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ABSTRACT

Purpose: This is a comprehensive review of the
current literature on central neuropathic pain
mechanisms that is secondary to spinal cord
injury. It reviews recent and seminal findings
on the pathophysiology, diagnosis, and treat-
ment and compares treatment options and
recommendations.
Recent Findings: Neuropathic pain (NP) is a
common complication of spinal cord injury
(SCI). Chronicity of NP is attributed to increased

abundance of inflammatory mediators and ion
channel dysfunction leading to afferent nerve
sensitization; nerve damage and nerve–glia
cross talk have also been implicated. Conven-
tional treatment is medical and has had limited
success. Recent studies have made headway in
identifying novel biomarkers, including micro-
RNA and psychosocial attributes that can pre-
dict progress from SCI to chronic NP (CNP).
Recent advances have provided evidence of
efficacy for two promising drugs. Baclofen was
able to provide good, long-lasting pain relief.
Ziconotide, a voltage-gated calcium channel
blocker, was studied in a small trial and was able
to provide good analgesia in most participants.
However, several participants had to be
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withdrawn because of worrisome creatine
phosphokinase (CPK) elevations, and further
studies are required to define its safety profile.
Non-medical interventions include brain sensi-
tization and biofeedback techniques. These
methods have recently had encouraging results,
albeit preliminary. Case reports of non-con-
ventional techniques, such as hypnosis, were
also reported.
Summary: CNP is a common complication of
SCI and is a prevalent disorder with significant
morbidity and disability. Conventional medical
treatment is limited in efficacy. Recent studies
identified baclofen and ziconotide as possible
new therapies, alongside non-medical inter-
ventions. Further research into the pathophys-
iology is required to identify further therapy
candidates. A multidisciplinary approach,
including psychosocial support, medical and
non-medical interventions, is likely needed to
achieve therapeutic effects in this difficult to
treat syndrome.

Keywords: Allodynia; Baclofen; Central
neuropathic pain; Chronic pain; Spinal cord
injury; Ziconotide

Key Summary Points

Central neuropathic pain (CNP) is a
common complication of spinal cord
injury (SCI) and is a prevalent disorder
with significant morbidity and disability.

Conventional medical treatment is limited
in efficacy but recent studies identified
baclofen and ziconotide as possible new
therapies, alongside non-medical
interventions.

Further research into the pathophysiology
is required to identify further therapy
candidates.

A multidisciplinary approach, including
psychosocial support, medical and non-
medical interventions, is likely needed to
achieve therapeutic effects in this difficult
to treat syndrome.

INTRODUCTION

Neuropathic pain is a common complication of
spinal cord injury (SCI). It is defined as ‘‘pain
caused by a lesion or disease of the somatosen-
sory system’’ [1]. Symptoms include allodynia
(pain due to an innocuous stimulus) and spon-
taneous shooting or burning pain associated
with neuronal dysfunction [2]. The most com-
mon causes of SCI include motor vehicle acci-
dents, falls, and acts of violence.

The etiology of chronic neuropathic pain
(CNP) is complex and multidimensional. Neu-
roimmune interactions throughout the nervous
system result in abnormal sensory signaling in
the periphery, spinal cord (dorsal horn), and
brain (thalamus and cortex) leading to the
observed painful symptoms [3]. Increases in
inflammatory mediators cause afferent nerve
sensitization through altered expression of
voltage-gated sodium, calcium, and potassium
channels resulting in spontaneous pain without
painful stimulation [3–5].

Macrophages, T lymphocytes, cytokines, and
chemokines mediate the inflammatory respon-
ses that cause maladaptive nociceptor over-
stimulation [6]. Patients with CNP have up to
three times higher levels of pro-inflammatory
interleukin (IL)-2 and tumor necrosis factor-al-
pha (TNFa) than those without pain [7].
MicroRNAs (miRNA) also influence CNP mani-
festations by regulating pain recognition pro-
teins, promoting neurodegenerating
inflammation, and stimulating Toll-like recep-
tors in dorsal root ganglion sensory neurons
(DRG) [6, 8–10].

Neuron–glial cell interactions are implicated
in the pathogenesis of neuropathic pain. The
activation of microglia and astrocytes in the
spinal cord cause chemokine upregulation and
increased signaling between neurons and glia
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[11]. Chemokines sensitize peripheral and cen-
tral nerves following the nerve and tissue dam-
age seen in SCI [12].

