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1. Introduction

Let f(x) and g(x) be integrable real symmetric functions on [-m,n]
that are bounded on subintervals that exclude the origin. Let X1’X2”"
be a mean zero stationary Gaussian sequence with spectral density f(x),
and let ee03m875858 5000 be the Fourier coefficients of g(x). We

prove that the distribution of the normalized quadratic form

N NN
Voas X Xi - E )
i=1 =1 91 i=1 j=1

—_—
ft D12

ai_jxixj}

converges to a normal distribution if there exist constants a« <1 and
1
2
and g(x) = O(lxl'B'é) as x > 0.

B <1 with a+ B« such that for each & > 0, f(x) = 0(|x"“"5)

Of particular interest are the cases where f(x) ~ x'“L](x) and
g(x) ~ x'ﬁLz(x) as x > 0 with L] and L2 slowly varying. The exponents
« and B are allowed to be positive, zero or negative. The sequence {Xj}
is said to exhibit a long-range dependence when « > 0. When o < 0, the
covariances r . = EX;X;,,  satisfy Z;:_m r, = 0.

Suppose f(x) ~ x'aL](x) and g(x) ~ X-BLZ(X) as x » 0. Rosenblatt

(1961) showed that in the special case %.< a <1 and ai-j = 61j’ the

quadratic form N_ N_ a. .X;X., adequately normalized, converges to a non-
i=1 &j=1 "i1-3717] e

normal distribution. The assumption 4y 5 = éij implies g(x) constant and

]Research supported by the National Science Foundation grant ECS-80-15585 at
Cornell University.
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thus B8 = 0. Our result shows that the normalized quadratic form ZN converges

to a normal distribution when %.< a <1 and B < %-— a < 0. If aig.l

2
it is even possible to choose g > 0 as long as B < min(%.-a »1).

Results of this type can be used in the study of the asymptotic behavior
of maximum likelihood estimators related to the sequence {Xj} (Fox and Taqqu,
1983). Example of sequences {Xj} satisfying f(x) ~ x'“L](x) that are
of special interest include fractional Gaussian noise and fractional ARMA.

A sequence {Xj} is fractional Gaussian noise (Mandelbrot and Van Ness,

1968) if its covariance satisfies

r(k) = EX. X

]

g 5 L1 = 2bf (e

for 0 < H ¢ 1. In that case (Sina1 1976)

2 +oo
f(x) = g (1-cos x) ) |x+2kn]

[72 (1-cos y)|y| “1-2Hgy k==

-1-2H

so that « = 2H-1 ¢ (-1,1).

A sequence {Xj} is fractional ARMA (Hoskings, 1981) if its spectral

density is

ixy2
(o) = [eta] |o(e™)]

'(b(e'ix){Z

where ¢ and ¢ are polynomials having no zeroes on the unit circle and
d < 1. In that case o« = d. Heuristically, fractional ARMA is the
sequence, which, when differenced d/2 times, yields an autoregressive-

. o
moving average (ARMA) sequence with spectral density '¢(e1x)'z/|¢(e1x)l“.
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Our main results are in Section 2. The remaining sections are devoted
to the proof of Theorem 1. That proof uses "power counting" arguments in
the sense of mathematical physics. In Section 3 we introduce the power
counting set-up and state an extension of a power counting theorem of
Lowenstein and Zimmerman (1975). Preliminary lemmas are proven in Section
4 and, together with the results of Section 5, they are used to establish
Propositions 6.1 and 6.2 of Section 6. These propositions describe the
asymptotic behavior of certain multiple integrals. Section 7 contains the

proof of Theorem 1.
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2. Main results

Let f(x) and g(x) be integrable real symmetric functions on

[-n,m], not necessarily non-negative. Define the Fourier coefficients

einxf(x)dx

-
=
I
A=

and
e1nxg(x)dx.

3]
>
!
A a2

Let RN and AN be the NxN matrices with entries (RN)j,k = rj-k and

(A 0 {j,k <N-1. Let Tr M denote the trace of a matrix M.

N,k T 2ok
We say that f satisfies the regqularity condition if the

discontinuities of f have Lebesgue measure 0 and f is bounded on the

interval [&,n] for all & > 0.

Theorem 1. Suppose that f and g each satisfy the regularity condition.

Suppose in addition that there exist o <1 and g <1 such that for each

8§ >0
If’x)' = O(lxl'a~6) as x> 0
and
|g(x)l = O(lx"ﬁ'é) as x » 0.
Then
a) If p(atp) <1,
Tr(RAy) i
11m_....__;.‘_.N__ = (2n)%P 1 [ IF()g(x) Pdx.
N>w -1

b) If pla+g) > 1,
Tr(RNAN)p = o(Np(“+B)+€) for every ¢ > 0.

The theorem is proven in Section 7.



B
Introduce now a stationary Gaussian sequence Xj’ j>1 with mean O

and spectral density f(x), so that

EX.X,,, =

™ .
ik
%54k e = [ e XF(x)dx.
—’]’t

f _ 1
Let Xy denote the random vector (X]’XZ""’XN) . Put by = EXNANXN'

Theorem 2. Suppose that f and g each satisfy the regularity condition.

Suppose in addition that there exist o« <1 and g <1 such that otg <-%

and such that for each & > 0

f(x) = O(lx"“-é) as x> 0
g(x) = O(\xl_ﬁ'é) as x » 0,
Then
AN EN
/N

tends in distribution to a normal random variable with mean 0O and variance

16x° [ [F()9(x)Tdx.

Proof. Since the sequence Xj is Gaussian, the pth cumulant of X&ANXN is

equal to Zp'1(p-1)!Tr(RNAN)p. (See, for example, Grenander and Szego,

1958, page 218). Thus the pth cumulant of

XAV T R
/N
is given by
0 if p=1
(N) Tr(RyA )p
c = r
p 29"1(p_])1 NN if p > 2.
NP/ 2 -

An application of Theorem 1 yields
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0 if p=z2
lim ¢ _(N) =
16~ [ [f(x)g(x)]1"dx if p = 2.
-

This implies the conclusion of Theorem 2. [J
The following is an immediate consequence of Theorem 2.

Theorem 3. Suppose that f and g each satisfy the regularity condition.

Suppose in addition that there exist o« <1 and g <1 such that a+g < %—,

f(x) ~ 'xl'aL](x) as x » 0
and
g(x) ~ |xl'BL2(x) as x » 0,

where L] and L2 are slowly varying at 0. Then the conclusion of

Theorem 2 holds.
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3. Power counting theorems

Power counting methods can be used to verify the convergence of multiple
integrals whose integrands are products of powers of linear functionals.
Let L](x),LZ(x),...,Lm(x) be m 1linear functionals on R" and let

b be real constants. Define the function P: R" > R u [=} by

b b2,ooo,m

'I’
b-I b2 bm
P(x) = IL1(X)| ’LZ(X)I ...!Lm(x)l .

