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Delivery of effective anti-leukemic agents to the central nervous system (CNS) is considered essential for cure of childhood acute
lymphoblastic leukemia. Current CNS-directed therapy comprises systemic therapy with good CNS-penetration accompanied by
repeated intrathecal treatments up to 26 times over 2-3 years. This approach prevents most CNS relapses, but is associated with
significant short and long term neurotoxicity. Despite this burdensome therapy, there have been no new drugs licensed for CNS-
leukemia since the 1960s, when very limited anti-leukemic agents were available and there was no mechanistic understanding of
leukemia survival in the CNS. Another major barrier to improved treatment is that we cannot accurately identify children at risk of
CNS relapse, or monitor response to treatment, due to a lack of sensitive biomarkers. A paradigm shift in treating the CNS is needed.
The challenges are clear - we cannot measure CNS leukemic load, trials have been unable to establish the most effective CNS
treatment regimens, and non-toxic approaches for relapsed, refractory, or intolerant patients are lacking. In this review we discuss
these challenges and highlight research advances aiming to provide solutions. Unlocking the potential of risk-adapted non-toxic
CNS-directed therapy requires; (1) discovery of robust diagnostic, prognostic and response biomarkers for CNS-leukemia, (2)
identification of novel therapeutic targets combined with associated investment in drug development and early-phase trials and (3)
engineering of immunotherapies to overcome the unique challenges of the CNS microenvironment. Fortunately, research into CNS-
ALL is now making progress in addressing these unmet needs: biomarkers, such as CSF-flow cytometry, are now being tested in
prospective trials, novel drugs are being tested in Phase I/Il trials, and immunotherapies are increasingly available to patients with

CNS relapses. The future is hopeful for improved management of the CNS over the next decade.
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INTRODUCTION

Childhood acute lymphoblastic leukemia (ALL) is a curable disease
with more than 90% of children achieving long term survival [1, 2].
This has led to a shift in focus from intensifying treatment to
achieving cure with fewer side-effects. Progress is being made by
use of minimal residual disease (MRD) monitoring to adjust
treatment intensity according to clinical response, and more
recently the introduction of targeted immunotherapies. However,
major challenges remain. One particularly problematic area is how
best to prevent and/or treat leukemic relapse involving the central
nervous system (CNS). Detection of leukemic blasts in the CNS by
cytology is commoner in patients with higher white blood cell
count at diagnosis, T-lineage ALL, and high risk cytogenetics, but
early studies in the 1960s and 1970s established that giving CNS
directed therapy to all patients, including those with negative CSF-
cytology, is essential for cure [3, 4]. Initial protocols used
craniospinal irradiation as CNS-directed treatment. Unfortunately,

this caused high rates of neurocognitive impairment [5, 6] and
secondary CNS malignancies [7], leading to a shift towards
chemotherapy approaches [8]. However, significant toxicity can
still occur. The balance between adequate treatment to prevent
relapse, whilst minimizing chemotherapy exposure to reduce
adverse effects, is especially important when it comes to a child’s
developing brain [9]. Here we review the current clinical
challenges in CNS-ALL and discuss possible solutions.

CHALLENGE 1 - INABILITY TO ACCURATELY MEASURE CNS
INVOLVEMENT

CNS staging is usually performed by counting white blood cells in
the cerebrospinal fluid (CSF) along with microscopy of a cyto-
centrifuged CSF sample to morphologically identify leukemic
blasts. This is used to assign patients to CNS1, CNS2 or CNS3 status
(Table 1). CNS3 status is also given to patients with clinical or
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Table 1. CNS status definitions [71, 129-131].
CSF cytospin findings

CNS status WBCs/pL RBCs/pL Leukemic blasts
CNS1 <5 <10 Absent

CNS2 <5 <10 Present

CNS3 >5 <10 Present

TLP+ N/A >10 Present

TLP— N/A >10 Absent

CNS central nervous system, CSF cerebrospinal fluid, N/A not applicable,
RBCs red blood cells, TLP traumatic lumbar puncture, WBCs white
blood cells.

radiological evidence of CNS-leukemia, irrespective of CSF findings
e.g. cranial nerve palsies, or other neurological symptoms that
mostly, but not always, are associated with CNS-imaging findings.

