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CENTRAL LIMIT THEOREMS FOR SUMS
OF DEPENDENT VECTOR VARIABLES!

By W. J. CocKE

Steward Observatory, University of Arizona

We prove the following central limit theorems for sums of mutually
dependent random vector variables: Given that a sequence of random
vector variables satisfies a certain type of decoupling condition (and two
milder restrictions), we present a Lindeberg-Feller condition which we
show to bz both necessary and sufficient for central limit behavior. The
decoupling condition and one of the two milder conditions is then applied
to a Markov process with stationary transition mechanism.

1. Introduction. The central limit theorem (clt) for sums of independent
random variables (rv’s) has had a long and varied history in pure and applied
probability theory, and extensions of it to the dependent rv case are of great
interest. Indeed, many of the physical applications of the clt, e.g., to statistical
mechanics and turbulence theory, have assumed that the clt is valid for such
dependent rv sums, apparently without prior justification (Khinchin [5],
Batchelor [1]).

It is the purpose of the present paper to prove, for mutually dependent real
vector rv’s, a clt which is mathematically distinct from other recent versions
(Rosén [7], [8], Serfling [10], Philipp [6]), and which may perhaps be more
useful for certain physical applications (Cocke [2]).

There are two essential ingredients to our version of the clt: (I) A Lindeberg-
Feller condition, which guarantees that each of the groups of rv’s used in the
proof makes a uniformly small contribution to the total sum in the limit, and
(IT) a decoupling condition, which delineates the manner in which the sequences
of groups of rv’s become mutually independent from each other in the limit.
A third condition (III) is also introduced, but we show that it is only a mild
restriction on the random process itself.

We also prove a second theorem, which states that the Lindeberg-Feller con-
dition (I) is also a necessary condition for convergence to the normal distribu-
tion, in much the same sense as in the independent variable case.

In Section 2 we set up the notation used and discuss further the conditions
(I), (IT), and (III). Section 3 deals with the clt itself, and the necessity of con-
dition (I) is demonstrated. We also state a lemma in connection with the
decoupling condition (II), as well as a generalization of our clt.

In Section 4, the clt is applied to a Markov process with stationary transition
mechanism. It is shown in this example that the clt is easy to interpret, and
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SUMS OF DEPENDENT VECTOR VARIABLES 969

the results intuitively appealing. In Section 5 we discuss some implications and
limitations of our results and compare them with other recent work.

2. Notation and assumptions. We consider the semi-infinite class of mutually
dependent rv’s {X;},, each of which is an N-dimensional vector, X; = (X;,,,
Xi@)» -+ Xyy))- The probability function of the first n of these variables is
denoted

P{X,e A, ---,X,eA,} =F"4, ---, 4,).

The averages a; = E(X;), and E(X;X;) are assumed finite, but the existence
of higher-order moments is not assumed.

It is shown in Section 3 that the conditions (I), (II), and (III), discussed
below, are sufficient to insure that the vector sum S, = Y2, (X; — a)), suitably
normalized, becomes distributed according to the multivariate normal distribu-
tion in the limit # — co. The general method of proof of this version of the clt
involves showing that one can leave out some of the variables in such a way
that the entire sum S, becomes more and more closely approximated by the
sum of “almost all” of them.

In addition, this must occur in such a way that “almost all” the X; break up
into sequences of groups which become group-wise independent from each
other as n— co. It is then a simple matter to revise one of the standard
methods of proof of the classical clt to prove the theorem in this case. This
process is similar to a method used by Rosenblatt [9] in proving a clt for certain
special types of mixing processes, and is generally rather well known in prob-
ability theory.

Let w, be the set of all positive integers < n. Then for each n, we denote
the omitted set of variables by 0, C o,; i.e., X; is omitted from the sum in the
proof of the theorem if /e Q,. The included set is then P, = 0, N w,. Further,
we consider that P, is composed of r(n) subsets P,,, where P, = |J;® P,,. In
most applications (see Section 4) it will happen that each P,, becomes infinite,
and also that Q, becomes infinite, but that the ratio of the number of omitted
variables to the number of included ones goes to zero.

The set of included variables is denoted symbolically by X,™ = {X;:ie P,},
with corresponding subsets X,". The set of all variables up to n is written
symbolically as X™. We denote a; = E(X;), and

X = Dier,, (Xi — a)), B, = E(X},),
B = 3i% B, S = X../B,*,
£, = 2% 6> £, = ZieQ” (X; — a;,)/B,* .