We shall view T = {L;,l,,...,L } as a subset of the dual space of R,
Let W be any subset of T. We use the notation span{W} to denote the set
of linear combinations of elements of W and we let s(W) denote those

Tinear combinations which coincide with elements of T. Thus
s(W) = T n span{W}.
For each W< T we define the quantity

d(P,N) = W] + Z b's
[ {3t Les()}

where 'wl denotes the cardinality of W. We refer to d(P,W) as the
dimension of P with respect to W.
Let S be the set of those Lj in T that have exponents bj < 0,

Finally, for each t > 0, let
Uy = [-t,t]" = {x < R": 'xil <t, i=1,...,n}.

We can now state a basic result of Lowenstein and Zimmermann (1975).

Theorem 3.1. Suppose that d(P,W) > 0 for every independent set W c S.

Then fUt P(x)dx < » for all t > 0,
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To illustrate the application of the theorem, let n = 3 and define
P(x): R3S R v {«} by

P(x) = |X1+X2|b}|X1+X2+X3'b2'xslb3’

where b],bz,b3 < 0. Define L](x) = XqHXos LZ(X) = XXXy and

L3(x) = X3 Then S =T = {L},LZ,L3}. The independent subsets of S are
{Libs {Lohs {Lahs {Lyslohs {LysLgh and {LosLg}. MWe have d(P,{Lj}) = 1+b,,
j=1,2,3. The other three dimensions are all equal to 2+b]+b2+b3 because

for example s({L],LZ}) = {L1,L2,L3}. Therefore jUt P(x)dx will be finite

+h b, > =2 and b,,b,,b, > ~1.

17273 1°72°73
The following theorem is more general than Theorem 3.1. (It will not be

provided that b

used in the sequel.)

Theorem 3.2. let y > 0, 6 >0, and let S] and S2 be a partition of S.

Define

- : !
Vy = {x e Ug: 'LI_Z»—~ , Le st
NY

If
a) d(P,W) > 0 for all independent sets W c 52,

and
b) d(P,W) > -& for all independent sets W < S,
then
[y P(x)dx = 0(NY®)
N
as N » w.

The proof of Theorem 3.2 (as well as an alternate proof of Theorem 3.1)
can be found at the end of Section 4. They are easy consequences of the

setup necessary to prove Theorem 1.
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We illustrate the application of Theorem 3.2 to the above example. In
, _ _ _ 4 .
that example, suppose that b1 = b2 =7 and b3 =-3- Define

- - - 3. 1
Sy = {Llg}s S, = {L;sL,} and Yy = {x e [-t,t]": ]L3| > —1}. The

NY
independent subsets of S, are {L;}, {L,} and {L;,L,}. We have
3 T 1 4 _1
d(P,{L = d(P,{L = - and d(P,({L,,L =2 - - - = — . Thus
(Pa{1y}) = 4(7, 11y} = 3 (Pl sty =2 -2 -1 4]

condition a of Theorem 3.2 is satisfied. We also have d(P,{L],L3}) =
1 1 Cy
d(P,{LZ,L3}) =z and d(P,{L;}) = -3 Hence condition b of
Theorem 3.2 is satisfied for any & > %-. Theorem 3.2 implies that
[y P(x)dx = 073 * &) for any & > 0.
N
Note that the result of Theorem 3.1 follows from Theorem 3.2 by setting

S] =, S2 =S and 8§ =0 1in Theorem 3.2.
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4, Preliminary lemmas

Retain the notation introduced at the beginning of Section 3. The

functional L (x) satisfies 'Lj(x)l < HLJH lxl for all x ¢ R" where
HL H = max]| L (x): le = 1}.

Since [x| </t when x U = [-t,t1", we have

U, < {x ¢ R": 'Lj(x)lgm, i=T,seeaom}s (4.1)

t

where M =/n max(’lL]l', l'LZ"""’

Partition the set Ut = [~t,t]n into subsets

b

E = {xeU ‘L (x)‘ ‘L (x I < e _§_|LU
m

o —

where o = (a},cz,...,q“) runs over all permutations of {1,2,...,m}.
Each Ec depends on t.
Fix a permutation o. Suppose that the subset § of T = {L1’L2"'°’Lm}

has gq elements. Label these Li ’Li ""’Li so that
1 2 q

‘L11(X)l 5_’L12(x)|_§ eee £ lLiq(X)‘

for x e EU. (The labeling depends on the parameter ge)
We now use the greedy algorithm to construct a basis BG for S.

The greedy algorithm proceeds as follows. We put Li € Bg. We put
1
L. e« B_if L, s not in the span of {L. }. On the jth step we
i, o i, i
put L, < BG if L, isnot in the span of {L,

s osesesky }o It is

j=1

well known that in this way we obtain a basis BG = {L,U ,...,L,t } for S,
1 r

where r 1is the rank of S. We then have



I A
ey

‘LT]' < ILTZI < oo xe E . (4.2)

We can now use Bg to construct a partition of T. Define

k g Ty 1 k-1
and
Tr+1 = T\S{Lx]"°"Lm }.
r
Thus T consists of those elements of T which are not in the span of

r+1

S. The sets T],...,T clearly form a partition of T.

r+]

Lemma 4.1. For each permutation ¢ there is a constant CG (independent

of x and t) such that

a) If L e Tk’ k < r, then
IL‘<C‘L , Xe E..
—UTk o}
b) If L ¢ Tk nS, k<r, then
lL‘('L,er,
Tk_ g
Proof.
a) If LeT, then L=a,L_ + ...+ al for some constants
k 11:} k'ck

a],...,ak. Therefore
1 forl oy |+ oo fod g o xe

Relation (4.2) implies that for X ¢ EU the right hand side is less than

(ia1| toees F 'ak‘)|erI’ It therefore suffices to put C_> lall +oaae

+ 'ak
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b) Suppose that L ¢ Tk n S. We must have either L = LT or else L
k
was rejected by the greedy algorithm. In proving b) we can thus assume that

L was rejected by the greedy algorithm. Since L ¢ Tk it follows that

L g s{L sesssh }. Therefore it must be that L was considered by the
B Ti-1
greedy algorithm after LT . But the greedy algorithm considers candidates
K
in order of increasing absolute value on EO. Thus we must have ILT !_5 IL
k

>

X € EU. This completes the proof of Lemma 4.1. [

The next lemma provides a majorant for P(x) involving only elements of
B ®
o}

Lemma 4.2. For each permutation o there are constants C] and C2

(independent of x and t) such that
where
Ak = d(P’{LT ,eao,L }) had d(P,{L ,oto,L }) - ], k = 2’ooo’r.

