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Abstract 

Objective: Globally, more than 200 million people live at risk of the neglected tropical disease schistosomiasis (or 

snail fever). Larval schistosomes require the presence of specific snail species that act as intermediate hosts, support-

ing their multiplication and transformation into forms that can infect humans. This project was designed to generate 

a transcriptome from the central nervous system (CNS) of Biomphalaria alexandrina, the major intermediate host for 

Schistosoma mansoni in Egypt.

Results: A transcriptome was generated from five pooled central nervous systems dissected from uninfected 

specimens of B. alexandrina. Raw Illumina RNA-seq data (~ 20.3 million paired end reads of 150 base pairs length 

each) generated a transcriptome consisting of 144,213 transcript elements with an N50 contig size of 716 base pairs. 

Orthologs of 15,246 transcripts and homologs for an additional 16,810 transcripts were identified in the UniProtKB/

Swiss-Prot database. The B. alexandrina CNS transcriptome provides a resource for future research exploring parasite-

host interactions in a simpler nervous system. Moreover, increased understanding of the neural signaling mechanisms 

involved in the response of B. alexandrina to infection by S. mansoni larvae could lead to novel and highly specific 

strategies for the control of snail populations.
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Introduction
Schistosomiasis remains one of the most prevalent 

neglected tropical diseases affecting human popula-

tions in many parts of Africa, Asia, and South America. 

�e World Health Organization (WHO) estimated that 

more than 218 million people in 78 countries required 

preventive chemotherapy in 2015 [1]. �e WHO has 

recommended a multifaceted strategic plan for control 

and prevention of schistosomiasis, including large-scale 

chemotherapy for high-risk populations, hygiene educa-

tion, access to safe drinking water, and snail control [2].

Fresh water pulmonate snails from the genus Biom-

phalaria act as the obligatory intermediate host for 

Schistosoma mansoni, the trematode species that causes 

intestinal schistosomiasis. A recent whole genome anal-

ysis for Biomphalaria glabrata, the major intermedi-

ate host in the Western Hemisphere, identified several 

potential targets for developing novel control measures 

[3]. In Egypt, where schistosomiasis dates to antiquity 

[4–6], Biomphalaria alexandrina is the predominant 

intermediate host for S. mansoni [7–9]. �e presence of 

B. alexandrina is a key factor that determines the preva-

lence of intestinal schistosomiasis in the country.

In 2016, the Ministry of Health and Population of Egypt 

(MoHP) and WHO conducted a mapping of S. mansoni 

infection in five Nile Delta governorates [10]. �e results 

of this project showed that prevalence rates ranged 

from 4.7% in Qalyubia Governorate to 17.6% in Sharqia 
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Governorate, with an average prevalence of 10.7% in the 

five governorates surveyed. �ese observations indicate 

that previous assessments may have underestimated the 

extent of infection.

Efforts to control snail populations, such as mollusci-

cides or introduction of predator species, have yielded 

only modest results. One potential target to be consid-

ered for snail control is its central nervous system (CNS), 

since it regulates vital functions including cardiac activ-

ity, feeding and reproductive behavior. In the present 

investigation, a neural transcriptome was generated with 

the ultimate goal of identifying signaling mechanisms 

involved in the response of B.  alexandrina to infection 

by S.  mansoni larvae. Such mechanisms may lead to 

novel and highly specific strategies for the control of snail 

populations.

Main text
Methods

Sample collection and preparation

Specimens of B. alexandrina (Fig. 1a) used in the present 

study were descendants from a field population that was 

collected from Giza Governorate in Egypt in 2012 and 

shipped to the Faculty of Medicine, Dalhousie University, 

Canada. �ey were maintained under a 14:10 light–dark 

cycle and fed romaine lettuce ad  libitum. �e central 

nervous systems (Fig.  1b) were dissected, immediately 

submerged in RNAlater (�ermo Fisher Scientific, USA), 

and stored at 4 °C for further analysis. Five pooled nerv-

ous systems were homogenized in lysis-binding solution 

provided in the RNAqueous-Micro Total RNA Isolation 

Kit (�ermo Fisher Scientific, USA). Total RNA was iso-

lated following the manufacturer’s instructions. �e RNA 

was quantified using a NanoDrop spectrophotometer 

and its quality was verified with an agarose gel. Samples 

were then sent to the Genomic Sequencing and Analysis 

Facility (GSAF) at the University of Texas at Austin for 

library preparation and Illumina sequencing. PolyA RNA 

selection was implemented using the Poly(A)Purist MAG 

Kit (Life Technologies). �e mRNA quality was assessed 

with an Agilent Bioanalyzer. A non-directional RNA-seq 

library (cDNA inserts of approximately 384 bp) was gen-

erated using NEBNext Module Components. Sequenc-

ing was performed on an Illumina HiSeq 4000 sequencer 

(Paired End 2 × 150 bp).