Since X,,,, is an N-dimensional vector, X2, denotes the scalar product. Note
that Bj, is the trace of the N x N covariance matrix E(X,,, X,.4), and there-
fore the vector variable &, ,,, considered formally as a sum of independent
vector rv’s &,,,,, is normalized such that its covariance matrix C™ has unit
trace.
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We denote the marginal probability function of the set of vector variables
X,™ by
G (A4) = P{X,"™ € 4},
and correspondingly for the subsets
G"¥(A) = P{X ™ ¢ A} .
The probability functions for the vector variables &,, are written
F.(4) = PlE e 4}
We abbreviate the difference
0G™ = G™ — [ G0 .
Using the above notation, we now present the conditions used in Section 3.

The first condition is a Lindeberg-Feller condition, such as used in proofs of
the classical clt ([4] 227, [3] 491): For any = > 0, we must have
@ 268 Siai>e X Fop(dx) — 0 (n— o).
As in the independent variable case, this ‘implies that each of the vector vari-
ables X, contributes a vanishingly small amount to the sum §,/B, in the limit
n— oo.

The second condition is a decoupling condition which entails the asymptotic
independence of the X,, as n — co. We require

1) § |0G™(dX, ™) — 0 (n— o).

The separating set Q, must thus decouple the variables X, in the limit. In
Section 3 we show that this condition is implied by a regularity condition
resembling ones used by Serfling [10] and Philipp [6], but is in many ways
stronger than theirs. Our condition (II) itself also seems rather strong, but it is
easily satisfied for the Markov process discussed in Section 4. The integral in
condition (II) is simply the “total variation” of 6G™.

The final condition is much more of a restriction on the sets Q,, and is a
rather weak restriction on the random process itself:

I1I) E|E|—0 (n— o).
Generally, this is true if, as mentioned before, the membership of P, becomes

infinite sufficiently faster than Q,. Again, our Markov process provides a
natural illustration of this occurrence.

3. The theorems and a lemma. We now prove the clt for the entire sum
&, + &, assuming conditions (I), (II), and (III). Again, no moments of order
higher than second are assumed to exist.

We use the method of characteristic functions, and introduce quadratic forms
iC™ ¢t and 2C-'z, where

Cioly = 2% § x4y x4 Fr(dx) ,
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and C!is the matrix inverse of the matrix C = lim, C™, which is assumed to
exist. (Remember that tr C* = 1, identically.)
We denote the multivariate normal distribution with covariance matrix C as
N, C) = 2z)="*|C|* §",, -+ - §*N. dz, - - - dzy exp (—2C'z[2)

THEOREM 3.1. If there exists a sequence P, such that conditions (1), (1), and
(III) hold and C = lim,C™ exists, then the distribution function for the normed
vector sum S,|B, = &, + &, satisfies

P, + &, < u} — N(u, C) (n— o).

Proor. We define the characteristic functions with vector argument ¢

far(t) = E[exp (i,,-1)] = § exp (ix « t)F,(dx)
Pon(t) = T1E5 for(?)
$u(t) = Efexp [i(§, + &,) - 1]}

Note that E(¢,,) =0, E[(§, - ¢)}] = iC™¢, and therefore the proof of the
classical central limit theorem as in Gnedenko ([4] 228) or Feller ([3]491) goes
through for the characteristic function ¢,,(f) because of condition (I), even
though the distributions F,,, for different n, comprise different groups of
variables. The only changes needed in Gnedenko’s proof, for example, are a
result of the multidimensionality of our rv’s §,,, and simply involve substitu-
tions of the form xt — x - ¢, and the change #* — #C™ ¢ in his expression for the
quantity p,([4] 230).

Therefore, condition (I) implies that

Bon(t) — exp (—ICt[2) (n— o).

We now show that (II) and (III) imply that ¢,(7) — ¢,,(f) = Ag,(1) — 0

(n — oo). Consider that

$oa(t) = § exp (&, - 1) [[;% G (@X, ")
and therefore

Ag,(t) = § exp (&, - Dexp (&, - 1) — 1]F™(@X™)
+ §exp (&€, - H)0G™(dX, ™).
Thus
Ag, (D] < § exp (&, - 1) — 1] Fo(dX™)
+ § [6G™(dX)| .
But by Schwarz’ inequality and the relation |e’* — 1] < |a| one may show
that
1Ag ()] < |t] E|€,] + § [6G™(dX))]
which goes to zero by (II) and (III) on any finite domain of ¢. Thus
#,(t) — exp (—iCt/2) (n— o),
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and the theorem is proved.

We now prove a converse theorem showing the necessity of condition (I) for
convergence to the multivariate normal distribution. We note that (I) is stated
in terms of the sums X, instead of the original rv’s X, and so the analogy to
the independent variable case is not complete. However, the following theorem
shows that condition (I) is necessarily associated with central-limit convergence
within the scheme we have set up.