1 Tk ™ k-1

Proof. We have

r+l
P(x) = I Fk(x),
k=1
where
b. h. b.
N N 1 [ P 1 I N I P |
{3: LjeTk} {3: LjeTk\S} {3: 5€Tgn }

Fix k <r and consider the two products on the right hand side. In the

i

first product all of the exponents are non-negative because the Lj s do not

belong to S. Therefore Lemma 4.1.a implies that the first product is

majorized on EG by
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b. b.
m CGJ'L ' J,
{i: LjeTk\S} Tk

In the second product all of the exponents are negative. Thus Lemma 4.1.b
implies that the second product is majorized on EG by

RN .
{3: LjeTan} k

Combining these facts we conclude that there is a constant C such that

p
Fk(x)<C'le,x€E, k< r,
= ey s L
where
Py = ) b..
. J
{J. LjeTk}

Finally we consider Fr+1(x). A11 of the exponents in the product defining

Fr+](x) are non-negative because S c UE 1 Tk. Consequently (4.1) implies

Lemma 4.2 will follow from the last two inequalities if we show that

Ay = Pys k =1,..., We have

dP{L_} =1+ ] bo=1+  F  bo=14+p.

Thus

If k>2 then
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1 + d(P{LT],...,LTk 1y + Pye

Thus
A, = AP (L eeesl 1) = d(PAL eensl
k g & g -1

This completes the proof of Lemma 4.2. [J

Lemma 4.3. Let IEL PIRTR . be given real numbers. Then for all t > 0

g T g e | gty <

2
(HETRRIAE

if d

Do vk 3
K = kK + Zj:} ¢j >0 for k=1,...,0

Proof. It clearly suffices to consider the case t = 1. We proceed by
induction on n. The lemma is obviously true for n = 1. Now suppose that the
Temma holds for n-1 and that we are given 1500050, satisfying the
hypotheses of the lemma. Choose & > 0 such that dn—é >0 and 6,6 # -1,

(If oy * -1 we can take & = 0). Then the above integral (with t = 1) s

less than
‘x]‘¢]...'xn_1‘¢n'1'xn|¢n—6 dxy « » . dx
|%q [<]%o] <0+ <] %, <1
- ‘X1’¢1""Xn-]l¢n_] i X '¢n-6 dx dxq..edx
lx1t§IX2LS"ﬂ§lxn—]‘ lxn-1‘§lxn'fﬂ

After evaluating the integral over X s We obtain
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¢ ¢
gf.m 5 e x| T dxg e edx

[ [<]%a [ <o <] %0 [0

b, )
- / LY IRRER P R Y

lx]lﬁlxz 5,..§ixn_1|jj

The induction hypothesis implies that the first integral in the braces is

finite. To apply the induction hypothesis to the second integral, note that
(n-1) + by Foeee O 5 F (¢n_1+¢n-5+1) el U R

Thus the second integral is finite, which completes the proof of Lemma 4.3.

Lemma 4.4. Let o be a permutation of {1,...,m} such that

d(P,{L ,...,L_}) >0, k=1,...,r. Then
T Tk

[ P(x)dx < =.

E
o

Proof. According to Lemma 4.2 it suffices to show

’A]...'LT IA" dx < w,

|t -

/
E ' M
e}

where A]”"’Ar are as defined in Lemma 4.2. Define

: IL <

K

Then (4.1) and (4.2) imply that EU

n

majorized by

n-1

n_]+¢n-5+]

< 'sz’ <oan < ILTJ < Mt}

E;. Therefore the last integral is

0
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A]...'LT 'Ardx < Cq [ |y1|A‘...‘yr}Ar dyy .-y,
T Pl e

[ ]v

|
E! 1

where 03 is a constant obtained by integrating over n-r extraneous

variables. Note that A]"”’Ar satisfy

Hence lLemma 4.4 follows from Lemma 4.3. [

Proof of Theorem 3.1. Suppose that the conditions of Theorem 3.1 hold.

let o be a permutation of {1,...,m}. Since {LT sesesl } < S,
1 k
k =1,...,r, we have d(P,{L_,...,L_}) >0, k=171,.0.,r. Thus we
M Tk
can use Lemma 4.4 to conclude that fE P(x)dx < =. Theorem 3.1 follows

o
because Ut is the union over o of the sets Eg. 0

Proof of Theorem 3.2. let o be a permutation of {1,...,m}. Define

A vV, n EG. It suffices to show that

N,o N

[ P(x)dx = O(NY®),

NsO'

As before we use the greedy algorithm to obtain a basis

B ={L ,L ,...,L_} for S. MWe have two cases to consider.
g T T T
1 2 r
Case 1) BU c SZ' In this case it follows from Lemma 4.4 that
jEG P(x)dx < =. Since AN,c < E_ for all N, we have fAN _ P(x)dx = 0(1).

Case I1) BG ¢ SZ'

Let & =min{k: L_ ¢ S;}. From the definition of V) it follows that
k
1 S_Nyé]LT }6, X € Vy. Combining this with the result of Lemma 4.2 ve
2

obtain



[ P(x)dx £ C (Mt)CZ NYo g L |A1’L 'Az Agts
A 1 4

N,o o

lAR+]...’L
&

T2 To4

where A],..e,Ar are defined as in Lemma 4.2. The above integral is

majorized by

A A A +8 A A
C 'y]i ]'yzl 2...’yx‘ 2 'y2+]‘ £+]““yr‘ rdy]...dyr,

4
|7 [£]va| - <]y

where C4 is obtained by integrating over n-r extraneous variables. Next
we verify that this integral satisfies the hypotheses of Lemma 4.3. For

k <2 we have {LT ,.,.,LT } < 52. Hence condition a) of the theorem
1 k

implies that k + JX . A, = d(P,{L_ ,...,L_}) > 0. On the other hand, if
\]’] J T] 'Uk

k > & it follows from condition b) of the theorem that k + Z§=1 by *+ 8 =

d(P,{LT ,...,LT }) + & > 0. Thus the Tast integral is finite, completing
1 k
the proof of Theorem 3.2. [J
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5. Counting powers

This section is devoted to "counting powers" in the function

P : R2p > R given by

n
PLX) = [xp 4 eee + xp 17y %o | 9]y % | 7B g x4
1 2 " Zp‘ 2' % 2p 1 172 172 3'
=y _B
IQO.X] +aua +X2p-], ’X] +...+X2p’ 9
where o <1, B <1 and 0 < < 1. The results are stated in
Propositions 5.1 and 5.2. Introduce the set of linear functionals on R2p

T={x, + .00+ Xops XpaXgseeesXons Xy XyHpseeasXy +ean xzp}.

2p

For each W < T we define the set s{W} and the quantity d(Pn,W) as

in Section 3.

Proposition 5.1. Let « <1, <1 and let n satisfy 0 <y <1 and

n > iﬁ%ﬁl . If W< T 1dis an independent set such that ’W' = 2p-1 and

W e {x2 + o + X2p’ x2,x3,...,x2p}, then d(Pn,W) = 2pn-1.