Although this method of CNS-staging has been used for
decades, it is debatable how clinically or biologically meaningful it
is. Several observations challenge whether cytology accurately
reflects the amount of leukemic infiltration in the CNS and the
likelihood of CNS relapse. Firstly, rates of CNS2 status vary widely
between individual centers, and between trial groups, as does
their prognostic relevance (Table 2) - suggesting that this is an
analytical, rather than a clinical, difference. Indeed, cytospin-based
cytology has been shown to have low sensitivity, poor specificity,
and low reproducibility between laboratories [10, 11]. Leukocytes
in CSF rapidly decay ex vivo [12-14], and if cytospin samples are
not stabilized or processed immediately, this may lead to
underestimation of CNS leukemia. Furthermore, microscopy-
based analysis has a low sensitivity for detection of rare events
[15], and discrimination of leukemic cells and normal/reactive
T-lymphocytes in cytospins may be difficult and can lead to false-
positives [10]. Further doubt on the sensitivity of CNS cytology
comes from clinical observations - only 2-5% of children are
classified as CNS3 at initial diagnosis, but up to 75% used to
relapse within a few weeks to months prior to institution of
universal CNS-directed therapy [3] suggesting that leukemia is
present in the CNS compartment from disease outset in most
patients. This is also supported by animal models [16] and by
evidence that patients often have significant CNS infiltration on
post-mortem brain biopsies despite lack of cells in the CSF [17].
Moreover, even in patients with CNS3 status, the cells in CSF
usually become undetectable after only 1-3 intrathecal treatments
despite clinical knowledge that prolonged treatment is required to
reduce risk of CNS relapse [4]. Thus, CSF cytology is unable to
differentiate good from poor treatment responders. Finally, most
CNS relapses occur in children who were CNS1 - therefore, the
prognostic value of CNS1-3 status is quite poor. It is clear that
better diagnostic, response and prognostic biomarkers are needed
for CNS-ALL.

The timing of when to perform the diagnostic lumbar puncture
is also controversial. Some reports suggest that delaying the first
lumbar puncture is associated with lower traumatic lumbar
puncture (TLP) rates and less CNS relapse [18, 19]. However, no
randomized comparisons have been performed, and some
practitioners are concerned that delayed LP may interfere with
CNS-staging. This is particularly important for protocols that use
CNS status to stratify the CNS and systemic therapy intensity (see
below). More sensitive biomarkers are required before this
question can be properly answered [20].

In keeping with the large variability in CNS2/3 rates across
different protocols, and conflicting data on CNS2 status as an
independent prognostic factor (Table 2), it is unsurprising that
different trial groups have different approaches to using CNS-
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staging to allocate treatment. In some protocols patients with
CNS3 status are assigned to high-risk treatment arms (or at least
excluded from low-risk arms), whilst in others they receive
additional intrathecal therapies in induction, but no change to
their overall risk-group allocation (Table 3). For CNS2 status there
is even more controversy, with trials using additional intrathecal
treatments for CNS2 patients reporting that CNS2 has no impact
on prognosis [21, 22], in contrast to trials which did not escalate
therapy [23]. Traumatic lumbar punctures with blasts (TLP+) are
associated with particularly poor outcomes and generally
considered to require additional CNS-directed therapy [24]. The
reason why TLP+ has such a poor outcome is currently unknown,
it may reflect a correlation with high-risk disease characteristics,
rather than the prevalent, but unlikely, hypothesis that it
introduces blasts from the periphery into an otherwise
leukemia-free CSF.

Most importantly, the inability to accurately quantify CNS
leukemic load and response to treatment means that intensive
CNS-directed therapy is given to all patients, even in those whose
disease is judged to be at “ultra-low” risk of relapse based on
karyotype and bone-marrow (BM) MRD quantification. Sensitive
response biomarkers capable of accurately quantifying CSF MRD
and thus the dynamics of CSF clearance are clearly needed.

CHALLENGE 2 - WHAT IS THE MOST EFFECTIVE CNS-DIRECTED
THERAPY REGIMEN FOR NEWLY DIAGNOSED PATIENTS?
Overview

All modern ALL protocols employ a combination of systemic
therapy and intrathecal (IT) therapy against CNS leukemia, with
some trial groups also using radiotherapy for selected high-risk
groups. This upfront CNS therapy is sometimes called “CNS
prophylaxis”, which reflects the aim to prevent CNS relapse.
However, it can be wrongly misconstrued as meaning it is
preventing dissemination of leukemia to the CNS, although CNS
leukemia is likely to be present at the time of diagnosis. Thus,
“CNS-directed therapy” is a more appropriate term than “CNS
prophylaxis”. The current CNS-directed therapy approaches taken
by selected study groups are summarized in Table 3.

The main agents with significant CNS activity are intrathecal
and systemic glucocorticoids (not least dexamethasone), intrathe-
cal or intravenous (high-dose) methotrexate and cytarabine, and
asparaginase. When choosing therapy, it is also important to
consider potential neurotoxicity. Interested readers are referred to
comprehensive reviews on this topic [25, 26]. Briefly, 4-12% of
children suffer a neurotoxic serious adverse event (SAE) such as
seizures, stroke-like syndrome, posterior reversible encephalopa-
thy syndrome, and/or long-term neurocognitive deficits [27]. ALL
patients score 6-8 IQ points lower than controls [6] and 15-35% of
children have significantly impaired working memory, attention
span and/or executive functioning [28-30]. In addition, there are
concerns that CNS-directed therapy may result in reduced
cognitive reserve, thus risking early-onset dementia [9, 31-33].
The major culprit is thought to be methotrexate, although other
agents may also contribute. Table 4 outlines the common agents
used for ALL treatment, along with their CNS penetration and any
known neurotoxic side-effects.

