p) _)P 1’
|, (T, p) = m(T, p)|/(k(n))"* = Op((nh(n)) %) = 0p(1)

and

|h(T, p) = m (T, p)|/(h(n))""* = Op((nh(n)) "% = 0p(2).

Consequently, we have:

COROLLARY 2.

(i) Theorem 1 remains true if we replace m (T, p), o*(T, p) and 6%T, p)
by f, (T, p), o AT, p) and 6XT, p) respectively.

(11) Theorem 2 remains true if we replace m(T, p) and o*(T, p) by % (T, p)
and oX(T, p) respectively.

In Theorems 1 and 2 and also in Corollary 1, we studied the behavior of the
density estimator I.(T, p) on [0,T], where G(T') < 1. This means that we
have noncensored observations after T with positive probability. Hence we let
Ty = inf{¢: F(t) = 1} < , and we will consider the behavior of f, on [0, TF)
via I (Tg, p). The estimation of f on its support [0,T%) requires further
assumptions. It is well known [cf. S. Cs6rgd and Horvath (1983) and Gu and
Lai (1990)] that the product limit estimator is not necessarily a strongly
uniformly consistent estimator of F on its support. Thus, for the sake of
studying I (Ty, p), we must impose stronger conditions on F, R and u. In
fact, instead of C.1-C.3 we assume the following conditions:

C.9. Ty < Ty, where Ty = inf{t: R(¢) = 1}.

C.10. lim sup, _, 7, (1 -F@®)?/(1 — R(¢)) < = for some 0 < B < 1.

Cll. @) fis umformly bounded on [0, T7) and is monotone in a neighbor-
hood of T%;
(i) supy<,cr, 7(#) < oo
(iil) supg,. 7 If(l)(t)/fl/z(t)l <owforall T < Ty;
(iv) supy ., <7, If P@) < .

C12. du(t) = w(t) dt where w(¢) = 0, continuous on [0, Tf), and there is an
e > 0 such that

t1+ew(t)
limsup —————- <=
t—>Tp (1 _R(t))
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We note that under conditions C.4-C.12, m (T, p), 0 X T, p) and 6%(T%, p)
are finite. Also, if R(Ty) < 1, then C.10 holds with 8 = 0 and C.12 is a simple
tail condition on w(t).

THEOREM 3. Let 1 <p < . We assume that C.4-C.12 hold and
(1.13) h(n) -0, nh*(n) >, n'2**/h(n) -0
for some k > B/(B + 1).

(i) If nh®n) > 0, n > x, then, as n > », we have

(R(r)a™(Tr, p))~ " {(nh(n))""*L(Tp, p) — m,(Ts, p)} =2 N(0,1).

(i) if nhS(n) - CZ > 0, n > =, then, as n > », we have
(R(n)8%(Tr, P))” /*{(nh(n))"*1(Tp, P) = m(Tr, P)} =2 N(O,1).

ReMaRk 1. If Ty < Ty, then C.10 holds with 8 = 0 and we can choose
w(t) = (1 — R(#))?/2 in C.12. In this special case we have

1) T p) = ot [T ar| [ Kw) ),
and hence also

(1.15) o¥(Ty, )—al(l)f K2(u)du.

Thus the asymptotic variance of the L, distance is a constant which is not a
function of the unknown distribution functions F and R. As to the problem of
now having (1 — R(t))?/2dt for du(t) = w(t)dt in the definition of I (T, p),
unfortunately it is not immediate here to prove a complete analogue of
Corollary 1. Nevertheless, assuming further conditions as in Theorem 1 of Gu
and Lai ( 1990) we may estimate R again from the sample by its product-limit
estimator R, and use (1 — R (¢#))*/? instead of w(¢) = (1 — R(#))"/2 in the
definition of (T, D).

2. Application. It is Corollary 1 to, Theorem 2 with the special choice of
weight function as in (1.8) that offers itself most readily for immediate
applications. In this case the normalizing constants m(T, p) and o(T, p) can
be easily calculated for integers p > 1. Let n(«) be as in Section 1. Since K is
bounded and vanishes outside of a finite interval, %(x) has similar properties.
Let X,Y have bivariate normal distribution with correlation coefficient n(),
where n(uz) = 0 if u & (a, b) for some constants a and 4. Then we get

o2(p) = ["EIXYP du — (b - a)(EIXP)’.