Further, the additional assumption needed to prove the converse theorem is
almost the same as in the independent rv case ([3] 492). It is required that

(3.1) max, B,,/B, — 0 (n— o0),
a condition which is perfectly natural for central limit behavior.

THEOREM 3.2. If P, exists such that (3.1), (II), and (III) are true and if
P(¢, + &, < u} ~ N(u, C™) (n — oo), then it follows that (1) is true also.

Proor. Note first that (IT) and (III) imply that A¢,(f) — O(r — o) as in the
proof of Theorem 3.1. Thus the hypotheses of this theorem show that

(3.2) Pon(t) ~ €xp (—IC™ 1[2) (n— o0) .
Now as remarked by Feller ([3] 492), (3.2) implies that
log ¢on(t) ~ Z;gbl) [fnk(t) - 1] ’

and we may continue with his version of the proof for the independent variable
case, provided we substitute t = (0, - -, #,,,0, ---,0). His (6.12) then be-
comes, in our notation,

Cg::))(a) - Z;(:l) Slzlgr x?a)Fnk(dx) = lrcgbl) Sla;l>r x:(!a)Fnk(dx)

= o),
which latter quantity can be made arbitrarily small for large ¢,,. Since x is of
finite dimension, the proof is complete.

It is worthwhile noting that condition (II) is implied by a regularity condi-
tion which resembles ones discussed by Serfling [10] and Philipp [6]. We have
the following lemma, the proof of which is obvious.

LeEMMA. Let A,, be any set in the Euclidean space of dimension N X the number
of points in P,,. Then if for all sequences of such sets A,,, Ay, -, A,,, there
exists a number ¢(n) such that ¢(n) — 0 (n — oo) and

G (A -+ o5 Aay) — TS G (Au)] < 9(m) TS GF(4,) 5
then (2.2) holds.

We may note an interesting generalization of Theorems 3.1 and 3.2. For the
purposes of constructing the probability functions F,,, it may be convenient
not to use the real marginal distributions of &,, derived from F™, but some
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other distributions which approach the “real” ones as n— co. Denoting ex-
pectation values defined by them by E'( ), we may redefine &,, so that
E'(¢,;) = 0, but this may force E(£,,) # 0. In this case however, Theorems
3.1 and 3.2 still go through provided that

(3.3) E¢,)—0 (n— o0)

is introduced as an additional assumption in both cases. It is then no longer
that necessary that E(£2,) exist, but only E’(£2,).

4. Application to a Markov process with stationary transition mechanism. We
investigate under what conditions a Markov process with stationary transition
mechanism satisfies conditions (IT) and (IITI). We do not discuss condition (1),
since it seems to depend on detailed analytic propertiés of the process. In any
case, (I) has been shown to be a necessary condition as well as a part of the
scheme of sufficient conditions. Also, the condition that lim, C*™ exist is not
discussed here. It is a rather trivial condition and only arises in the multi-
dimensional case.

We write the probability that X, e 4,, ..., X, € 4,, as

P{n7:=1 Ak} = SAI e SAn Pl(Xm)P(Xv dXz)P(Xzy dXs) o 'P(Xn—p an) )

where P,(4) is a given initial probability that X, e 4, and P(x, 4) = P(1, x, 4)
is the conditional one-step transition probability that X, e 4, given that
X,_, = x. Since we are interested only in stationary transition mechanisms,
P(x, A) does not depend on k.

The two-step transition probability is thus

P(2, x, A) = § P(x, dz)P(z, A)

and so on iteratively.

We now discuss the choice of the sets P,, which we use here. In a manner
similar to Rosenblatt [9], we break up the set w, into alternating blocks of large
and small subsets, where each large subset contains p(n) integers, and each
small subset, g(n). Formally, we write

Ink)y=kKp+q—p+1, Jnk=kp+q, k=1, rn
P,,={m:In k) <m< Jn, k), k=1,...,rn
0, =Uiti{m: J(n, k) < m < I(n, k)} .
We use the convenient notation for the differential probability function
(4.1) dH,, = P(X 0,5 dXI(n,k)+l)P(XI(n,k)+1’ dXI('n,k)+2) Tt
P(XJ(n,k)—l’ dXJ(n,k)) M
Let us now describe the conditions which we impose on the Markov process
to insure satisfaction of conditions (II) and (III). It is sensible to consider only

processes such that the effect of the distant past on the future becomes small,
and we require that there exist a probability function H(4) such that § x* H(dx)
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exists, and
P(m, x, A) = H(A) + 0P(m, x, A),
where 6P — O(m — oo) in such a way that, if we define M,, = max, § |0P(m, x,
dz)|,
4.2) M, —0 (m— o0).
We also ask that the absolute first moments E|X;| be bounded:
(4.3) K =max;[§ |x| H(dx) + § Py(dz) § 6P(i — 1, z, dx) |x|]] < oo,
and that we be able to choose p(n), g(n), r(n), — oo (n — oo) in such a way that
4.4) rq/B, — 0 . (n— o0).
This last condition (4.4) is generally very easy to satisfy, since we might
expect B, ~ Ant, where A4 is a constant. Since n ~ r(p + ¢), (4.4) would then

be equivalent to ¢(r/p)t — 0.
In what follows, the notation delineated below is useful.