Whilst all modern protocols achieve low rates of CNS relapse,
the optimal treatment regimen to maximize CNS control whilst
minimizing toxicity is currently unknown. One consistent observa-
tion is that trials that intensify CNS-directed therapy often have
reduced CNS relapse rates but an excess of later BM relapses. This
results in no differences in EFS or OS, or sometimes worse OS (as
bone marrow relapses may be more difficult to salvage). This has
led to the concept of BM and CNS relapses being “competing
events”. Poor risk ALL may relapse early (often “on treatment”) in
the CNS, due to less chemotherapy exposure and immune
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Radiotherapy

In the last decade many ALL trials have explored reducing or
omitting the use of cranial irradiation and, therefore, the
associated toxicities without sacrificing event-free survival. The
consistent finding of these trials is that in the frontline setting
cranial irradiation can be safely excluded in conjunction with an
appropriately augmented systemic regimen. A meta-analysis,
published in 2016, included over 16,000 patients, aged 1-18
years, enrolled across 10 study groups, and concluded that cranial
irradiation does not impact CNS relapse risk in modern protocols
[43]. This meta-analysis also included subgroup analysis for CNS3
patients. In this subgroup cranial irradiation was found to reduce
the risk of isolated and combined CNS relapses, but neither EFS
nor OS. Thus, in the majority of contemporary ALL protocols
radiotherapy is reserved for relapsed disease, although some trial
groups still use radiotherapy upfront for selected high-risk groups
as well as part of conditioning prior to hematopoietic stem cell
transplantation [44] (Table 2).

B but not T cell ALL CNS2 patients

receive additional Its during

induction
phenotype, TCF3-PBX1, BCR-ABL1,

KMT2A rearrangement,

Depending on WBC >100,000, T-
hypodiploidy

Other factors

No
No
No
No
No

before day 8
before day 3

Optional delay until
No

Delayed LP for
high wcc

No

Optional
Optional, but
Optional, but
WBC < 50x109/L

No

Considerations for special groups

Philadelphia chromosome-positive ALL — choice of tyrosine kinase
inhibitor. Following pre-clinical murine model data and case
series data from Porkka et al. that demonstrated efficacy of
dasatinib in CNS disease [45], COG AALL0622 [46] assessed the use
of upfront dasatinib instead of cranial radiotherapy to prevent CNS
relapse in Ph+ ALL. This single arm trial reported relatively high
CNS relapse rates at 15% and made comparisons with historical
controls. This strategy is complicated by differing rates of
radiotherapy and hematopoietic stem cell transplant (HSCT)
between the groups. Overall, the results suggest dasatinib alone
(without cranial radiotherapy) may be insufficient to reduce CNS
relapses rate in Ph+ ALL. A direct randomized comparison of
imatinib versus dasatinib was performed by the Chinese Children’s
Cancer Group study ALL-2015 in 189 pediatric patients with Ph+
ALL [47]. The number of patients with CNS disease at presentation
was low (CNS3 n = 6) as was the total number of any CNS relapse
events (n=10). However, the investigators found a significantly
reduced risk of iCNS relapse in the dasatinib arm, but no
difference in any CNS relapse. This difference could potentially
reflect the higher dasatinib-imatinib dose relation used compared
to dosing currently used in other protocols (80 mg/m? and
300 mg/m? used in ALL-2015 versus 60 mg/m? and 340 mg/m? in
COGAALL0622 and COGAALLO031 [46, 48], respectively), and the
ongoing EsPhALL2017/COGAALL1631 protocol (ClinicalTrials.gov
Identifier: NCT03007147).

additional intrathecal therapy

depending on white

Assigned to CNS1/2/3 using
cell count

Steinherz/Bleyer formula
Assigned to CNS1/2/3 using

Steinherz/Bleyer formula
Assigned to CNS1/2/3 using

study protocol algorithm
Higher risk treatment arm +

Additional intrathercal

Additional intrathercal
therapy

TLP + management
therapy

Individualized

Higher risk treatment arm +

additional intrathecal

Higher risk treatment arm
therapy

Higher risk treatment arm +

additional intrathecal

therapy
Higher risk treatment arm +

cranial irradiation +
additional intrathecal

therapy
additional intrathecal

Additional intrathecal
Cranial irradiation +
therapy

Additional intrathecal
therapy

CNS3 management
therapy

T-ALL. T-ALL patients often receive intensified systemic and CNS-
directed therapy. Many trial groups still routinely treat T-ALL
patients with CNS radiotherapy, especially if they display other high-
risk features such as hyperleukocytosis, although several groups
have achieved good results despite omitting radiotherapy [49].
Nelarabine in frontline treatment was assessed in the randomized
trial COG AALL0434; nelarabine versus no nelarabine in combina-
tion with intensive chemotherapy [50]. The nelarabine arm was
found to significantly reduce the rates of isolated and combined
CNS relapse although did not have a significant impact on OS. Other
differences in systemic therapy may have also contributed to these
results, such as less asparaginase in the non-nelarabine arm.

