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Central nervous system (CNS) senses energy homeostasis by integrating both peripheral and autonomic signals and responding to
them by neurotransmitters and neuropeptides release. Although it is previously considered an immunologically privileged organ,
we now know that this is not so. Cells belonging to the immune system, such as B and T lymphocytes, can be recruited into the
CNS to face damage or infection, in addition to possessing resident immunological cells, called microglia. In this way, positive
energy balance during obesity promotes an in�ammatory state in the CNS. Saturated fatty acids from the diet have been pointed
out as powerful candidates to trigger immune response in peripheral system and in the CNS. However, how central immunity
communicates to peripheral immune response remains to be clari�ed. Recently there has been a great interest in the neuropeptides,
POMC derived peptides, ghrelin, and leptin, due to their capacity to suppress or induce in�ammatory responses in the brain,
respectively. 
ese may be potential candidates to treat di
erent pathologies associated with autoimmunity and in�ammation.
In this review, we will discuss the role of lipotoxicity associated with positive energy balance during obesity in proin�ammatory
response in microglia, B and T lymphocytes, and its modulation by neuropeptides.

1. Introduction


e �rst line of defense of an organism before any invasion
of pathogens or tissue damage is the innate immune system.
It includes physical barriers such as the skin, or speci�c cell
types such as macrophages and complement proteins; as a
whole, it modulates the in�ammatory response. 
e in�am-
matory response consists of an innate cellular system and
humoral responses that occur during injury, such as exposure
to cold or heat, ischemia, and trauma. 
e in�ammatory
response can be divided into two types, depending on the
cell type and intensity-duration of the stimulus: (1) acute
in�ammation, characterized by a time window of minutes to
hours and by the abundant presence of neutrophils; (2)
chronic in�ammation, which in time extends from days up
to years, and accumulation of lymphocytes in the in�amed

tissue predominates. In this context, precise activation of the
in�ammatory response is coordinated by the involvement of
various cell types including recruitment of macrophages and
leukocytes, activation of endothelial cells, platelet aggrega-
tion, and release of various cytokines including interleukin
1 (IL-1), interleukin 6 (IL-6), and tumor necrosis factor
alpha (TNF-�). It is through these events that the body
physiologically restores the cellular homeostasis and defends
the organism from external injuries [1]. However, despite the
sophisticated modulation of the in�ammatory response in
time and space, the chronic release of in�ammatory signals
promotes the development of diseases such as cancer, hyper-
tension, cardiovascular disorders, and metabolic disorders
including diabetes and obesity.


e link between the immune system and the regulation
of body energy metabolism has started to be understood in
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the recent years. Initial studies identi�ed selective cellular
types for the immune system including pulmonary alveolar
macrophages, peritoneal exudate monocytes, and polymor-
phonuclear leukocytes, which delegate their energy require-
ment to speci�c metabolic pathways, depending on the tissue
in which they reside. For example, macrophages activate
oxidative phosphorylation, whereas monocyte and polymor-
phonuclear leukocytes are mainly glycolytic [2]. In addition,
during an in�ammatory event, macrophages increase the
catalysis of metabolic enzymes such as hexokinase and citrate
synthase in addition to high glucose consumption [3], sug-
gesting an increase in the glycolysis rate during phagocytosis
or secretory activity. 
ese studies established the immune
system-metabolism relationship in a cellular process called
“immunometabolism” [4]. Recently, research has shown that
metabolic regulation not only depends on the activation
of speci�c metabolic pathways in a cell type, but that the
immune system regulates body metabolism and plays an
important role in the development of metabolic disorders
such as metabolic syndrome and obesity. Obesity has been
characterized as an atypical form of in�ammation induced
primarily by the accumulation of fatty acids in tissues,
altering the metabolic regulation, including liver, adipose
tissue, and muscle. 
is type of in�ammation was termed
“metain�ammation” or “metabolic in�ammation” [5].

Positive energy balance during maternal overnutrition or
obesity lead to changes in plasma and tissue speci�c lipidomic
pro�le that might promote in�ammation. In fact, saturated
lipids have been shown to represent a group of molecules as
more active candidates in promoting in�ammation through
their interaction with toll-like receptors TLR1 and TLR4 and
by activating nuclear factor kappa B (NF-�B), a promoter of
in�ammatory genes [6, 7]. 
is type of in�ammation is not
limited to peripheral tissues; it extends to much more distant
borders and is able to reach the CNS, promoting the develop-
ment of neuroin�ammation [5]. However, it is also possible
that resident brain cells, such as microglia, may induce neu-
roin�ammation independently of their peripheral activation
[8]. Paradoxically, modulation of the cytokine-dependent
in�ammatory signal is controlled by the activation of antag-
onist cytokines such as IL-10, TGF-�, IL-11, and agonist
receptor IL-1, among other cytokines and interleukin soluble
receptors. 
ese cytokines function as anti-in�ammatory,
inhibiting the activation of macrophages, T lymphocytes,
and natural cytotoxic cells (NK) [1]. Recent studies have
demonstrated the involvement of molecules produced in
the CNS in the regulation of in�ammatory and energetic
metabolism, proposing that neuropeptides are synthesized
by macrophages, lymphocytes, and neutrophils to regulate
in�ammation and metabolism [9, 10]. In this review, we
will describe the signaling pathways involved in the process
of metabolic in�ammation in a scenario of positive energy
balance and its modulation by neuropeptides.