Proof. It is clear that if W satisfies the conditions of Proposition 5.1
then s{w} = {x2 +oaa, X2p’ xz,x3,...,x2p}. Therefore d(Pn,w) = (2p-1)

+ 2p(n-1) = 2pn-1. 0O

Proposition 5.2. let a <1, 8 <1 and let n satisfy 0<n <1 and

n > iﬁ%ﬁl . If W< T is an independent set such that either ]w[ + 2p-1

or wg {x2 + ... + XZp’ xz,x3,...,xzp}, then d(Pn,W) > 0.

The rest of this section is devoted to the proof of Proposition 5.2,
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In proving that proposition we can restrict ourselves to considering
sets W< T which do not contain Xo * ess F X2p' To see this, assume that

Xo + eos + X, € W. Suppose first that the set s{W}\s{W\x, + ... + xzp}

2 2p
contains some functional L other than x2 + oa. + X2p‘ Then we consider

the set W' which is W with + eos + replaced by L, that is

X2 XZp
| . gt
W'o=Wou {LIVx, + .00 # xzp}. Clearly, X, + oou Xop ¢ W'. Furthermore,
W' has the same span and cardinality as W. Therefore d(Pn,W') = d(Pn,W).
On the other hand, suppose that there is no such L. In this case we put
[ - L2 -
W' = W x, + oou xzp}. We have 'w l = lw'-1 and
S W‘ = S w + LI ) + ® H d P ,W' = d P ,w - ] - "—1 =
iy = s x, Kgple Hence d(P ') = d(P W) (n-1)
d(Pn,W) -n< d(Pn,W). Thus in either case there is a set W' which does
not contain

+ aee + X and satisfies d(Pn,W') 5_d(Pn,W). Hence we

X2 2p
can assume that W does not contain Xo * aee ¥ XZp'

In proving Proposition 5.2 we can also restrict ourselves to sets
We T which satisfy {xk, Xp Foees ¥ Xk} ¢ W, k=2,...,2p. For suppose
that T does not satisfy this restriction. Let j be the largest k for
which {x., x; + oo ¥ xbe Mo Let W' =Wy {x + ...+ Xj-1}\
{x; + oout xj}. Since the sets {Xj’ Xp e ¥ Xj-1} and
{Xj’ Xp ot oees xj} have the same span and cardinality, it follows that
d(Pn,w') = d(Pn,w). It is clear that the largest value of k for which
s xp + een o+ X, } = W' {is atmost j-1. After repeating this process
at most j-2 more times we obtain a set W" satisfying d(Pn,w") = d(Pn’W)
and {xk, Xp +oees * Xk} gW's k=2,...,2p. Thus we can restrict our-
selves to sets W which do not contain both X and X7+ eee F Xpo

We will assume from now on that W < T satisfies both of the above

restrictions. To describe the sets W which we will be considering, it is
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helpful to think of the elements of T\{x2 +oeee F xzp} arranged in columns
as follows:
X2 X3 X2p
X1 Xp P X | X T Xy F Xy
In the rest of this section we consider sets W which contain at most one
element from each column. For any set T' c T we say that T' contains
the kth column if X, € T' or X + wae + X, € T'.

The proof of Proposition 5.2 involves three lemmas.

Lemma 5.3. Suppose that W does not contain the kth column. Then s{W}

does not contain the kth column.

Proof. We prove that neither x, nor x; + ... +x . s in s{W}. We

distinguish two cases.

Case I. There is no Jj > k such that x; + ...+ X5 € W. In this case
the conclusion of the lemma is clear since no element of W contains the

summand Xk’

Case II. There exists Jj >k such that x; + ... + X5 € W.

Suppose that Jj 1is the smallest index with this property. Then
the only elements of W which contain the summand X, are among
{x1 + ee. + Xis X Foaas XjppseeesXy + oees + XZp}° Since Xj g W
these are also the only elements of W which contain the summand Xj‘
Thus in any linear combination of the elements of W the summands Xy
and xj appear with the same coefficient. Hence neither X, nor

X + aes + X, can be linear combinations of elements of W. This

completes the proof of Lemma 5.3. [J
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We now partition W into blocks of contiguous columns. Any two blocks
are separated by at least one column not in W. Formally, we will say that

a set BecW 1is a block of columns, if there exist g < g such that

1) W contains neither column xB—l nor column rB+1.

2) B contains column 2y through rs and no other columns. With

this definition we obtain a partition W = U§=1 Bj’ where eacn Bj is a
block of columns. MWe will assume that Bj is to the left of Bj+1 for
each Jj.
. . _ 1-n .
Define the function Qn(x) = Pn(x) Xo t oeos * XZpl . It is clear
that
( d(Qn,W) if X, + eea ot Xop s{w}
d(Pn,W) =
n-=-1+ d(Qn,W) if X, + aes t xZp e s{W}

Furthermore Lemma 5.3 implies that d(Qn,W) = Zg=1 d(Qn’Bj)‘ Thus we have

_
n
d(P ) = { (5.1)
n
-1+ Y d(Q ,B. if +t oaes + W).
. i Jé] (QT) J) 1 XZ sz e S(W)

The next lemma is useful in determining the quantities d(Qn’Bj)' A
block of columns will be called nonsingular if it contains X1 toees Xy

for some Kk 2_1.

Lemma 5.4. Let B be a nonsingular block of columns. Put 2 = 2 and

ro=rg. Llet m be the smallest k satisfying Xp Foees + X € B.



P2

1) If 2<J <m, then X5 € s(B) and Xq * eee * X5 ¢ s(B).

2) X ¢ s(B) and Xp Foees ¥ X € s(B).

3) If m<j<r, then Xy e s(B) and Xyt oeee F Xj € s(B).

Proof.

1) Let 2 <j<m Since j <m we have {xx,x£+],.,.,xj} c B. Suppose
that Xp toees # X; e s(B). The identity Xp toees b X 0= (x] + oees + Xj)
" Xp T Xggp Toees T Xy implies that SELTRL S s(B). This contra-

dicts Lemma 5.3. We conclude that Xp ot oeee t X5 ¢ s(B).
2) The definition of m 1implies that X7 ¥ eee T X € B. Suppose that

X € s(B). We have

X7+ aee X = (x] + ses * X

2-1 m) b s 2+

again contradicting Lemma 5.3.

3) This is proven by induction. It is clear that if Xp ot eea ¥ Xy € s(B)
and B contains column j+1, then {Xj+],x1 + oees + Xj+1} c s(B). To
start the induction off, note that Xp *oees ¥ X € s(B) and B contains

column m+l. This completes the proof of Lemma 5.4. [

If B is a singular block of columns, then B < {XZ’XB""’XZp} and

therefore
d(Qn,B) = 'B' + ,Bl(n-]) = ‘B'n > 0. (5.2)

To determine d(Qn,B) for a nonsingular block, we need to take into account
the parities of the integers m and r introduced in the statement of

Lemma 5.4. This is done in the next lemma. First define
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¢y = (nt)n + (rem)ln - L228)
and
Cp = (m-a)n + (r-m#)[n - LB,

Note that under the conditions of Proposition 5.2 we have C] > 0 and

5 > 0.