CNS2 management
intrathecal therapy
intrathecal therapy
intrathecal therapy
intrathecal therapy
As per CNS1

intrathecal therapy
intrathecal therapy

Additional
Additional
Additional
Additional
Additional
Additional

Cell count + cytospin
Cell count + cytospin
(confirmed by Tdt

staining)

Cell count + cytospin
Cell count + cytospin
Cell count + cytospin
Cell count + cytospin
(confirmed by flow

cytometry)
Cell count + cytospin

CNS2 definition

Conclusion

Similar cure rates are achieved using a variety of regimens
combining systemic multi-agent chemotherapy with effective
CNS-directed therapy — no one approach is clearly superior. It is
hoped that better biomarkers will enable evaluation of the true
impact of different agents on clearance of CNS-ALL, but until then
choice of therapy should aim at ensuring adequate targeting of
the CNS compartment while minimizing short- and long-term
neurotoxicity.

Current CNS-directed therapy approaches taken by selected study groups.

Children’s Oncology Group ALL
committee

St Judes Total Therapy Program
Dana-Farber Cancer Institue ALL
Consortium

Japanese Pediatric Leukemia/
Frankfurt-Munster Study Group

Lymphoma Study Group
Pediatrica - Berlin Frankfurt

Miunster
ALL Intercontinental Berlin-

Ematologia e Oncologia

I’Associazione Italiana di
ALLTogether Consortium

Study group

Table 3.
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Table 4. CSF penetrance of systemically administered drugs
commonly used in ALL treatment.

CSF to Established neurotoxic side
plasma effects
ratio, %
6-Mercaptopurine 26 N/A
Cyclophosphamide 20 N/A
Cytarabine 10-25 Cerebellar syndrome, seizures
Daunorubicin ND N/A
Dexamethasone 15 Neurobehavioural, pyschosis
Etoposide ND N/A
Fludarabine Not known*  Encephalopathy, posterior
reversible encephalopathy
syndrome
Ifosfamide 38" Encephalopathy
L-Asparaginase ND* Cerebral venous sinus
thrombosis
Methotrexate 3 Stroke-like symptoms,
encephalopathy, seizure
Nelarabine 29° Paraesthesia, weakness,
seizure, cerebellar syndrome
Prednisolone 8 Neurobehavioural, pyschosis
Thiotepa 100 Heached, confusion, seizure,
cerebellar syndrome, coma
Vincristine 5 Peripheral and autonomic

neuropathy, posterior
reversible encephalopathy
syndrome, seizure
Median values used where possible. Table adapted from Balis et al.
[36, 146-150].
CSF cerebrospinal fluid, ND not detected.
*Fludarabine is assumed to enter the CSF due to it's neurotoxicity profile
and case reports of single agent efficacy in CLL with CNS involvement
[150].
™The active metabolite of ifosfamide, 4-hydroxy-ifosfamide, has a reported
median CSF to plasma ratio of 307%. Significant variability is reported
between patients, in the most recent study 5/17 patients had undetectable
4-hydroxy-ifosfamide CSF levels [148].
*Although asparaginase is not detected in the CSF, asparagine depletion of
the CSF does occur with systemic administration. The extent of depletion
varies with asparaginase formulation [149].
SData from non-human primates.

CHALLENGE 3 - WHAT ARE THE BEST APPROACHES FOR CNS-
RELAPSE?

Evaluating the best treatment strategy for CNS relapse is even
more challenging. Here small patient numbers, heterogeneity of
frontline therapy, a lack of novel drugs and concerns regarding
augmented neurotoxicity of immunotherapies have hampered
progress.

Relapse of ALL is usually classified as either isolated bone
marrow, isolated CNS (iCNS) or other extramedullary sites, or
combined relapse involving two or more of these sites, most
being BM + CNS. Even in the case of iCNS relapses submicroscopic
marrow involvement is often seen [51], and it is also likely that
subclinical CNS involvement is present in patients with an
apparently isolated BM relapse. Thus, both systemic and CNS-
directed therapy is essential for cure regardless of the site of
relapse. Timing of relapse should also guide treatment choice. CNS
relapses are usually categorized as ‘early’ or ‘late’. Two trials
involving relapsed ALL, UK ALL R3 and IntReALL 2010, used the
following definitions: very early relapse is those <18 months from
diagnosis (and <6 months from completion of treatment in
IntReALL 2010), early relapse as >18 months from diagnosis but

SPRINGER NATURE

<6 months from completion of treatment, and late relapse as
those >6 months from completing treatment [52].