2. Lipotoxicity Is a Mediator of Metabolic
Inflammation in the CNS

Epidemiological data con�rms a strong link between the
increase in the level of obesity and the development of type 2

diabetes, indicating that for every kilogram of gained weight,
at the population level, there is a linear increase in the
diabetes rate [11]. Experimental evidence, in obese humans
and animal models with obesity, suggests that the leakage
of lipids from adipose tissue and ectopic accumulation of
ceramides (a type of sphingolipid), acylcarnitines, diacyl-
glycerols, and saturated fatty acids cause tissue damage to
metabolically relevant organs, including the skeletal mus-
cle, liver, pancreatic beta cells, myocardium, and brain, in
an event called lipotoxicity [12–14]. 
e lipotoxic e
ect is
largely determined because every organ has its own lipid
pro�le. Hence, selective changes in lipid species in di
erent
organs may be relevant to the development of lipotoxicity.
In this context, it is known that, physiologically, C18:0 type
ceramides are essential for cerebellar development and C22:0
and C24:0 ceramides regulate hepatic function [12, 13], while
saturated diacylglycerols and lipids take part in intracellular
signaling processes in many cellular types of the body [14].
In this regard, it has been suggested that, during obesity, new
lipid species, which are potentially toxic for the body’s organs,
are produced, including ceramides, cholesterol, saturated
fatty acids, and diacylglycerols. All these species are known
to inhibit insulin sensitivity in cellular cultures and animal
models [15]. Saturated ceramide and lipid accumulation has
even been detected in the skeletal muscle of obese humans,
which correlates to insulin resistance [15]. Recent evidence
has shown substantial association between lipidomic pro�le
leading to lipotoxicity and activation of neuroin�ammation.

Previously, the brain was considered an immunologically
privileged organ, partly because the lack of constitutive
expression ofMHC class I and class II and the absence of clas-
sical antigen-presenting cells (APCs) and lymphatic vessels.
However, the identi�cation of peripheral immune system
cells including B cells and T lymphocytes in genetic and
nutritionalmodels of obesity has proposed that themetabolic
in�ammation observed during obesity is able to colonize the
CNS and promote central in�ammation such as microglia
activation [1]. Each of these cell populations will promote
an in�ammatory state through the secretion of antibodies
and interleukins [16, 17]. We will now describe some of the
cell populations that have been implicated in the process of
neuroin�ammation activation in a lipotoxic context during
obesity.

2.1. Microglia. Microglia represent a selective cell type with
characteristics of CNS residentmacrophages, which originate
from erythromyeloid progenitors derived from yolk sac cells
during the embryonic stage and which subsequently colonize
the brain during embryonic development [18, 19]. Physiolog-
ically, their activation is required for the proper functioning
of the CNS as they positively modulate neurogenesis and
synaptic plasticity in addition to acting as major APCs in the
CNS [20].


e relationship between lipotoxic damage in the context
of obesity and the activation of central in�ammation is based
on evidence showing that the exposure of high fat diet
in rodents promotes in�ammation in the CNS that culmi-
nates as damage to the regions of the hypothalamus, cogni-
tive deterioration, and decreased neurogenesis [20, 21].
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Molecularly speaking, it is proposed that, similar to macro-
phages that regulate innate in�ammatory activation in the
peripheral system in a lipotoxic context, the activation of
microglia in the brain is induced by the interaction of fatty
acids with TLRs. In fact, lauric acid (C12:0) and palmitic
acid (C16:0) lipids have been identi�ed as inducing TLRs
migration to lipid ra�s, heterodimerization of TLR1 and
TLR2 receptors, and the homodimerization of the TLR4 in
macrophages [22, 23]. In addition, experimental evidence
has identi�ed the recruitment of the MyD88 protein and
NADPH to these domains correlating with the production of
reactive oxygen species (ROS) [22–24]. Our research group
has shown that the stimulation of neurons with palmitic
acid recruits the in�ammatory related serine/threonine-
protein kinase TANK-binding kinase 1 (TBK1) to lipid ra�
domains, which correlates with insulin resistance [25]. 
ese
experiments demonstrate that activation of TLR4participates
in the secretion of in�ammatory cytokines via the IKK-
NF-�B pathway in microglia, inducing alterations in the
hypothalamus and other regions of the CNS [17, 21, 26], and
potentially the recruitment of monocytes from the periphery
dependent on the increase of TNF-� [27]. Taken together,
exposure of saturated fatty acids favors the interaction and
dimerization of TLR1, TLR2, and TLR 4 towards the lipid
ra�s microdomain, recruitment of NADPH oxidase and
MyD88, and production of ROS, where it will be activated
in parallel NF-�B by the IKK and possibly TBK1. 
us,
NF-�B-dependent transcriptional activationwill promote the
secretion of in�ammatory cytokines TNF-�, IL-�1, and IL-6
and altered metabolic pro�le, as we have recently proposed
[28].