Lemma 5.5. Suppose that the conditions of Proposition 5.2 hold. Let B be
a nonsingular block of columns.

1) If m and r are both odd, then

d(Qn,B) = (]-(x) + C.| __>_ T-q > 0.

2) If m and r are both even, then

4(Q,.8) = (1-8) + € > 1-p > 0.

3) If m and r have different parities, then

4(Q,,8) = (1-n) + C, > 1-n > 0.

Proof. Note that d(Qn,B) is equal to the cardinality of B plus the sum
of the powers of all the elements of s(B)\{x, + ... + XZp}' The
cardinality of B contributes (r-g) + 1 to d(Qn,B).

According to Lemma 5.4, the set S(B)\{x2 + oae. + XZp} is equal to

w1 U wz, where



w2l

Wy = {Xx’x2+1""’Xm-!’xm+1’Xm+2"”’xr}

‘/J - -l 0 @ ] } LI ‘I 89 -I s 9 2 }n

Counting the powers associated with w] we obtain a contribution

(r=2)(n-1) = =(r=2) + (m-2)n + (r-m)n.

Counting the powers associated with NZ we obtain a contribution

- - (r-m) (a+g) if m,r are both odd
< (r-m) .
-B - 5 («+g) if m,r are both even
iﬁ:gill.(a+5) if m,r have different parities.

Summing the appropriate contributions and using the inequalities o <1,

>0 and C, > 0 we obtain the results of Lemma 5.5. []

2

Proof of Proposition 5.2. Suppose that the conditions of Proposition 5.2

hold and that the independent subset W of T also satisfies the

restrictions described above. (Namely, W does not contain Xo + eee * x2p

and {xk, Xp +oees ¥ xk} g W, k=2,.,.,2p.) Relation (5.1), relation
(5.2) and Lemma 5.5 imply that d(Pn,w) > 0 if Ko * aos * Xop ¢ s(W). To

complete the proof, assume that Xop ¥ see + Xo € s(W). This implies that

2p

rg = 2p  (where Bn js the rightmost block of W), because the summand
n

X appears only in the 2pth column.

2p
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First we will show that Bn is nonsingular, that is, it contains

X4 + ee. + Xy for some k > 1. Put 2 = RBn. If 2 =1, then Xy € Bn

and so Bn is nonsingular. If 2 = 2 and Bn is singular, then W = Bn

= {xz,...,xzp}, contradicting the assumptions of the proposition. If
£ > 2 and Bn is singular, then no element of W contains the summand

SRE contradicting the assumption that Xo * eas * Xy € s{W). Thus Bn

2p
must be nonsingular.

Next we will show that RB = 1, Since Bn is nonsingular, Lemma 5.4
1
shows that Xp + e * Xop € s(W). Since we have assumed that

+ .0s + X, € S{W), it follows that Xy € s(W). Thus we must have

X2 2p

g = 1 in order to avoid contradicting Lemma 5.3.
1
To complete the proof, we distinguish two cases, according to whether

W consists of a single block or more than one block.

Case I. n =1,

In this case we have only one block 81 satisfying g =My = 1
1 1
and rg. = 2p. Lemma 5.5 implies that d(Qn,B1) =1 - n+ C2. According
1
to (5.1), d(Pﬂ,W) = d(Qn,B]) +qq-1= C2 > 0.

Case II. n> 1.

We again have g =mg = 1. Thus either Part 1 or Part 3 of Lemma 5.5
1 1
applies. Hence d(Qn,B]) > 1=a or d(Qn,B1) > T-n.

Since rg = 2p and Bn is nonsingular, either Part 2 or Part 3 of
n
Lemma 5.5 applies to Bn‘ Thus d(Qn’Bn) > 1-8 or d(Qn’Bn) > 1-n.
The proof can now be completed as follows. According to (5.2) and Lemma

5.5, we have d(Qn’Bk) >0, k=1,...,n. Thus by {(5.1),



=26-

n
d(P ,U) = nm =1 + Z
n j=1

_>_ﬂ -1+ d(QnsB]) + d(Qn’Bn).

4(0,.,8)

If d ,B:) > 1-n, then d(P ,W) > d{Q ,B > 0. Similarly, d(P ,W) > O
(0,8)) > 1-n (P, 2H) > d(0 .8 ) ya (P W)
if d(Qn’Bn) > 1-n. Therefore we can assume that d(Qn’Bn)-Z 1-¢ and
d(Qn’Bn) > 1-B. Then d(Pn,N) >n -1+ (1-a) + (1-p)

=1 -9+ 2[n - (QZB)] > 1-n > 0. This completes the proof of Proposition

5.2. 1[I
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6. Applications of power counting

In this section, we establish Propositions 6.1 and 6.2 which will be used in
the proof of Theorem 1.

For each integer N > 1, define the function hy: R > R by hN(X) =
min( ] » N) and the function fN: Rzp > R by

- - -B
fN(x) = hN(x2 +oaea + X2p)hN(X2)hN(X3)'"hN(XZp)lxlI ’x]+x2’ ’x]+x2+x3

IB)

™

..,lx] +oeae * X2p-1'-a’X] + et xzp!"s (6.1)

where o« <1 and 8 < 1. Fix t > 0 and put Ut = [-t,t]2p and

V =

2
x e RP: x| < |x,|}. The following results are useful in studying the
11 =172

behavior of f 2p fy(x)dx as N> =,

"TE,TII

Proposition 6.1. let « <1 and B < 1.

a)

b)

If a+p8 >0, thenas N-» =,

[ fy(x)dx = o(NPlatB)*e)

Uth

for every e > 0.

If « +8<0, thenas N~ «,

= O(N?)

Sy
—”
=
———
x
~—
Q.
>
I

for every ¢ > 0.

Proposition 6.2. Let « <1 and g < 1.

a)

If p(a+g) <1, then



1im 1im sup ————o—oouou = 0.
t+0 Noco N

b) If p(a+p) > 1, then for every e > 0

[y f
lim —& =0,
Noreo NP(“"'B) + e

=

In order to prove Propositions 6.1 and 6.2 we need to put the problem into

the framework described in Section 4. Choose 1y satisfying 0 < n <1,

1

If x e R satisfies ]xl 2_N. then we have

N x| = Nﬂ|x|n-‘.

(%) = T%T‘S’TéT

On the other hand, if ‘x‘ < %. we have

h

N(x) = NINT ™ E_Nn’x'n'l.