4.5) dH," = H(dX,, ..,

(4.6) dR,* = P(q+ 1, X, 1), dX ;1)) = dH,® + dOR,?

4.7 ds," = §, P(dX,)P(I(n, k) — 1, X,, dX,, ,, = dH," + dOR," .
It is now a simple matter to prove the following theorem:

THEOREM 4.1. A Markov process with stationary transition mechanism and initial
probability function P,(A), such that (4.2), (4.3), and (4.4) hold, satisfies conditions
(IT) and (11I).

Proor. We first note that (4.3) and (4.4) imply (III):
Elénl é 2 ZieQ”EIXiI/Bn é 2qu/Bn ’

which vanishes as n — oo by (4.4).
It is straightforward, but somewhat tedious, to show that (4.2) implies (II).
One may write, using (4.1) and (4.5)-(4.7),
0G™(dX, ™) = (I17-1 dH,.)dS,"{I] -2 R — 1l7-2 dS:"}
= (IIi-1 dH,)(dH," + doS)*)
X Doy (I142 dH)AORS T ey AR — d3S,* [15-ys1 dS,") -
But (4.2) then implies that
§10G™(@dX)| = rM, + Zies Mrny S 2rM, .

Now, since M, — 0(q(n) — o0), we can always define r(n) — oo, such that
rM — 0. Thus (II) is fulfilled, with r defined as a function of g. Note that this
will very likely be consistent with (4.4), since n ~ rp and since (4.4) may be
expressed as r(q)q/B,,,, — 0, which then allows us to define p(q). Clearly, p(q)
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must be a rapidly increasing function, which is reasonable, since one would
expect p/g — oo(n— oo) if this method of partitioning the variables into P, and
Q, is to be a sensible one.

Thus, both r, p and n = r(p + ¢q) are defined as functions of ¢, but with some
leeway. We note that for any n, one may write p, ¢, r integers such that
rp+q) =n<(p+9q) + g, where p, r are both monotone increasing functions
of g. Therefore we are not restricted to n of the form r(p + ¢). The uneven
“tail” of length < ¢ enters only into the discussion of (III), where it may be
neglected.

Thus the proof of the theorem is complete.

S. Discussion. We have seen that our method of proof has resulted in two
theorems, Theorems 3.1 and 3.2, which are in many ways analogous to the
theorems for sums of independent rv’s. It is evident that one may also prove
a Lyapunov theorem which is analogous to the independent variable one ([4]
232). i

However, the analogy between dependent and independent rv’s breaks down
when one considers a strictly stationary process. For independent variables,
the Lindeberg condition follows immediatély, but for dependent variables strict
stationarity is not sufficient to prove condition (I). It would be interesting to
investigate more thoroughly under what circumstances condition (I) holds.

Comparison of our results with other recent work must be made. Rosén [7],
[8] has proved clt’s for dependent vector variables using interesting “structure-
of-dependence” and uniform smallness conditions. The structure-of-dependence
conditions relate to asymptotic properties of certain first and second conditional
moments and state, among other things, that future first moments of the rv’s
are linearly related to the sum of past values of the rv’s. The smallness condi-
tion may be described as a “local” form of the Lindeberg-Feller condition.
These hypotheses seem to be quite different from the ones we have used, parti-
cularly with respect to our decoupling condition (II), which involves only zeroth
moments of the rv’s.

Serfling [10] has derived a variety of clt’s for one-dimensional rv’s involving
moment-decoupling and regularity conditions, assuming the existence of mo-
ments of order greater than second, and assuming certain rates of divergence
of quantities like E(|S,|/|B,[**?) for various 6 > 0. Also introduced are condi-
tions on rates of decoupling. Since we have emphasized the Lindeberg condi-
tion, it is difficult to see where our assumptions might overlap.

Philipp [6] also derives a number of clt’s for one-dimensional random pro-
cesses, using restrictions like )7, ¢(n)? < co (see our Lemma in Section 3). A
Lindeberg condition is also discussed and is likewise shown to be a necessary
one, but in general the assumptions used are different from ours.
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