Very early/Early CNS-relapses

The optimal therapy of iCNS relapse remains controversial. Early
iCNS relapses have poor outcomes with EFS/OS rates of 41%/52%
on COG AALL0433 and very similar outcomes from other groups
[53]. Randomized trials comparing HSCT to chemotherapy have
not been feasible, but because survival is <50%, many groups
treat early iCNS relapses with intensive systemic chemotherapy
followed by HSCT [54]. With small patient numbers, non-
significant trends favoring HSCT over chemotherapy and cranial
radiation were reported on COGAALL0433, UKALL R3, and single
institution studies. A retrospective analysis of Italian children
treated with HSCT for isolated extramedullary relapse from 1990
to 2015 showed improvements in 10-year survival rates;
specifically survival in those with very early isolated extramedul-
lary relapses was 56% with HSCT compared to historical rates of
20% to 30% with chemo-/radiotherapy only [55]. Early combined
BM and CNS relapses also appear to benefit from HSCT. A trend
towards a reduced rate of post-transplant CNS relapse but without
OS benefit was found in a prospective trial involving cranial boost
in the HSCT total body irradiation conditioning [56].

Late CNS relapses

Historically, late iCNS relapses have had an excellent outcome on
protocols using high dose chemotherapy and cranial radiotherapy
of 24 Gy. In the UKALL R3 trial this group had a 5 yr EFS of 81% and
OS of 85% [52]. Unfortunately, attempts to reduce radiotherapy
doses or delay treatment to minimize toxicity in this good
prognosis group have led to inferior outcomes [57]. Moreover,
recent data suggest that the prognosis of late isolated extra-
medullary relapses may be worse than previously reported [58].
This may reflect use of more intensive first-line therapy, especially
dexamethasone, which may have changed the biology of late
relapses as well as selected out the most resistant patients. Clearly
efficacious and low toxicity approaches are needed.

The role of immunotherapy

Novel immunotherapies including bi-specific T cell engagers and
antibody-drug conjugates have revolutionized the management of
relapsed and refractory ALL in the last decade and are starting to be
used for high-risk patients in front line settings. Evaluation of the
CNS activity of these agents has been difficult as patients with CNS
relapses were often excluded from early trials due to concerns of
enhanced risk of neurotoxicity and the difficulties in measuring
disease response in the CNS. Recently prospective Phase 3 studies
from Europe [59] and the US [60] have examined the efficacy of
Blinatumomab in released ALL. Overall, post-reinduction consolida-
tion with blinatumomab in COG AALL1331 gave equivalent or
better outcomes than chemotherapy alone and a comparatively
favorable side effect profile [59, 60]. However, on subgroup analysis,
this approach did not appear to be effective in those with isolated
extramedullary (including iCNS) relapses [58]. This may reflect
reduced penetration of Blinatumomab into extramedullary sites
[61]. CAR-T cell therapy for CNS relapses remains experimental and
is discussed under “better drugs” below.

Novel agents

Despite use of all the agents described above there are a small but
significant population of patients who present with recurrent or
refractory CNS relapses. Clinical trials are hampered by the absence
of sensitive biomarkers to monitor disease response similar to BM
MRD. To this adds lack of access to precision medicine umbrella
trials due to the challenges in obtaining material for genomic
profiling and uncertainty regarding drug penetration into the CNS.
As a result, iCNS relapses are excluded from current Phase I/Il trials

Leukemia (2022) 36:2751 - 2768
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Fig. 1

Soluble biomarkers secreted to cerebrospinal fluid or hypothesized to prime CNS compartments for transmigration of leukemic

cells. Biomarkers may comprise leukemic-derived vesicles, secreted proteins and metabolites, or cell-free DNA.

for relapsed ALL, and no randomized trials have addressed the
optimal approach for this group. There are however isolated case
reports and small case-series indicating efficacy of some novel
treatment approaches including intrathecal rituximab, thiotepa and
liposomal cytarabine (Depocyte) [62-64]. In addition, intrathecal
etoposide is used in brain tumor patients and has antileukemic
activity and may thus be another option [65].

Potential solutions

Advances in treatment of CNS leukemia are hampered by two
main issues. Firstly, the lack of sensitive and specific diagnostic,
response, and prognostic biomarkers able to risk-stratify CNS-
directed therapy and to measure the efficacy of novel treatment
approaches. Secondly, the lack of non-toxic novel agents with
activity against CNS leukemia. Recent progress in these two vital
areas is discussed below.

SOLUTION 1 - BETTER BIOMARKERS

The ability to accurately diagnose and quantify CNS ALL and its
response to treatment will unlock the door to risk-adapted
therapy as well as facilitate Phase /Il trials for novel CNS-active
agents. Options include more sensitive and reliable detection of
leukemic cells in CSF, or measuring soluble biomarkers secreted
from leukemic cells in situ. Figure 1 and Table 5 outlines the
different classes of biomarkers under investigation, which are
discussed below.