Transcriptome preprocessing, assembly and annotation

Quality based trimming was implemented  using Trim-

momatic v0.33 [11] followed by K-mer spectral analysis 

to remove low  abundance K-mers using the Khmer 2.0 

package [12]. FastQC v0.11.3 was used to check  data 

quality before and after trimming [13]. Filtration of input 

Fig. 1 Source of RNA used to generate transcriptome. a Biomphalaria alexandrina specimen. Calibration bar: 1 mm. b Dissected central nervous 

system. B g., buccal ganglion; C g., cerebral ganglion; V g., visceral ganglion. Calibration bar: 200 μm
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sequences produced ~ 14.4 million paired end (PE) reads 

and ~ 5.4 million single end (SE) reads. High-quality frag-

ments were pooled for de novo transcriptome assembly 

using Trinity v2.2.0 [14] producing 149,545 transcripts. 

Several filtration procedures were performed to clean up 

the assembly: SeqClean was used to trim poly-A tails and 

remove 38 low complexity sequences [15]. Custom scripts 

were used to remove 745 fragments smaller than 200 bp. 

Back-mapping of input sequencing reads to the assembly 

using Salmon software, allowed removal of 4526 uncov-

ered isoforms [16]. Finally, scanning the new assembly 

against the UniVec Database containing vector and artifi-

cial sequences eliminated 23 transcripts and trimmed an 

additional 98 transcripts [17]. In total, all filtration steps 

excluded 5332 transcripts. �e final assembly was com-

posed of 144,213 isoforms that belong to 128,739 genes. 

�e total assembly size was 82.7  Mb with N50 equal to 

716 base pairs. (Assembly statistics: Table  1). To evalu-

ate the quality of the final assembly, another round of 

back mapping of input sequencing reads to the assem-

bly was performed. PE and SE reads showed mapping 

rates of about 96 and 89% respectively. For benchmark-

ing, Universal Single-Copy Orthologs (BUSCO v.2) soft-

ware was used to assess annotation completeness against 

single-copy orthologs in Metazoa (978 orthologs) [18, 

19]. BUSCO analysis was able to identify 79.5, 19.5, 1.1% 

complete, fragmented, and missing gene models. To 

assess expression abundance of assembled transcripts, 

mapped sequence reads were normalized into transcript 

per million scale (TPM) and logarithmic transformation 

of the normalized expression was plotted as a histogram 

(Fig.  2). Most of the transcripts had expression abun-

dance levels around 1.5 TPM but only 848 transcripts 

had TPM values greater than 100 (Expression statistics: 

Table 2).

For annotation, TransDecoder v2.0.1 was used to 

predict open reading frames (ORFs) [20]. A recipro-

cal BLAST search was implemented between the final 

assembly and target databases using BLAST plus v2.2.30. 

Significant BLAST hits (E-values < 10e−5) were utilized 

by crb-BLAST software to identify orthologous tran-

scripts [21]. Transcripts with significant BLAST hits that 

failed to find a significant ortholog were annotated by the 

best BLAST hit as a candidate homolog.

Table 1 Transcriptome assembly statistics

Total trinity ‘genes’ 128739

Total trinity transcripts 144213

Maximum length 5634

Minimum length 201

Percent GC 36.75

Statistics based on ALL transcript contigs

 Contig N10 1986

 Contig N20 1459

 Contig N30 1128

 Contig N40 896

 Contig N50 716

 Median contig length 402

 Mean contig length 573

 Total assembled bases 82,672,833

Statistics based on LONGEST ISOFORM per “GENE”

 Contig N10 1797

 Contig N20 1298

 Contig N30 1001

 Contig N40 796

 Contig N50 636

 Median contig length 382

  Mean contig length 533

 Total assembled bases 68,601,167

Fig. 2 Histogram of log TPM expression

Table 2 Expression abundance statistics

Mean expression 6.93

Median expression 1.47

Maximum expression 27609

Isoforms with exp > 10 TPM 11187

Isoforms with exp > 100 TPM 848

Isoforms with exp > 1000 TPM 85

Isoforms with exp > 10000 TPM 3
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Results

Annotation of all transcripts in the final assembly pre-

dicted 40,408 transcripts with long open reading frames 

(≥100 amino acids) (Additional file  1). Orthologs of 

15,246 transcripts were identified by conditional BLAST 

search against the UniProtKB/Swiss-Prot database 

(Additional file  2). Homologs for an additional 16,810 

transcripts were identified by the best BLAST hit against 

the same database (Additional file 3).