Thus we have shown
hN(X) _«(_anxln'], xe Ry, 0<n<1l.
This implies

£y(x) < N2 P LX), X e R, 0 < < T, (6.2)

where, as in Section 5,

‘—a

Pn(x) = lxz +oa.. t xzpln“][le”']... xzp'”']‘X]I'“’x]+x2|'5’x1+x2+x3

e fxy e xzpl‘ﬁ. (6.3)
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We will apply the lemmas of Section 4 to the function Pﬂ(x). To this end

2p

we introduce the linear functionals Lj: R™™ 5 R as follows:

o
w
——~
>
St
I
=
w

2p+1 (X) = %

Lopea(X) = xy4x,

As in Section 3, we put T = {L1,..,,L4p}. With these definitions

Po(x) = Ly LM

. Lon| ™ [Laper| [ Lapsa] P |Lopra] oo [Lap] -

For We T define d(Pn,W) as in Section 3. In this context

Propositions 5.1 and 5.2 become

Proposition 6.3. let «,8 <1 and let n satisfy 0<n <1 and

n > iigﬁl., let W< T be an independent set.
‘I)

b) If lw, #2p=1 or Wy {lysbysenesly ), then d(P W) > 0.

a) If ’w' = 2p-1 and W L LZ,,..,LZP}, then d(Pn,W) = 2pn-l.
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Remark. If « <0 and g <0 in Part b of Proposition 6.1, we can choose

ag > 0 and By > 0 satisfying p(a0+50) <e so that for all x e Uy

- - - it
o o L P o R R T B e

for some constant C. Therefore if Proposition 6.1 holds for g and Bo
it holds for o« and g. Thus in proving the proposition we can assume that
a >0 or g >0. A similar argument shows that we can also make this assumption
in proving Proposition 6.2.
In the rest of this section we will assume that o <1, g <1 and either
@« >0 or g>0. (It will not matter which one is positive.)
In the proofs of Propositions 6.1 and 6.2 we use the notation introduced
in the beginning of Section 3. For example, S 1is the set of Lj's which
appear with negative exponents in Pn(x). Note that the rank of T 1is equal
to 2p. Since o« > 0 or B> 0, the rank of S s also equal to 2p. As in

Section 4, let M be a constant such that
’Lj’ <Mt xe Ups 3= Then,dp. (6.4)

Llet o be any permutation of {1,...,4p}. We define

E_={x el ‘L(ﬁ! Leen S L

[}

S4p

As described in Section 4, we use the greedy algorithm to obtain a basis
B_={L_,....L_} for S satisfying
2p

;LT]' < !LTZ' Lo S L ‘ xe E . (6.5)

’Uzp o
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Proof of Proposition 6.1. Fix e > 0. Fix n satisfying 0 <y <1 and

n > (a;B) . In view of (6.2),

[y x)dx < NPT p P (x)dx. (6.6)
U, nV Uy M
t t
Our aim is to show
f Pn(x)dx < w. (6.7)
Uth

Both parts of Proposition 6.1 follow from (6.6) and (6.7). Indeed, to

obtain Part a we note that

_ {a*p)
2on Np(a+8)+2p[n ~—§~_]

Since (under the conditions of Part a) we have 0 < 3g§.< 1, we can choose
n to make the second term in the exponent smaller than e. To obtain Part
b, suppose a+8 < 0. Then we can choose n small enough to satisfy 2pn < e,
proving Part b.

It is thus sufficient to establish (6.7). To do this it suffices to show
that for each permutation o

| Pn(x)dx < w, (6.8)
EGnV

Fix a permutation o. To show (6.8), we distinguish two cases,

Case I) {L_ ,...,L b g {Lysesesls }e
— ™ sz_] 7 14 2p

In this case Proposition 6.3b and Lemma 4.4 imply fE Pn(x)dx { w,
g
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Case II) {L ,...,L be {Lysesssls b
— T] sz*]J ] 2p

In this case we can describe the partition 7T = T] U TZ U sos U

Top+1
introduced in Section 4 before the statement of Lemma 4.1. To do this we

determine the sets s{L_ seeesk }s k=1,...,2p. These are:
1 k

S{L_seensl b= (L eenl ) ko= 1h...,20-2,

R Tk B k
S{L ,ooe,L } = {L ’oa.,L },
T sz_1 1 2p
S{L ,aao,[— } = T
1 T2p
The first relation follows from the assumption {L yeso sk } c {L ,..,,L2
The second follows from the relation L] = L2 + a6 *+ sz. The third follows
from the fact that the rank of {LT ,...,LT } is equal to the rank of S,
1 2p

which is 2p. Define

L= 4L, ,00s,kL L osesesl .

Then the sets Tk are as foliows:

Ko
T = L 9""L L ,aoo,L = L ’L s
2p-1 { 1 gp}\{ 2 t2p—2} { “op-1 q}
sz = {L],O003L4p}\{L130--,L2p} = {L2p+],oao,L4p},
and
T2p+1 = 0.

The next step is to use this to establish

[L xeE_n V. (6.9)

'L2p+1‘ < q"



«33-

Since Lq € sz_] nS, Lemma 4.1.b implies that 'L

T
2p-
x ¢ E_. Combining this with (6.5) we see that lL <

| <

T

ILT ' S_'qu for x ¢ E_. Therefore on E_ we]have
-1

Lq = max{'L] . |L, ,...,Iszl}. In particular 'LZ' 5_’qu on EG. For
x ¢ V we have 'L2p+]' = 'x], S-’XZi = 'Lzl. These last two inequalities
imply (6.9).
Since
iy (x) = 'Lﬁ'n"]“"LTZp-qln']Mn']|L2p+1"alLZpHI'B““Lé&pf-ﬁ’

relation (6.9) implies that Pn(x) S_P%(x), X € EG, where

: - -] - ] - -
Pn(x) ) 'LT1’n 1"’1L’52p—1'n IL2p+1! o lL2p+2| B“”L4p' g
Hence {6.8) will follow if we show
é P%(x)dx { @ (6.10)
e

To show (6.10) we use Lemma 4.4. For k < 2p-2 we have s{!_T seessl ]

= {L_ ,...,L_}, from which it follows that
" Tk

dP L ,..esl } =k + k(n-1) = kn > 0, k < 2p-2.

n Ty
Since s{L ,...,L } = {Lysesssl, )} we have

T TZp-J 1 2p

d(Pro{L_seeesl_}) = (2p-1) + (20-1)(n-1) = (2p-1)n > O.
1 2p-1
Finally
; _ _ (a’*'B)
d(Pn,{LT],..,,L 1) = 2p + 2p(n-1) - pa - pB = 2p[n - 1> 0.

sz

Thus (6.10) follows from Lemma 4.4, completing the proof of Proposition 6.1. []
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Proof of Proposition 6.2. Let o be a permutation of {1,...,2p}. It suffices

to show that the conclusions of the proposition hold with Ut replaced by

Eg. As in the proof of Proposition 6.1 we distinguish two cases.

Case 1) {L_,....L ba {Lisesssls, }e
™ sz_] 7 14 2p

In this case both Part a and Part b follow from (6.6), Proposition 5.2 and

Lemma 4.4 by choosing n appropriately.