Improving detection of cells in CSF
Recently, multicolor flow cytometric analysis of CSF has been
applied as a more sensitive method for detection of leukemic
blasts in the CSF compared to cytospin. In flow cytometry, blasts
are identified based on their aberrant expression of leukemia-
associated immunophenotype markers, making this technique
highly specific [66]. Furthermore, flow cytometry can rapidly and
precisely quantify the expression of multiple cell surface
molecules even when the cell count is 1000 fold lower than the
upper normal limit of leukocytes in CSF (5x 10%/L) leading to a
much higher sensitivity than conventional cytology [66]. Further-
more, the cells can be fixated prior to flow cytometry, e.g. in
specialized CSF Transfix® tubes, which preserves the cells and
allows for delaying analysis of CSF for 48-72h, thus facilitating
centralized analysis [67].

At diagnosis, CNS involvement has been detected by CSF flow
cytometry in 17-41% of cases compared to only 3-10% of cases
classified as CNS2 and CNS3 by cytospin in children with ALL

Leukemia (2022) 36:2751 - 2768

[24, 68-70]. One study also investigated the clearance of leukemic
blasts during induction therapy and found that 7.5% of flow
positive patients at diagnosis remained positive at day 15 [24]. It
was recently shown in a large study (n=673) by the NOPHO
group that CSF flow positivity at diagnosis was an independent
risk factor for relapse among children and adolescents with ALL
[24]. This association was confirmed in a study by COACG group in
patients with low level CNS disease (classified as CNS2 by
cytospin) [10]. Two other studies also showed that relapse
occurred more frequently among patients who were CSF flow
positive at diagnosis, but results did not reach statistical
significance, likely due to the small study cohorts [68, 70].

TLP with blasts (TLP+) has previously been associated with
increased risk of CNS relapse in childhood ALL [8, 71-73]. In the
aforementioned NOPHO study, TLP at diagnosis was only
associated with a higher risk of relapse in patients, where
presence of blasts were confirmed by flow cytometry [24].
Accordingly, the current European ALLTogether1 treatment
protocol (NCT04307576) requires flow cytometry confirmation of
CNS involvement in case of TLP. The prognostic significance of the
patient’s blast level at diagnosis and rate of clearance of leukemic
blasts during treatment is also being tested in the ALLTogether1
trial to determine if these parameters can be used to assign a CNS-
relapse score on which to base a future randomized trial of risk-
adapted CNS-directed therapy to balance treatment efficacy and
toxicity.

Another technique that has been proposed for detection of
submicroscopic levels of CNS involvement is PCR on cell-free DNA
in CSF. PCR on CSF DNA is typically performed with the patient-
specific primers against variable regions in immunoglobulins and
the T-cell receptor generated for bone marrow MRD. In pediatric
ALL patients, PCR detected CNS dissemination in 20-47% of cases
compared to 5-17% by cytospin [74-77]. The rates of CNS
involvement at diagnosis by PCR are equivalent to the rates
obtained by CSF flow cytometry. However, in several studies it was
not possible to analyze a large fraction of the CSF samples by PCR
due to poor quality of the DNA or lack of suitable primers [75-77].
In studies sampling CSF during treatment, patients quickly
became negative by PCR [74, 75, 77], which suggest that more
sensitive techniques, such as flow cytometry or next generation
sequencing, are needed to assess treatment response in the CNS.

Soluble biomarkers for CNS-ALL

Given that leukemic cells in the CNS are often adherent to stroma
rather than free-floating in CSF it is hypothesized that measure-
ment of a CSF biomarker that is released or taken-up by leukemic

SPRINGER NATURE
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In total, 47 candiate microRNAs were
selected for profiling. Based on the

Pediatric ALL and AML patients.

Cross-sectional
observation

gPCR

microRNA [89]

Discovery cohort using CSF with CNS-
ALL (n =4) and CNS-naive ALL (n=4)
matched patients. Validation cohort

discovery cohort, miRNA-181a was

overexpressed 52-fold in CNS-ALL
patients in the validation cohort

using CSF with ALL, AML og mixed

phenotype patients, including CNS-ALL

(n=11) and CNS-naive (n = 13) patients

ALL acute lymphoblastic leukemia, CNS central nervous system, CSF cerebrospinal fluid, TdT terminal deoxynucleotidyl transferase.

cells may provide a more relevant and quantifiable measure of
disease burden than cell-based methods. Biomarkers may reflect a
variety of biological mechanisms, such as transmigration and
adhesion to CNS-stroma, metabolic plasticity, and cellular cross-
talk. It may, however, prove difficult to reduce this complexity into
single biomarkers, and combinatorial risk-scores incorporating
multiple biomarkers and/or genetic/demographic features may be
needed.