Each transcript in the FASTA file of the transcriptome 

was annotated with its transcript length and expression 

level in TPM values. Also, if identified, transcripts were 

annotated by their orthologs. Otherwise, annotation 

was implemented using homologs or with possible ORFs 

(Additional file 4).

Of the 848 highly expressed transcripts, approximately 

49% corresponded to orthologs in the Swiss-Prot data-

base. An additional 11% had homologs from a BLAST 

search against the same database. Another 17% had long 

ORFs, > 60% of which were complete, but failed to attain 

significant BLAST hit against the Swiss-Prot database. 

(Annotation Statistics: Table 3).

�e 848 highly expressed transcripts were selected for 

a second reciprocal BLAST search against the compre-

hensive NCBI Non-Redundant (NR) BLAST database. 

About 55% of transcripts were assigned an ortholog and 

9% were annotated with a best homolog. Only 7% of the 

highly expressed transcripts had long ORF but failed 

to achieve a significant hit against the NR database. A 

new FASTA file for the highly expressed transcripts was 

annotated by the BLAST results against the NR database 

(Additional file  5).  A reciprocal BLAST search against 

the recently published transcriptome of twelve pooled B. 

glabrata tissues [3] showed 22,613 orthologs with aver-

age identity 99.1% (Additional file 6).

Discussion

�e relatively simple nervous systems of gastropod mol-

lusks contain large identified neurons that allow detailed 

electrophysiological, biochemical, and molecular analyses 

at the cellular level [22–24]. Gastropods therefore serve 

as promising models for neurobiological studies explor-

ing the cellular basis of behavior, including sensorimotor 

integration [25, 26], central pattern generator (CPG) net-

works [27, 28], neuroendocrine regulation of reproduc-

tion [29, 30], and responses to parasitism [31, 32]. �e 

transcriptome of the B. alexandrina CNS complements 

the whole genome characterization of B. glabrata [3], and 

provides a resource for future investigation of parasite-

host interactions with biomedical implications in a highly 

tractable nervous system. �is transcriptome should also 

lead to novel strategies directed toward snail control.

Limitations
Potential limitations may include:

1. Short read sequencing can produce an incomplete 

gene model leading to inaccurate identification of 

multiple isoforms for the same gene.

2. RNA preparation with Poly(A) selection allows us 

to enrich for non-ribosomal transcripts but also will 

result in loss of non-polyadenylated transcripts.

3. Lack of biological and technical replicates.

Additional files

Additional file 1. Coding Transcripts: Transcripts with long open reading 

frames (≥100 amino acids).    

Additional file 2. Orthologous Transcripts: Transcripts with significant 

mutual BLAST hits against the UniProtKB/Swiss-Prot database.

Additional file 3. Homologous Transcripts: Transcripts with significant 

one-way BLAST hits against the UniProtKB/Swiss-Prot database.

Additional file 4. Final assembly: Transcripts annotated with transcript 

length and expression level in TPM values. Also, if identified, transcripts 

were annotated by their orthologs. Otherwise, annotation was imple-

mented using homologs or with possible open reading frames.

Additional file 5. Hi-Express transcripts: Highly expressed transcripts 

annotated by the BLAST results against the comprehensive NCBI Non-

Redundant (NR) database.

Additional file 6. BLAST against B. glabrata: A reciprocal BLAST search 

against the recently published transcriptome of twelve pooled Biompha-

laria glabrata tissues [3].

Table 3 Annotation statistics

Total transcrip-
tome (144,213 
transcripts)

Highly 
expressed (848 
transcripts)

Count Percent Count Percent

Transcripts with long ORF 40408 28.02 336 39.62

Transcripts with complete long 
ORF

8678 6.02 258 30.42

Against Swiss-Prot database

 Significant BLAST match 32056 22.23 428 50.47

 Transcripts with orthologs 15246 10.57 336 39.62

 Transcripts with homologs 16810 11.66 92 10.85

 Transcripts with ORF but no 
BLAST hit

15161 10.51 145 17.10

Against (nr) BLAST database

 Significant BLAST match – – 542 63.92

 Transcripts with orthologs – – 469 55.31

 Transcripts with homologs – – 73 8.61

 Transcripts with ORF but no 
BLAST hit

– – 61 7.19

https://doi.org/10.1186/s13104-017-3018-6
https://doi.org/10.1186/s13104-017-3018-6
https://doi.org/10.1186/s13104-017-3018-6
https://doi.org/10.1186/s13104-017-3018-6
https://doi.org/10.1186/s13104-017-3018-6
https://doi.org/10.1186/s13104-017-3018-6
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