The joint absolute moments of X and Y were calculated by Kamat (1953) for
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integer values. When p = 1,

(2.1) EIXY] = 2{(1 - n(u))"* + n(u)arcsin(n(u))}/m,
and if we choose the so-called naive kernel

1 lul < 0.5
. K(u)=1{" ’
(2.2) () {o, lul > 0.5,

then by integration
(1) =2 + w/4.

If (2.1) is not analytically integrable for some kernel K(u), then oX(1) is a
one-dimensional integral that is most likely smooth enough to cause no
problems in numerical integration.

We performed Monte Carlo trials to see how Corollary 1 works for goodness
of fit in the most important case of p = 1. Both (2.2) and

1.5 — 6u?, lu| < 0.5,
(23) K(u) {0, lul > 0.5,
were used as kernels of density estimation in our experiments. The bandwidth
was h(n) = n™%, where various a values were chosen in the interval (3, 3).
The results showed only minor sensitivity to the choice of these kernels and
small bandwidth changes. The censoring distribution was exponential with
mean value A > 0, that is, r(x) = (1/Mexp(—x/A), x > 0, generated with
various values of A in the interval [3.5, 6]. The data subject to this random
censorship were generated either from the exponential or from the Weibull
distribution of density function f(x) = (y/BXx/B)" lexp{—(x/B)"}, x> 0,
Weib(B, y), B,y > 0, using various values for the parameters. We will simply
call anyone of these the data-generating distribution. The hypothetical densi-
ties under H, were completely specified members of either of these two
families. We call any of these the hypothetical distribution. For numerical
integration IMSL routines were used. Three types of Monte Carlo experiments
were performed and on the basis of 30 to 50 runs of samples of size 200 to
2000, our findings can be summarized as follows.

Whenever the data-generating and hypothetical distributions were the same,
for example, like Exp(4) or like Weib(4, 3), we obtained “perfectly” fitting
values, packed around 0.

“Moderate deviations,” such as a Weib(5, 5) data-generating distribution
viewed as a Weib(4,3) hypothetical distribution, or Weib(3,4) viewed as
Weib(4, 3) or Exp(6) viewed as Exp(4), were not shown to be significantly
different shapes.

However, when the data-generating distributions Weib(4, 3), Exp(4), Exp(1)
and Weib(1.5,2) were tested as Exp(4), Weib(4,3), Exp(4) and Weib(4, 3)
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hypothetical distributions respectively, then the observed values were found to
be consistently far too large in absolute value for being viewed as N(0,1)
readings.

A survival experiment was performed on mice by Upton et al. (1969). The
resulting data are censored due to serial sacrifice both in the treatment and in
the control group. These have been examined by several authors. We refer to
Yandell (1983) for references. Yandell rejected the hypothesis that the death
rate is constant. We rescaled the data to have mean 4 and tested the hypothe-
sis H, that the data follow exponential distribution. For the treated and
control mice groups respectively, we got observed values 17.69 and 15.36 of
random variables that are standard normal under H,,, which clearly indicates
that H,, is false. The number of observations were 1454 and 1080 respectively.

3. Proofs. We will assume throughout, without loss of generality, that all
random variables and processes of the present paper are defined on the same
probability space [cf., e.g., de Acosta (1982)]. Also, C stands for a generic
constant whose value may differ from line to line. For the sake of notational
simplicity, we assume K(u) = 0 if u & (—1,1). Let {(W(¢), —» <t < x} be a
Wiener process [cf. Doob (1953), page 97] and define the Gaussian process

ro = [7 K P22 awix
" — h(n) ’
Let
o®(T,p), if nhS(n) -0,
72(T7p) = 2( ) 3 5( ) 2
6=(T,p), if nh°(n)—->C§>0,
and

8 (8) = (nh(n))*( fu(®) — F(1)).

LemMMA 1. We assume that the conditions of Theorem 1 hold. Then, as
n — o, we have

. (h(n)yz(T,p»‘”{ L1672 m)T0e) + g du(e)
(3.1)

—mn<T,p>} Sy N(O,1).

ProoF. The proof of Lemma 1 goes along the lines of the proof of Lemmas
1 and 2 in M. Cs6rg6 and Horvath (1988). Hence it is omitted. O
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The following inequality will be useful later on. Let 1 < p < ». Then for
functions ¢ and u in L, we have

" du(t)

fOT||q<t>|" -

(32) =p2tf “la(t) — u(t)F du(t)

i/p

1-1/p
ep2 ) [TuP aw) ([lla - w(o) duco)
Let
p(t) = (d'(£))"* = (1 = F(t)) (1 — R(t)) *(f(2))""*

o = ( e ))p<x>dW(x>

LemMa 2. We assume that the conditions of Theorem 1 hold. Then, as
n — «, we have

(w1 2) ™ [111 = Feph= A2 + g duts)
(3.3)
~m(T.p)} =5 NO.1).