2.2. T Lymphocytes. 
e role of T lymphocytes as mediators
of metabolic in�ammation was initially reported in 2009.
Exposure of mice to high fat diet promotes the in�ltration
of CD8+ T lymphocytes into adipose tissue favoring the
in�ltration ofM1macrophageswith in�ammatory pro�le and
generating insulin resistance, while its inactivation by speci�c
antibodies represses this phenomenon [29]. In�ammatory
activation in the adipose tissue of obese mice is potentiated
by two possible scenarios: (1) by reducing expression of the
transcriptional factor Foxp3 in Treg lymphocytes [30], cells
responsible for regulating the in�ammatory response and
suppressing autoimmune reactions [31] and (2) by activating
a proin�ammatory subtype of CD4+ T helper cells called

1 [32]. Activation of these molecular pathways have been
widely identi�ed in the generation of insulin resistance and
type 2 diabetes mellitus in obese subjects. In fact, it has been
proposed that the activation of T lymphocytes in adipose
tissue is a key event and depends on the presentation of
antigens byMHC class II in CD4+ T cells and a costimulatory
signal [27]. 
is mechanism has been described to promote
the synthesis of IL-2, where additional interaction of TRC-
MHCII is required for the activation of the coreceptor
CD28. Also, the TRC-MHCII interaction recruits the Zap70
protein to the CD3 coreceptor allowing the activation of
the PLC�-PIP2-PKC� cascade, downstream activation of
ERK, and c-Fos expression. On the other hand, the CD28
coreceptor via the PI3K pathway activates MEKK and JNK

allowing the production of c-jun. Both TCR and CD28
lead to the transcriptional factor AP-1 nuclear translocation,
inducing the expression of IL-2 [31]. In addition, the TCR-
CD28 binomial in CD4+ T lymphocytes promotes PKC� to
activate the CARMA1-Bcl10-MALT1 complex by inducing
the activation of NF-�B and TBK1 and the proliferation,
di
erentiation, and production of IL-2, dependent on AP-1
[33, 34]. 
us, in a lipotoxic context, we might suggest that
the interaction of CD4+ T lymphocytes with an antigen-
presenting cell would allow di
erentiation towards the 
1
subtype by altering the 
1/Treg ratio towards proin�amma-
tory, interferon-producing (INF-�) T cells, IL-2, and TNF-�
and decreased IL-10 production activity of Treg cells. All this
would allow the polarization of macrophages to the M1
phenotype producing proin�ammatory cytokines TNF-�,
IL-1�, and IL-6. On the other hand, TCR-MHCI interaction
byCD8+ T lymphocytes could secreteMCP1 exacerbating the
recruitment of macrophages to adipose tissue and increasing
in�ammation.

Activation and recruitment of lymphocytes to adipose tis-
sue during positive energy balance in obesity also cause them
to migrate to more distant borders and interact with CNS
cells, including microglia, as described for various patholo-
gies such as experimental autoimmune encephalomyelitis
and cerebral ischemia [33, 35]. In a summarized way they
involve the attraction of T cells to the site in�amed by
chemokine such as Interferon-Inducible T-Cell Alpha-Che-
moattractant (I-TAC), interferon gamma-induced protein 10
(IP-10), and monokine induced by gamma interferon (MIG)
[36], expression of the E and P selectins in endothelial cells
that serve as anchor for their ligands inT lymphocytes, PSGL-
1, and �4-integrin, facilitating the transport of lymphocytes
through blood vessels (Figure 1). Finally, the ultimate barrier
for the invasion of T lymphocytes into the nervous system
is represented by the blood-brain barrier (BBB), which,
by expressing the LFA-1 membrane protein in T cells, can
bind to the ICAM-1 protein endothelial cells and cross
the BBB leaving morphologically intact narrow junctions.

is has been corroborated in recent studies, showing the
inhibition of the expression of these adhesion proteins,
reducing the in�ltration of T lymphocytes into the brain
during an in�ammatory event [37, 38], which is presumably
regulated by poly(ADP-ribose) polymerase-1 (PARP) [38].
Despite the evidence supporting the in�ltration of T lym-
phocytes into the nervous system, molecular and cellular
mediators that mediated the communication between the
brain and the immune system remained unidenti�ed. Maybe
the �rst evidence to support CNS-peripheral immune system
cross-talk was recently identi�ed by showing that selective
in�ammatory stimulus (IL-1�) into the CNS and astrocytes
secrete extracellular vesicles (EV), which cross the BBB and
reach organs such as the liver allowing the suppression of
PPAR� and favoring the production of TNF-� and IL-�1
andmonocyte chemoattractant protein-1 (MCP-1). Cytokines
production promotes the T lymphocytes recruitment into the
in�amed brain region [39] (Figure 1).