Currently, evidence from mass spectrometry-based proteomics
of CSF is sparse, with only a few small cohort studies published.
However, characterization of alterations in the CSF proteome and/
or metabolome may convey measures of CNS malignancy. Here,
aberrant catalase levels have been reported in the CSF proteome
of B- and T-ALL patients with cytospin CNS2-status [78]. Catalase
occurs in aerobically respiring cells and promotes growth of
leukemic cells [79], which may support CNS-ALL blasts adapting to
hypoxic glycolysis. Further, the serine protease kallikrein-6 seems
specifically upregulated in the CSF-proteome of CNS-ALL patients
[80]. The enzyme degrades extracellular matrix and facilitates local
tumor invasion and infiltration [81], and could therefore indicate
mechanisms involved in CNS infiltration. Finally, specific altera-
tions in CSF correlate with rare cases of cancer prone syndromes,
e.g. an ATP-dependent RNA helicase (DDX41), which has been
detected in the CSF proteome of some ALL patients [78].

Recently, blast-derived extracellular vesicles have been
hypothesized to foster malignant transformation of leukemic cells
and facilitate transmigration across the blood-CSF-barrier by
priming of choroid plexus cells [82, 83]. Technological progress
has enabled fluorescent labeling of extracellular vesicles [84] may
also provide future biomarkers for CNS invasion and risk of CNS
relapse.

Metabolic plasticity may be pivotal for adapting to the low
nutrient microenvironment in CSF, and metabolites and metabolic
regulators are potential biomarkers for CNS-ALL. Distinct biological
mechanisms have been described, including hypoxic adaptation
by upregulation of vascular endothelial growth factor A (VEGFA)
[85] and metabolic adaption by Stearoyl CoA desaturase (SCD1)
dependent fatty-acid synthesis [86]. Although rather non-specific,
lactate dehydrogenase (LDH) has been used a biomarker for CNS
lymphoma diagnostics, and elevated LDH levels may also indicate
CNS involvement in ALL [87].

Circulating microRNA (miRNA) in CSF have been linked to CNS
involvement. Many miRNAs have been reported, yet not validated,
but may include high expression of the miRNA-181-family, miR-
34a, miR-128a, miR-128b, and miR-146a, in CSF positive relative to
CSF negative patients [88, 89].

Finally, cfDNA is released from cells into the surrounding body
fluids by a variety of mechanisms including active release and
secondary to apoptosis and cell turnover. Measurement of cfDNA
in plasma (and/or CSF for brain tumors [90]) detects solid tumors
at early stages [91] and dynamically tracks treatment responses
with levels rising prior to overt disease recurrence [92]. ALL is a
fast-growing malignancy with rapid cell turnover, and CNS blasts
reside directly within the CSF compartment. Therefore, CSF cfDNA
would be expected to provide a sensitive and specific biomarker
for detecting and tracking CNS involvement. However, evidence
for this is currently lacking.

SOLUTION 2 - BETTER DRUGS

Real advances in treating CNS leukaemia will require new
therapeutics. Replacement of conventional agents such as
methotrexate with less neurotoxic alternatives will benefit all
patients. Novel agents are also needed to unlock the potential of
biomarker driven approaches to identify high-risk patients and for
those with refractory disease. An overview of agents in preclinical
development and clinical testing are shown in Fig. 2 and Table 6.
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Fig.2 Mechanisms of action of drugs that target leukemic cells within the CNS. A Coronal section of human brain showing the meninges
and the meningeal vasculature. The leptomeninges consist of the arachnoid mater, the pia mater and the subarachnoid space. The
subarachnoid space is filled with CSF, veins, arteries and arachnoid trabeculae extending from the arachnoid mater to the pia mater. B Novel
drugs that target survival mechanisms employed by leukemia cells in the leptomeninges [1]. Sorafenib and selumetinib inhibit Ras/Raf/MEK/
ERK signaling downstream of B-cell receptor activation [2] Dasatinib inhibit LCK signaling downstream of T-cell receptor activation [3].
Bevacizumab sequesters VEGF-A and inhibit binding to the VEGFR2 [4]. SW103668 inhibit SCD-mediated enzymatic conversion of saturated
fatty acids to mono-unsaturated fatty acids and OMA inhibit ribosome mRNA translation [5]. Me6TREN inhibit adhesion of leukemia cells to
meningeal cells. C Novel drugs that target invasion mechanisms employed by leukemia cells during dissemination to the leptomeninges [1].
Copansilib inhibit integrin a6-mediated migration of leukemia cells along emissary vessels [2]. Plerixafor or BL-8040 block CRCX4-mediated
migration across meningeal blood vessels. LCK lymphocyte specific cell-kinase, CNS central nervous system, CSF cerebrospinal fluid, SCD

stearoyl-CoA desaturase, VEGF vascular endothelial factor, OMA omacetaxine mepesuccinate.