Case II) {L ,...,L SR | I I
T'] sz_] ] Zp
1. Proof of part a:
The partition T = T1 U T2 U eoe U sz was described in the proof of

Proposition 6.1. We saw there that

| < It

|L11'.§ ‘erl-i cee < ILsz_1 . xe E, (6.11)
where

L= {Lyseeeslo VL Leensl ).
q 1 2p ™ Top-1

Since hN(X>-5 N, we have

£y (%) 5_NZP'L2p+]i‘“'L2p+2|“5...]L4p"a, x e R%P,

Since sz = {L ,L4p}, it follows from Lemma 4.1 that there is

2p+1°° e
a constant C such that

Lap| P < |t P, x e E L (612)

[Lapnr] |Lzpsal 7| T

From these last two inequalities we obtain

fy(x) < CNZP'L l"p(“+ﬁ), x e E . (6.13)
sz ag
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Define the sets

_ 1
GN,O Ec n {ﬁi ’L'c]’}’
1
G = F L < — L . = 2,000,2D=2
NaJ ¢ n {l TJ' - N l Tj'ﬂ J P
and
1
G = E L < -},
anp-l e} n {' sz_]‘ - N}
Because of (6.11) it is clear that
EG = GN,O Y GN,] U eos U GN,Zp-]'

Thus it suffices to show that the conclusion of Part a holds with Ut

replaced by GN e j=0,...,2p. Define also the sets

. k=T,.0,3) 0 {%.S_lLTk' <ME, k= §41,...,2p-1)

n {IL

sz‘ < Mtl.

In view of (6.11) we have GN j© KN 5 We now distinguish two subcases

according to whether j = 2p-1 or not.

Subcase 1) Jj = 2p-1. From (6.13) we obtain

'-D(a+5) <on® g L

‘-p(a+8).
Kn,2p-1

[ fyl0dx < PP L

G

T
N,2p-1 N,2p-1 2p

G T2p

1 v o=
where on Ky o 4, we have 'LTk’ §,ﬁ for k = 1,...,2p-1 and ’LTZp"i Mt.
Since the vectors LT form a basis, we see, on making the appropriate
k
change of variable, that the right hand side is majorized by

N

1/N =Mt

1/ Mt
C'sz[ f dy]ZP-] f ‘z"p(‘“ﬁ)dz = C"Nt]'p(“+5),
/
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Therefore

e
1im sup N, 2p-1
N N

which implies the conclusion of Part a.

Subcase 2) j < 2p-1. For x e G j e have

[
i
—

Tk
and, by (6.11)

-1
hN(Lq) - 'qu < ‘LTZp—]

These facts in combination with (6.12) yield

fy(0) < CleLT 1‘1 |'2'L "P(a+6), X ¢ G

i+l Top APN

We do not yet integrate because f?}N ‘Ll']dL would yield a logarithm. We

4

shall first redistribute powers. According to (6.11), we have 'L ' 5_'L
Tk T2p-1
k = j+1,...,2p=1, and thus fN(x) S-QN(X)’ where

1

. | 2p-1 ] I G —
gy(x) = V¢ m L 2p-1-] L

"p(C’C+B), X ¢ G
k=3+1

Tk’ Top N,j°

Hence

/ fN(x)dngf gy (x)dx.

O, N, j
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This last integral is majorized by

1
TN {1+ ! 2p-1-j Mt
WL dyT [ W =T=3" gy 'z,'p(“+5)dz.
-1/N 1/N5’wl5mt -Mt

i
). The second is O(NZp_]'J).

The first integral in brackets is O(N-1

Under the hypothesis of Part a the whole expression is O(N)t]'p(a+5). This

concludes the proof of Part a.

2. Proof of Part b:

Fix & > 0. Under the conditions of Part b we can choose n satisfying
0<n<1, n> iﬂ%ﬁl. and 1 < 2pn < p(a+B) + €. According to Proposition 6.3
we have d(Pn,N) > min(2pn=-1,0) for every independent set W < T. Since
2pn-1 > 0, we conclude that d(Pn,W) > 0 for all independent sets W c T.
Theorem 3.1 now implies that IU Pﬂ(x)dx { », From (6.2) we obtain

t
[y fyx)dx < NPT fy_ P (x)dx. Since 2pn < p(a+p)te, this is o(nP(a+B)+e)

t t
as desired. This completes the proof of Proposition 6.2. [



=38

7. Proof of Theorem 1

The proof requires a lemma in addition to Propositions 6.1 and 6.2, We use
the notation introduced in Section 2 prior to the statement of Theorem 1. Fix

p>1 and note

o N N-1
Tr(RADT = ) .. ) P D A P
NN 520 T g, =0 17T Jpnig dgniy T gy
1 2p
N-1 N-1 = n T(3y-do)yy 1(3,-d3)y i(3pn=07)y
= %P Y eee D T L A T
3170 Jpp=0 0 0
» Fyalyp)flyg)e e 9y, )dyge. dyy ]
2
=27 o Py(v)(y)dy, (7.1)
[Oa'ﬂ:]
where
N-1 N-1 i(31-d5)yy 1(Ip=d3)y i(3,,-31)y
, : 172/ 2793772 2p 172
Py¥) = § ... ] e e N P P
370 30
and

Q(Y) = f(y] )g(.yZ)f(.y?))”'g(yZp)'
To state the lemma, introduce the diagonal

2
D= {ye [0,n] P. Y1 = ¥p = een = yzp}e

Let p  be the measure on [O,n]zp which is concentrated on D and

<b} =b-a forall 0<a<b<g.

satisfies pu{y: a LY = Y9 = eee = yzp

Thus p  is Lebesgue measure on D, normalied so that u(D) = x.
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Lemma 7.1. Define the measure wy on [0,n]2p by

uy(E) = [ Py(¥)dy, Ec (0,21,
2p-1, E

Then wy converges weakly to p as N » =,

Proof. Since [O,n]Zp is compact, it suffices to show that the Fourier
coefficients of wy converge to those of p. Fixing integers n]’”Z""’”Zp’

the corresponding Fourier coefficient of p s

. 2p
1'(n]y1+...+n2 yzp) i b 0 if Zj=1 nj # 0
[ o e P du(y) = [ e dx =
1P 0

. 2p _
[0,m w if Ji5 ny = 0.

The corresponding Fourier coefficient of by is

(N Y tesatn, v, ]
) ) 171 2p72p
Cy = Cnysngseseony) = o i]ZP e dy (¥)

N-1 N-1 [z iln,+j,=3,1y
1 11 Y27
PRI TR L ‘“’1

(r)2P~ Ty 997 Iop”

]

n [n,ti,=isly n iln, 43, -3y ly
. [e 2r2 e dy, «». [ € 2p~2p m172p dy, - (7.2)
0 0

FiX Jiseeesin.. In order for the expression in braces to be nonzero we
1 2p

must have
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n'} = '(j]‘jz)

i

"'(J 2"j 3)

(7.3)

-

Nop-1 = ~(gpo1732p)

n2p = "(jzp“j} )°

But then n1 + ae. + n2p = (0, Thus if n + ... * n2p +# 0 each of the

summands in (7.2) is equal to 0. Therefore Cy = 0 if Nyt eee * n2p # 0.
Suppose Nyt eee * nZp = 0. Then each summand in (7.2) equals 0 or
n2p. When the summand equals n2p, the indices j]""’ij satisfy (7.3),

which implies

(7.4)
Jop =dyp + {np+eentny )
Define
M = max{n, + s ko= 1,.0.,2p-1), MY o= max(M,0),
m = min{n] + tng:o ko= T,050,2p=1}, and m' = max(m,0).