2.3. B Lymphocytes. B lymphocytes represent a cell type of
the immune system, originating from hematopoietic cells
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Figure 1: Immunomodulatory mechanism exerted by neuropeptides in microglia exposed to a lipotoxic stimuli. (a) Microglia pro- and anti-
in�ammatory stimuli. In microglia, fatty acids and leptin can induce cytokine secretion through TLR4/IKK/NF-�B pathway, but only leptin
can activate NF-�B through LepR/IRS1/AKT pathway. Also, leptin induces MHC class II expression leading to T lymphocytes activation.
Cytokines have paracrine and autocrine e
ects. �-MSH inhibits the I�B degradation through MC4R and by blocking the LepR pathway
through MC1R. Ghrelin blocks the TLR4/IKK/NF-�B pathway activation in microglia cells by indirect e
ects. (b) T lymphocyte activation.
Microglia presents the antigen to CD4+ T cells and through the receptor complex MHCII/B7-TCR/CD28 these cells proliferate to the
proin�ammatory phenotype 
1 which produce IL-2 and INF-� through PKC�-CARMA-MALT1-Bcl10/NF-�B complex and by leptin
action. (c) Astrocytes in�ammatory mechanism. IL-1� induces the secretion of extracellular vesicles which inhibits PPAR� expression on
hepatocytes leading to TNF-�, IL-1�, and MCP-1 production facilitating lymphocyte in�ltration to CNS. (d) Lymphocyte extravasation to
CNS. In�ammatory signals such as cytokines and CMP-1 promote the expression of adhesion proteins E-selectin, P-selectin, and ICAM-
1. Lymphocytes can interact with the adhesion proteins through its own integral proteins VLA-�4, PSGL-1, and LFA-1 and cross the BBB.
Melanocortins prevent T-cell in�ltration by the �-MSH-MC1R interaction which blocks externalization of adhesion proteins.
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that mature in bone marrow and participate in innate and
adaptive immunity. 
eir main function is the production
of antibodies against foreign antigens into the body [40].
In addition, they also function as APCs by presenting the
antigens to T lymphocytes that were initially captured by
their B-cell receptor and promote in�ammation by secreting
proin�ammatory cytokines such as IL-6 and TNF-�, thus
favoring the polarization of T cells into a proin�ammatory
phenotype [40]. 
e molecular mechanisms that promote
the migration of B lymphocytes to the CNS are not yet fully
understood; however, it has been proposed that its association
with membrane proteins, such as the �-4 subunit of VLA-
A, ICAM-1, and ALCAM, allows passage through the BBB
[41, 42].

Unlike the role of macrophages and 
1 lymphocytes in
the modulation of metabolic in�ammation during obesity,
the impact of B lymphocytes in this context has not yet
been fully understood [43].However, there are several reports
that justify its presence and potential participation in the
modulation of in�ammation at the CNS level. In the �rst
instance, B lymphocytes possess TLR capable of responding
to microbial antigens in a T lymphocyte-dependent man-
ner [44], which have been identi�ed to actively mediate
metabolic in�ammation by interacting with fatty acids [23,
26]. In fact, the accumulation of antibodies of the IgG class
in the microglia of the ARC nucleus has been observed in
mice exposed to a hypercaloric diet, polarizing it towards the
M1 phenotype through its Fc receptor [45]. B lymphocytes
itself from obese mice might produce a proin�ammatory
IgGc class which, when administered to mice de�cient in B
cells, increases the production of proin�ammatory cytokines,
the polarization of M1 macrophages, and the activation of T
lymphocytes [16]. 
ese studies con�rm that the function of
B lymphocytes in a metabolic compromise scenario seems to
be deleterious and promotesmetabolic in�ammation, leading
to the belief that its inhibition could prevent this mechanism.
Experimental data demonstrate that this hypothesis is par-
tially true, since the elimination of B lymphocytes using a
CD20-speci�c antibody in amurinemodel of obesity induced
by high fat diet improved glucose tolerance, reduced insulin
levels, and reduced the in�ammatory pro�le in adipose
tissue. However, the total elimination of B and T lymphocyte
populations has no e
ect [46]. In this scenario, defects in B-
cell function have been reported in situations of metabolic
compromise as presented in diabetic and nondiabetic obese
patients. Subjects with this metabolic pro�le show a low
response to antibodies and secrete a greater amount of IL-
6 and TNF-� than healthy subjects, and only obese and
diabetic patients have a decrease in the production of IL-10,
a key cytokine in the suppression of the immune response
mediated by B cells [37, 47]. In this way, it is possible that,
in a lipotoxic context, the interaction of B lymphocytes with
fatty acids or their recruitment to the CNS by glial cells
[48] plays a key role in metabolic in�ammation, through
secretion of in�ammatory cytokines, the activation of CD4+