Proor. Integration by parts gives
L2(t) = p()TP(2)

+[_11(W(t — yh(n)) — W(£))(p(t — yh(n)) — p(t)) dK(¥)

+ 1 (Wt = yh(n)) = WD) K(y) do(t = yh(n))

= p()TP(2) + AD(2) + AD(2).
Using now continuity of Wiener process and the mean value theorem, we get

sup |AD(t)| < Ch(n) sup sup |W(t+s)— W(2)|

0<t<T 0<t<T 0<s=<h(n)

(3.4) X sup | fO(8)/f3(8)]

0<t<T+h(n)

=o0p(1)h(n).
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A similar argument gives
(3.5) sup |AD(8)] = 0p(1)h(n).
0<t<T
Hence, from (3.4) and (3.5), we obtain
(36) [Ir2() = oD (1 = F()” du(t) = 0p(1)(h(n))"
Applying Lemma 1, (3.2) and (3.6), we have
J T\ T@@)f - o2(0) L)) | (1 - F(8))” dua(e)
0
= 0p(1)(h(n))”
T » 1-1/p
+op(M)(h(u)| [T du(o))

= 0p(1)(h(n)) "2,
Using (3.2), Lemma 1 and (3.7), we get

L1 = F@)n2m)r@(e) + g
= &Y VARITE() + (D) | di)

<p22”! [Tl = F0)h A (m)TP(0) ~ Uy =20 due)

(3.7)

r » 1-1/p
+p2”_1(/;) |L(8) =2 (n)T(E) + 8n)(t)] d'“‘(t))

1/p
([0 = Fep A ) = 1y AT o)

= 0p(1)A/2(n).

By Lemma 1 the proof of Lemma 2 is complete. O

Let

r'®(¢t) = fm (1- F(x))W(d(x)) dK(t_—x).
—w h(n)

LEMMA 3. We assume that the conditions of Theorem 1 hold. Then, as
n — o, we have

(yz(T,p)h(n»“{ [T 1B2 T + gD duct)

—mn<T,p>} o N(0,1).
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Proor. It is easy to see that
T®(t) = j_ll(1 — F(t — uh(n)))W(d(t — uh(n))) dK(u).
Let
rO() = (1= F@) [ W(d(t - uh(n))) dK (u).
A two-term Taylor expansion gives

TO(t) - T®(t) = h(n)f(t)[jIW(d(t — uh(n)))udK(u)

+3h2(n) [1 FOEW(d(t — uh(n)))u? dK(u)
-1
with ¢t A (t — uh(n)) < £ <t Vv (¢t — uh(n)). We also have

IT®(t) - T [

< 27(£(1)(h(n))’|[* W(d(t ~ uh(n)))udK (u)

+C(h(n)”®  sup  |W(t)f
0<t<d(T+h(n)

= A(,::’)(t) + A(3)~
Let
L(t) - {fl udK(u), if-1<t<l,
=371
0, otherwise.

Integration by parts gives

‘f (———) dW(d(z))|,

|[ W(d(¢ — uh(n))) dL(u) =

and hence

| p/2
QU

= C(h(n))""

‘[ W(d(t — uh(n))) dL(u)



DENSITIES UNDER RANDOM CENSORSHIP 1827

Consequently,

(3.8) EAD(t) < C(h(n))*"?

and we also have

(3.9) EA® < C(h(n))*.

The Markov inequality with (3.8) and (3.9) implies

(3.10) [T2(8) = T = 0,(1)(h(n)™".

Using (3.2), Lemma 2 and (3.10), we get

[Tl -l auo)
<p2e~! [1T®(2) - 1) du(t)
0

1-1/p 1/p
+p2p_1(foT| ro()[ du(t)) (foT| ro(t) - i) d#(t))
= 0p(1)(h(n))*"* + 0p(1)(h(n))?/**!
= 0p(1)(h(n)) "+ V2,
Now we observe
{L9(2),0 <t < T} =5 {(1 - F(t))I2(2),0 <t < T},

and hence Lemma 3 follows from Lemma 2 and (3.2). O
The following lemma is due to Burke, S. Csérgé and Horvath (1981, 1988).