Fix j1 satisfying O ﬁ_j] < N-1 and determine j2,...,j2p according to
(7.4). 1In order for the inequalities 0 <j, <N-1, k=2,...,2p to
be satisfied we must have j, < N-1-M and j, > m. Thus the sum in (7.2)

is equal to



wl] =

Therefore

which tends to n as N » «. This completes the proof of Lemma 7.1. [J

Proof of Theorem 1. We must evaluate the asymptotic behavior of

Introduce the sets

and

For each 0 <t < n define

- 2p
Bt - [O,t] E3

The singularities of Q occur on W and on Bt for small t. We shall

divide the domain of integration Bn into three parts as follows. Let

Et = Bn\{w U Bt},

Ft = Bt\w,

G=B n W.
T

and

For each 0 <t <=, the sets Et, Ft and G are disjoint and satisfy

B75 = Et U Ft u G.



4.

According to (7.1), Part a of the theorem will be proven if we show that

pla+p) <1 dmplies

Je. P@ opo] T
lim —* = g5P” f [f(x)g(x)IPdx, 0 <t <1, (7.5)
Neoow t
[r, P@
lim 1im sup ——— = 0, (7.6)
t+0 Nosoo N
and
fe PyQ
1im 28 Mo g (7.7)
Nosco

To prove (7.6) it is enough to show that when p(a+p) <1

1im 1im sup ——— = 0. (7.8)
t-0 Noow N

Since G = U§21 [wk n Bﬂ], relation (7.7) will hold if p(atg) <1 implies

Ig M PyQ
Tin LK =0, k=T,...,2. (7.9)

Nesoo

and

g
=
]
"
-
=
s
!
L]
l
o
=
L
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Because of the symmetry between o« and g 1in the hypotheses of the theorem,

it is clear that if we prove that p(a+g) <1 implies

Ig i, PyC
lim —*__ =0, (7.10)
Nrco N
we will have also established
/g W, Py@
].im,__lt._.__.___= Oc
Noreo N

Thus (7.9) will follow from (7.10).
In conclusion, Part a of the theorem will be proven if we show that
p(atg) <1 dimplies (7.5), (7.8) and (7.10).

To prove Part b, we must show that for p(atg) > 1

lim [ P = o(NPLe¥B)e) £or avery & > 0. (7.11)
N-soo B?‘c

We start with relation (7.5) and show that it holds in fact for all real
values of o and B. We begin by showing that Q is bounded on Et’ Let

Y e Et' Since E is in the complement of Bt’ there is some Kk such that

t
Yy >t. Since Et is also in the complement of wj, j=1,...52p, we have
yj > yg+] , J=1,...,2p=-1 and y2p > ;l.. Thus we have
Yiar XE%E > yk23 > eee > ZZPK > Zyik > e > yk_ 5
»2p- 22D +] 22p 1 22p—1

Therefore yj > 22;_] s J=1,.0.0,2p, for ye Et' Under the conditions of
the theorem, f and g are bounded on [ ZE-l’ n]. Hence 0§ 1is bounded on
E.. Since E, nD= {y: t < Yy =Y = ...2= Yop < m}, relation (7.5) follows

from Lemma 7.1.



A4

Before proving (7.8), (7.10) and (7.11) we need to obtain majorants for

PN and Q. We have

N-T  i(y =y, 037 N=T i(y,=yy)] N-T iy, =Yoo _1)]
: 1 72p’~1 v 27172 % 2p Y2p-1/v2
Py¥) = (] e S I - Jeuo ) e P ERTIER)
‘]~‘=O J2=O szzo
Lk %* *
= hN(y]‘yzp)hN(yz“Y})-~°hN(yZp‘y2p_])a
where
N-T . .
hy(x) = § e,
j=0
iNX . .
Since hy(x) = 1-g for x # 0, .1-e1NX' <2 and '1-e1x >
l1oaiX
21/2n~1ixl-1 for ’x“g n, we obtain hg(x) 5-21/2ﬁlxl_} for 'x < e
Since .hﬁ(x)' <N, this implies that h&(x) 5_2]/2nhN(x) for ’x <z
where, as in Section 6, hN(x) = min{N, _1~J. Thus
%]
— 2Dt
Puly) < (/Zn)PPy(y), v e B, (7.12)

where
PN(Y) = hN(y]'yZp)hN(yZ'yl)"'hN(yZp'yZp-1)‘

For fixed & > 0 let g = a + 8 and gy =B + 6. It is clear that
under the hypotheses of the theorem Q(y) 1is at most a constant times Q'(y),
where

-0 -8 4 -B
iy _ 0 0 0 0
') = [n| o Clval eee]vae]
Because of (7.12), the proof of the theorem can be completed by showing that
(7.8), (7.10) and (7.11) hold with Py replaced by P& and Q replaced by

Q'. Now make the change of variable X1 = Ype X T Yt Yy K= 2,00052D0
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The Jacobian of this transformation is 1 and the integrand P&(y)Q'(y) becomes

hN(x2 + e t XZp)hN(XZ)hN(XB)'"hN(XZp)Q (x],x]+x2,...,x] Foee. * XZp) = fn(x)

where fN(x) is defined by (6.1) with « and B replaced by o and  Bg.
If ye Bt then X e Ut = [-t,t]2p because X1 =Yy and
lxk‘ <max(y,y,_q)s k= 2,..0.2p. Therefore for each t,

f P&Q'__{j iy (x)dx. (7.13)
Bt Ut

If yeB W, then xe V= [x e R%P. ‘x]‘ ﬁ_ix2|} and therefore

f P';Q < fyodx. (7.14)
U nV
i
We can now apply Propositions 6.1 and 6.2. Assume first that platg) > 1.
Choose & > 0. Then p(a0+60) > 1. Therefore Part b of Proposition 6.2
implies that

st €
6 £ ()dx = () p(ag*By)+ ) - O(Np(a+6)+2p6+€).

T

Since & can be made arbitrarily small, (7.11) follows from (7.13).

Now suppose p(a+g) < 1. To prove (7.8), choose & > 0 such that
p(aO+BO) < 1. Then (7.8) follows from (7.13) and Part a of Proposition 6.2,
To prove (7.10) we need to consider two cases. If a+f < 0 choose & > 0
such that «gtg, < 0. Then (7.10) is a consequence of (7.14) and Part b of
Proposition 6.1. If a+p > 0, choose & such that p(a0+50) < 1 and use

Part a of Proposition 6.1. This completes the proof of Theorem 1. [
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