T lymphocytes, and microglia polarization towards the M1
phenotype, through MHC class II mediated antigen pre-
sentation and the Fc fraction of the antibodies, respectively
(Figure 1).

3. Energy-Sensing Hormones
and Neuropeptides Modulate
Central Inflammation

Neuropeptides are smallmolecules composed of amino acids,
produced mainly but not exclusively by cells of the ner-
vous system, and regulate important physiological processes,
including reproduction, feeding, regulation of body weight,
memory, anxiety, mood, excitement, reward, and sleep/wake
stages [49]. Anti-in�ammatory properties of various neu-
ropeptides have been identi�ed in the context of positive
energy balance, which include alpha-melanocyte-stimulating
hormone (MSH-�), vasoactive intestinal peptide (VIP), and
neuropeptide Y (NPY) [10, 50, 51]. 
ere is also evidence of
the involvement of hormonal signals dependent on ghrelin
and leptin on the modulation of an anti-in�ammatory phe-
notype in microglia [49, 52]. In the next section, we will
describe evidence of the involvement of peptides derived
from prohormone proopiomelanocortin (POMC) and the
ghrelin and leptin hormones as potential central modulators
of microglia-dependent in�ammation in a context of positive
energy balance.

3.1. Peptides Derived from POMC. Melanocortins are post-
translational products of the POMC gene which is expressed
in the arcuate nucleus (Arc) of the hypothalamus, fromwhich
a family of opioids and melanocortins products are syn-
thetized including �-endorphin, adrenocorticotropic hor-
mone (ACTH), and the melanocyte stimulating �, �, and �
hormones (MSH). 
is neuropeptide system is unique since
its regulation depends on two small endogenous proteins, the
peptide-like agouti and the Y neuropeptide [53, 54].


e ability of melanocortins as anti-in�ammatory agents
is well documented in di
erent models of peripheral in�am-
mation [55]. Melanocortins exert their action through their
interaction with the MC1R receptor located in immune cells
innate neutrophils, macrophages, and dendritic cells also in
microglia, in addition to possessing a high a�nity towards
MSH-�. 
e administration of MSH-� has shown to reduce
the production of IL-1, IL-6, and TNF-�, and monocyte
receptor expression is upregulated in the presence of stimuli
such as lipopolysaccharides (LPS) or cytokines. At the CNS,
systemic administration of MSH-� has been reported to
reduce cytokine expression during cerebral ischemia and
decrease in�ammation at the hippocampal level by inhibit-
ing LPS or IL-1� induced dinoprostone (PGE2) secretion.
MSH-� also reduces the production of nitric oxide (NO) and
prostaglandin (PG) favored by IL-1� in the hypothalamus of
rats [56]. In the past decade, MC3R and MC4R receptors
have been proposed as responsible for the anti-in�ammatory
action of melanocortins in the brain. 
is proposal is based
on studies demonstrating that the expression of these two
receptors is higher in comparison to the other members
of this group [57] and that the administration of MSH-�
reduces the hypothalamic production of iNOS and COX2 in
rats administered with LPS and decreases the expression of
TNF-� induced by LPS and INF-� in neurons expressing the
MC4R, whose e
ect is blocked by the administration of the
MC4R antagonist [58].
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Scienti�c evidence suggests that melanocortins exert
their anti-in�ammatory activity by inhibiting the transcrip-
tion factor NF-�B [59] and by inducing IL-10 in mi-
croglia through the MC4R receptor. In astrocytes, both
brain-derived neurotrophic factor (BDNF) and peroxisome-
proliferator-activated receptor gamma (PPAR�) expression
have been observed to be regulated by the MC4R-cAMP-
PKA-CREB pathway [60]. On the other hand, activation
of the MC1R receptor using the pharmacological agonists
MS05 and MS09 is able to reduce the expression of E-
selectin and VCAM, in addition to reducing the activation of
NF-�B in endothelial cells exposed to TNF-�. Knowing
that E-selectin and VCAM represent integral membrane
proteins important for the migration of B and T lymphocytes
towards the site of in�ammation [41], it is proposed that
the blockade of the extravasation of these cells represents
an anti-in�ammatory mechanism parallel to that described
by melanocortins. Finally, there are reports that have shown
that activation of the MC1R receptor represses the leptin-
dependent in�ammation in a lipotoxic context [61, 62].

us, it is tentative to propose that, in a lipotoxic scenario,
melanocortins block the in�ammatory process by four main
events: (1) increase the secretion of IL-10 from the microglia,
(2) decrease the activation of NF-�B, (3) block the action
proin�ammatory e
ects of leptin, and (4) prevent in�ltration
of lymphocytes through the BBB to the CNS.