LemMA 4. We assume that C.1 holds. Then we can define a sequence of
Wiener processes {W, (x), x = 0} such that

sup |a,(t) — (1 — F(¢))W,(d(¢))| = O(n"2logn) a.s.,

0<t<T*

where

a,(t) = n'/*(F(t) - F(1)).

Let
t —_

L) = [ (1= F(x)W,(d(x)) dK(m)
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ProOF OF THEOREM 1. Lemmas 3, 4 and (3.2) imply

(nh(1))"*1,(p) = [[|h=12(n)TO() + ga(t)]] dum]

P

<) ”h 0 [ ) k(5

—| R (n)TO(8) + g(n)(t)|p du(t)

sp2p—1h—p/2(n)j;Tlfjm(an(x) — (1 - F(x))W,(d(x)))dK

P

du(t)

h(n)
+p2"‘1h‘1/2("’)(foT!f_o;(an(x) — (1= F(x))W,(d(x))) dK

D

1/p
du(t))

><( t—x
k(n)
T P 1-1/p
<[ [1A720m) () + g (0] au(t)|
= Op(1)R?"%(n)(n"**h~Y(n)log n)"

+0p(1)h2(n)(n"'2h"Y(n)log n).

Now Theorem 1 follows immediately from Lemma 3. O

PROOF OF THEOREM 2. A two-term Taylor expansion gives

(3.11) [OT| (&) = Fu(®)] du(t) = O((h(n))™)
as n — «. Using the assumption nh*(n) — 0, we get from (3.2) that

|mn(T,p) - m(T’p), = O(hl/z(n))'

Now Theorem 2 follows from Theorem 1. O
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Proor oF THEOREM 3. It is enough to show that

i Jim P13/l () 7] £8) = £ due)

Toonow

(3.12) —/_:f:ll(t)Dx + 8o (O)Pw(t)o(x) dt dx

>6}=0

for all 8> 0. Gu and Lai (1990), Corollary 3, constructed a sequence of
independent processes {£(2), 0 < ¢ < TgJ);_, such that

(3.13) sup
0<t<Tp

=0(n* V%) as.

an(t) -2 Y E(t)
i=1

Let

I®(t) = n=1/2 Z f &(x)dK((t —x)/h(n)).

1 —

Using (3.13) instead of Lemma 4, we can argue as in the proof of Theorem 1
and get

(nh(m))”* [ £,(8) = FOF du(®)

(3.14) ALRSOLCOCEFROIENG

= Op(1)h'2(n)(n*=2/h(n)).
Next we show that
lim hmsup‘Ef [h=1/2(n)TO(E) + g ()P du(t)

T oo

(3.15) no
B /:f:ll(t)Dx + &) w(t)e(x) dtdx

/h1/2(n) =0

and

(3.16) 7111m lim sup

now h(n) ar(/:|h_l/2(n)r,(16)(t)+g(n)(t)]pdp,(t))=

For every ¢ > 0, I'®)(¢) is a sum of i.i.d. r.v.’s, so the computation of
E[h=V3(n)[O(2) + g8 w(t)

is not too difficult. By condition C.12, T®(#)w'/P(¢) is a sum of i.i.d. bounded
r.v.’s, so according to Petrov (1975), page 125, Theorem 13, the distribution of
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T9(¢#)w!'/P(¢) can be replaced by a normal distribution. Thus we have

Ef:]h‘l/z(n)l“,‘f’(t) + o) [w(2) dt

‘f:f:ﬂ(t)Dx + go(t) [ w(t)p(x) dt dx

= 0(1/(nh(n))"*) = o(h/*(n)).

The proof of (3.16) is based on the same argument, but the calculations are
more tedious. The computation of the variance in (3.16) requires the approxi-
mation of the distribution of (w'/P()T{(¢), w'/P(s)I'®(s)) via using multi-
variate normal distributions. In this case, instead of Petrov (1975), page 125,
Theorem 13, we use Theorem 17.6 in Bhattacharya and Ranga Rao (1976),
page 171, and obtain

* P 1 w
var(fT |h=V2(n)TEO(t) + gyt du(t)) - m[ng;(t)w(t) dt

(3.17) »
= 0(1/(nh?(n))""*) = o(h(n))

with some g*(¢#) such that under condition C.12 and (1.13)

lim limsup “g*(H)w(t) dt = 0.
— T

n—oow

Thus (8.17) implies (8.16), which completes the proof of Theorem 3. O
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