Novel immunotherapies

Chimeric antigen receptor T (CAR-T) cells targeting CD19 on B-ALL
have demonstrated convincing evidence of activity in the CNS. In
early-stage clinical trials, investigators have reported the presence
of CAR-T cells within the CSF of treated ALL patients [93].
Subsequently, multiple case reports and case series have
demonstrated clearance of CNS leukemia with CD19-targeted
CAR-T cell treatment including those with iCNS disease [94, 95].
Post-hoc analysis from five CAR-T cell clinical trials with 195
patients with relapsed or refractory B-ALL, of whom 54% had
evidence of CNS disease (usually as part of combined CNS and BM
relapses), found similar rates of complete response and relapse-
free survival irrespective of CNS status at relapse [96]. This
conclusion was echoed by the Pediatric Real World CAR
Consortium where they reported CD19 CAR-T therapy outcomes
and toxcities for patients with CNS disease were similar to those
with BM only involvement [97]. There are, however, reports of less
favourable outcomes; a recently published international retro-
spective analysis reported a high rate of subsequent CNS relapse
in those with iCNS disease (6 of 8 patients) following CD19 CAR-T
therapy [61]. Although CAR-T cell therapy holds significant
promise, the outcome data is somewhat inconsistent and longer
follow-up is needed to determine the longevity of responses [61].
Emerging data from B-cell lymphoma patients suggests that CAR-
T cells may undergo some degree of exhaustion or anergy in the
CNS microenvironment leading to antigen positive relapses
despite CAR-T cell persistence in the CSF [98]. One potential
strategy for overcoming this challenge could be by repeated
administration of CAR-T cells. Furthermore, CAR-T cell therapy may
be associated with serious neurotoxicity in patients with high-

Leukemia (2022) 36:2751 - 2768

burden CNS leukemia, however recent reports indicate that these
toxicities are usually reversible with intensive supportive care
[99, 100].

Novel drugs that target cell survival mechanisms
One strategy is to target the leukemic cells that have already
entered the CNS by disrupting the molecular mechanisms that
support their survival in the CNS microenvironment. In the
leptomeninges the leukemic cells are in direct contact with
the CSF that has low oxygen and nutrient levels compared to the
blood [101]. Recent evidence supports that B-cell receptor
signaling through the Ras/Raf/MEK/extracellular signal-regulated
kinase (ERK) pathway promotes survival of leukemic cells in the
CNS [102-104]. In a phase Il study, theatment with the Raf
inhibitor sorafenib showed efficacy in patients with refractory CNS
leukemia [105]. Preclinical xenograft studies have demonstrated
inhibition of CNS leukemic load of the MEK inhibitor selumetinib
alone [106] or in combination with dexamethasone [107]. In the
SeluDex trial (NCT03705507), efficacy of selumetinib in combina-
tion with dexamethasone is being evaluated separately in the
bone marrow and CNS in pediatric and adult patients with
relapsed or refractory ALL, but no results have been reported yet.
In T-cell ALL, inhibition of lymphocyte specific cell-kinase (LCK)
(acting downstream of the T-cell receptor) by dasatinib has been
shown to reduce cell proliferation in vitro and reduce leukemic
load in the CNS [108]. Both Dasatinib and the Bcl-2 inhibitor
Venetoclax penetrates the blood-brain-barrier and could be useful
for CNS-involving T-cell ALL [109].

Two interesting therapeutic strategies that have not yet
progressed to clinical testing, include disruption of metabolic
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Tg: cover the surface of the brain and spinal cord and only invade the
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from the blood or bone marrow into the CNS occurs after initial
CNS seeding. The therapeutic benefit of targeting CNS invasion in
childhood ALL thus needs to be confirmed in clinical studies and
carefully designed xenograft studies where treatment is initiated
only after CNS involvement has been established.

Finally, one other barrier to effective new therapies is whether
the drug can enter the CSF compartment. Intrathecal delivery
circumvents the need to cross the blood brain/blood-CSF barrier,
but it is onerous for families and repeated general anesthesia in
children may provide an added neurocognitive burden [125]. Oral
small-molecule inhibitors vary in their ability to enter the CNS
compartment and drug-engineering may be needed to enhance
CSF-penetrance of promising compounds [126, 127]. Alternatively,
implanted intrathecal drug delivery devices may also be appro-
priate — especially in the CNS-relapse setting [128].

SUMMARY/CONCLUSIONS

Optimizing treatment of the CNS remains a challenge in childhood
ALL. Current approaches are intensive, non-discriminative, and
cause significant morbidity, whilst treatment options for patients
with relapsed/refractory CNS-ALL are limited. Solutions lie in new
drugs and better biomarkers. The lack of accurate biomarkers is
most critical. Without a means to measure treatment response the
testing of novel agents becomes difficult. Moreover, biomarkers
will help identify patients at low or high risk for CNS relapse. For
low-risk children who currently receive large amounts of CNS-
directed therapy, reducing this treatment burden would have
significant health and economic benefits. For high-risk children
novel approaches are needed, facilitated by new drugs. Fortu-
nately, research into CNS-ALL has increased over the last decade
and is starting to provide a better understanding of disease
biology as well as putative drug targets and biomarkers. Some
biomarkers, such as CSF-flow cytometry, are now being tested in
prospective trials. Novel drugs are also being tested in Phase /Il
trials, although wider access for iCNS relapse patients is needed.
The future is hopeful for improved management of the CNS over
the next decade.
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