3.2. Ghrelin. It is a peptide of 28 amino acids secreted mainly
by the stomach and duodenum, although it is also produced
by neurons in the arcuate nucleus [63]. However, over-
production of ghrelin in the hypothalamus promotes food
consumption and increases body weight [64]. Ghrelin seems
to induce acute peripheral insulin resistance independent
of growth hormone (GH), cortisol, and basal serum free
fatty acids [65] and both insulin and ghrelin exert regulatory
e
ects on each other [66, 67]. Two types of ghrelin, des-acyl-
ghrelin (DAG) and acyl-ghrelin (AG), are known to regulate
food intake and growth hormone secretion and in�uence
glucose homeostasis, neuroprotection, memory, immunity,
and neuroin�ammation [63, 68]. Its main function is to act
as an orexigenic signal by antagonizing the e
ects of leptin
via theNPY/Y1R axis, through its interactionwith the growth
hormone secretagogues receptor (GHSR) in NPY and AgRP
neurons.

Obesity is known to promote an imbalance in the hor-
monal pro�le of obese individuals. Changes in the AG/DAG
ratio in obese and metabolic abnormal Italian children
compared with normal weight children have been reported
[69]. 
e authors found a 81% increase in AG in obese and
metabolic abnormal children when compared with healthy
children [69]. Also, recently it has been documented that
AG concentrations are higher in plasma of obese patients
(435 pg/mL) than nonobese patients (167 pg/mL) [70]. Al-
though it has been stated that during obesity ghrelin plasma
levels are decreased in obese individuals as a compensatory
mechanism to reduce appetite [71, 72], it only refers to total
ghrelin in plasma, given that AG depicts 10% of total ghrelin.
In this context, decreasing levels of this hormone may be
potentially related to a decrease in DAG concentration [70].

In fact, diet induced obesity (DIO) in mice by high fat diet
exposure leads to 15% increase in preproghrelin mRNA-
producing cells than control [73]. In addition, both DIO and
ob/obmice model had normal plasma levels of ghrelin which
correlates with a decrease in DAG plasma levels [73]. It is
known that DAG is metabolized to AG by action of the ghre-
lin O-acyltransferase (GOAT); not only does the importance
of this enzyme lie in its ability to acetylate the unacetylated
form of ghrelin, but it has been reported that knocking
down the GOAT gene protects mice from obesity induced
diet, improves insulin sensitivity, and reduces adiposity when
fed HFD and high glucose diet [74]. Furthermore, there
is a positive correlation between body mass index (BMI)
and GOAT concentration in obese patients, where BMI
> 50 had increased concentrations (+34%) compared with
normal weight controls [75]. 
ese evidences suggest that an
alteration in the AG/DAG ratio related to GOAT activity is
potentially important to contribute to metabolic alterations
observed during obesity and diabetes. 
is proposal is tested
in recent reports showing that decreasing AG plasma levels
associates with positive e
ects in metabolic disorders, such
as decreasing postprandial glucose levels and improvement of
insulin sensitivity in overweight patients with type 2 diabetes
[76, 77].

On the other hand, the anti-in�ammatory and neuro-
protective properties of ghrelin have been demonstrated in
experimental cord injury (SCI) models, where the admin-
istration of ghrelin inhibits the activation of the p38
AMPK/NF-�B pathway followed by the release of the factor
of nerve growth (proNGF). 
ese data were corroborated in
in vitro models showing that ghrelin stimulation prevented
the activation of the AMPK and JUN signaling pathway in
addition to reducing the production of ROS in microglia
stimulated with LPS [78]. Other studies demonstrated that
the intracerebroventricular administration of ghrelin reduces
the mRNA expression of the proin�ammatory cytokines IL-
1�, IL-6, TNF-�, INF-�, and iNOS in the blood of rats
subjected to a 70% calorie restriction by one week [79].
However, it appears that this mechanism is independent of
the GHSR1� receptor, since this receptor is not expressed
in the resident microglia of the brain and spinal cord or in
primary culture. In this context, ghrelin might potentially act
by blocking the expression of the matrix metalloproteinase
3 (MMP-3) on dopaminergic stressed cells [80]. In addition
to this, ghrelin has been proposed as a neuroprotective agent
by decreasing the production of proin�ammatory cytokines,
IL-1�, IL-6, TNF-�, iNOS, and ROS, by microglia in mod-
els of amyotrophic lateral sclerosis, neurotoxicity, neuronal
death induced by kainic acid, experimental autoimmune
encephalomyelitis, Parkinson’s, and Alzheimer’s [49, 81]. In
addition, it blocks the activation of the microglia and reduces
in�ltration of T lymphocytes towards the spinal cord against
a challenge with LPS [78, 82]. Ghrelin also prevents the
di
erentiation of a proin�ammatory T-cell subtype, termed

17, by blocking the activation of themTOR/STAT3 pathway
[83]. In relation to diseases closely related to metabolism,
ghrelin has been linked to attenuation in the activation of
the TLR4/MyD88/TRAF6/NF-�B pathway and cell death
in pheochromocytoma cells (PC12) in a model of diabetic
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encephalopathy [84]. Taken together, these data allow us to
hypothesize that ghrelin plays an important role in the regu-
lation of metabolic in�ammation in the CNS by modulating
the secretion of proin�ammatory cytokines by microglia.

3.3. Leptin. Leptin is a peptide hormone with a molecular
structure similar to interleukins, composed of 146 amino
acids, its synthesis is primarily in adipocytes, and it travels
through the circulation to reach the CNS, where it interacts
with the leptin receptor (LepR) located in hypothalamic
neurons and regulates food intake through an anorexigenic
signal [85]. It is also involved in hematopoiesis, angiogenesis,
and glucose metabolism and has a proven role in cells
innate and adaptive immune system [85]. In normal human
patients, leptin plasma levels are around 21.6 pg/mL, whereas
obese patients show higher concentrations (61.9 pg/mL) [70]
Experimental data show that the LepR has the ability to
activate signaling pathways associated with in�ammatory
pro�les including those of IL-6, the JAK-STAT, and MAPK-
PI3K pathway, regulates the production of IL-2 and INF-
� in 
1 lymphocytes, and reduces the production of anti-
in�ammatory IL-10 cytokine [86]. Furthermore, it appears
that leptin and swelling ratio is positive feedback type as
systemic injection of LPS to mice increases the concentration
of mRNA in adipose tissue leptin mice and induces the
secretion of IL-1�; besides TNF-� and IL-1 cytokines regulate
the expression of leptin. Additionally, the in�ammatory
e
ect exerted by leptin is dependent on modulation at the
level of adhesion molecules expression such as ICAM-1 and
VLA2 in CD4+ cells, preventing proliferation of suppressor
cells of the immune response type Treg Foxp3 [31, 87]. 
e

role of this hormone on the proin�ammatory action of
B lymphocytes seems limited to increase phosphorylation
STAT3, a crucial mechanism in the production of TNF-�,
accompanied by low phosphorylation in AMPK, crucial for
the activation of E47 through phosphorylation of p38 AMPK;
and inhibiting apoptosis in a mice model exposed to HFD
[88]. 
e proin�ammatory e
ects of leptin on microglia are
by nature proin�ammatory and induce secretion of IL-1�
cytokine-dependent stimulation with LPS, by a mechanism
independent caspase 1, IL-6 by the pathway IRS1-PI3K-AKT-
NF-kB and TNF-�, and CINC-1 MIP-2 chemokines [89]. In
fact, IL-6 has proved to have a sensitizing action to leptin
in hypothalamic neurons in obese animals by exposure to
high fat diet [90]. It has been observed that in microglia
de�cient mouse leptin (ob/ob) there is a downregulation in
genes integrin-alpha X (Iigax), NALP3, and molecule F4/80,
important for correct development of the in�ammatory
response and T-cell di
erentiation regulated by APC [91]
(Figure 2).

4. Potential Treatments for Inflammation in
Metabolic Related-Diseases

Obesity is a worldwide health problem showing failure
in pharmacologic and therapeutic interventions to amelio-
rate its metabolic complications. Diet might show the �rst
potential avenue to modulate this pandemic. It is widely
reported that polyunsaturated fatty acids (PUFAs) had ben-
e�cial e
ects on several metabolic related-diseases, such as
obesity. For instance, omega-3 fatty acids (�-3 PUFAs) inhibit
mammary tumor progression in obese mice [92], like wise
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this fatty acids has anti-in�ammatory e
ects in the adipose
tissue and hypothalamus [93, 94], and protect against insulin
resistance and dyslipidemia by suppressing the activation of
TLR4 [95, 96]. 
e key receptors involve in this bene�cial
e
ects are the G protein-coupled receptor (GRP), speci�cally
the selective GRP40 and GRP120, which has been proposed
has possible therapeutic targets for insulin resistance and
metabolic in�ammation [97, 98]. In fact, administration
of a GRP40 agonist (Yhhu4488) promotes high expression
of glucagon-like peptide-1 (GLP-1), decreased fasting blood
glucose level, improved �-cell function and lipid homeostasis
in type 2 diabetic ob/ob mice [99]. Also, GRP120 stimulation
by a selective agonist improved glucose tolerance, decreased
hyperinsulinemia, increased insulin sensitivity and decreased
hepatic steatosis in a DIOmice model [100]. Of note, the role
of GRP40 and GRP120 might be potentially relevant given
that both show high expression within the hypothalamus and
the combined activation of both receptors results in better
metabolic outcomes [98].

Another possible neuroinmmunometabolic target are the
kinases TBK1 and IKK� related to in�ammatory pathways.

ese proteins had been reported to participated in the
development of insulin resistance and diabetes [25, 101]. In
addition, we proposed recently that TBK1 may have a sig-
ni�cant role in the microglia-mediated neuroin�ammation
observe during obesity [28]. In fact, it has been demonstrated
that the administration of an speci�c TBK1-IKK� inhibitor
(amlexanox), reduces weight, insulin resistance, fatty liver
and in�ammation, as well as increased energy expendi-
ture [102]. Together, these data suggest that dual-speci�city
inhibitors of IKK� and TBK1 may be e
ective therapies for
metabolic disease in an identi�able subset of human patients
[103].

Finally, the ghrelin system might represent another pos-
sible molecular target for immunomodulation. 
e adminis-
tration of des-acyl-ghrelin analog (AZP531) prevent dysreg-
ulation of glucose homeostasis in C57BL/6J mice exposed
to a HFD [104]. Furthermore, chronic exposure to an
inhibitor of AG secretion (CF801) decreased weight gain
and adiposity without a
ecting caloric intake [105]. More
recently, a synthetic triterpenoids has been proposed as a
potential therapeutic agent to treat diabetes and obesity.,
due to its ability to inhibit ghrelin acylation by the human
isoform of GOAT (hGOAT), these compounds function as
covalent reversible inhibitors of hGOAT [106].
us, blocking
proin�ammatory signals through GRPs or nuclear factors
inhibitor such as TBK1, and reducing AG plasma levels,
might be potential pharmacologic treatments to obesity and
metabolic disorders.

5. Conclusions

We contemplate that the activation in�ammation associated
central lipotoxicity in a scenario of positive energy balance
is dependent on time and intensity of the stimulus. At
early times of ingestion of a high fat diet, lipids interact
with toll-like receptors (SFA-TLR4) activating in�amma-
tory pathway MyD88/IKK/NF-�B and possibly the TBK1
protein, initiating secretion of proin�ammatory cytokines

IL-1�, IL-6, TNF-� and INF-�. Meanwhile, in a parallel
scenario, increased in�ammation at the level of adipose tissue
promotes increased concentration of leptin in the plasma
and by promoting the expression of adhesion proteins on
the cells of the BBB, as ICAM-1, VLA-2 and ALCAM,
cells might recruit peripheral immune into the CNS by the
action of IL-1�. In particular, leptin increase might sensitize
microglia subsequent to proin�ammatory stimuli and will
induce expression of MHC class II and expression of IL-1�.
At late, cells such as B and T lymphocytes and macrophages
could in�ltrate the CNS, where microglia would serve as an
APC cell to T-cell and by TCR-CD28/MHCII interaction,
might recruit the complex CARMA1-Bcl10 -MALT1, allowing
activationNF-kB and IL-2 secretion. In this state T cells could
be placed in a state of
1 type secreting cell or in�ammatory
cytokines. Likewise, a reduction would be expected in the
production of IL-10 because of the action of the INF-� and
SFAonTreg cells. B cells attracted to theCNS begin producing
IgG toxic antibodies that will accumulate within microglia
and will be able to act as ACP with T cells. 
is intricate
network of cells and cytokines form a positive feedback
loop that ampli�es the e
ect initiated by increasing dietary
lipids. At this level, neuropeptides as ghrelin and POMCmay
represent potential modulators of in�ammation based on
their characteristic of being anti-in�ammatory. Ghrelin can
block the TLR4/MyD88/TRAF6/NF-KBpathway activated in
microglia by SFA and decrease the activity of the AMPK and
JUN, important for the production of IL-2. POMC derived
peptides attenuate secretion of proin�ammatory cytokines
via MC4R-cAMP-PKA-CREB, which induces the release of
IL-10. While MC1R receptor activation reduces the expres-
sion of the adhesion proteins E-selectin and VCAM, and
reduce the activation of NF-kB in endothelial cells exposed
to TNF-� (Figure 2). Overall, neuropeptides in the CNS
modulate in�ammation andmigration of peripheral cells into
the CNS via the BBB and may represent a molecular node
during positive energy balance as is the obesity and maternal
overnutrition.
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