Current treatments for neuropathic pain
show limited efficacy. The Special Interest
Group on Neuropathic Pain suggest gabapenti-
noids, tricyclic antidepressants (TCAs), and
selective serotonin–norepinephrine reuptake
inhibitors (SNRI) as first-line treatments [13].
Lidocaine, caspaicin, tramadol, and opioids are
second- and third-line treatments [13]. Limited
symptom control suggests the need for novel
therapeutic approaches.

Recent studies have investigated Botulinum
toxin A (BTX), an inhibitory neurotoxin, as a
potential future treatment for CNP. Preliminary
studies, however, yield mixed results, which
suggests further research is necessary. The
objective of this manuscript is to review recent
advances in the understanding of SCI and CNP.

This article is based on previously conducted
studies and does not contain any studies with
human participants or animals performed by
any of the authors.

EPIDEMIOLOGY

An estimate upwards of 80% of patients fol-
lowing SCI may develop CNP, and the symptom
progression of CNP secondary to SCI has been
studied in depth. A meta-analysis of the symp-
tom transition period (1–6 months and 1–-
12 months post-injury) showed that in patients
with initial pain 1 month after injury, 72% had
persistent symptoms at 6 months post-injury
and 69% had persistent pain at 12 months post-
injury [14]. Regression analysis showed that
older age increased the likelihood of developing
neuropathic pain [14]. A recent prospective
study assessing predictors of pain following SCI
showed that neuropathic pain increased with
time while musculoskeletal pain decreased [15].
This study further suggested that early-onset
sensory hypersensitivity, or allodynia, may
predict later development of neuropathic pain
[15].

Studies of long-term outcomes in the man-
agement of CNP show that patients with CNP
are less likely to achieve clinically

notable improvements in pain relief and func-
tion than those with peripheral neuropathic
pain [16].

SCI-related neuropathic pain is associated
with a lower response to placebo compared to
other neuropathic pain conditions (e.g., HIV
neuropathy) [17]. Direct damage to the spinal
cord disrupts the physiologic mechanisms
required to achieve normal placebo analgesic
response [18].

Risk of developing CNP in SCI can be pre-
dicted with almost 90% accuracy on the basis of
characteristic electroencephalography (EEG)
markers of pain which appear prior to onset of
physical pain [19]. Characteristic EEG findings
in patients with current CNP or those who later
develop CNP in SCI include reduced alpha band
and absent theta and beta band in reaction to
eye opening [20].

Several biomarkers have been used to iden-
tify neuropathic pain in patients with SCI.
Specific genes known as differentially expressed
genes, and miRNAs, such as mir-204-5p, mir-
519-3p, mir-20b-5p, and mir-6838-5p, have
been identified and may serve as predictors of
neuropathic pain [21]. These biomarkers may be
potential therapeutic targets for prevention and
treatment of neuropathic pain in the future
[21].

Psychological stressors have been linked to
neuropathic pain development in SCI. A 2018
cross-sectional study demonstrated that indi-
viduals who sustain SCI with increased psy-
chological distress have increased propensity to
develop CNP compared to SCI controls [22].
These psychological distresses include post-
traumatic stress disorder (PTSD), anxiety, stress,
depression, and pain catastrophizing [22].

CLINICAL PRESENTATION
AND DIAGNOSIS

Patients with neuropathic pain present clini-
cally with variable symptoms often including
burning, tingling, and allodynia [2]. Several
molecular mechanisms of nerve injury have
been proposed to explain these symptoms.
Alterations in long non-coding RNAs (lncRNAs)
expression following SCI and peripheral nerve
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injury contribute to the pathophysiology of
CNP [23]. Differentially expressed lncRNAs alter
Toll-like receptors, calcium signaling, and per-
oxisome proliferator-activated receptor signal-
ing causing CNP symptoms [24]. Spinal cord
sensitization is due to reduced expression of
Kcna2 antisense RNA, resulting in net decreased
inhibitory signaling [25]. Differentially expres-
sed lncRNAs disrupt normal ion channel sig-
naling, signal transduction pathways, and
inflammatory-mediated signaling in nocicep-
tive neurons [25–27].

MicroRNA (miRNAs) dysregulation is com-
monly seen in SCI and might be a potential
treatment target [28]. Increased inflammation,
oxidative stress, and apoptosis associated with
SCI are linked to changes in miRNA expression
following injury [29]. MiRNAs are a promising
target for future treatments which may aim to
prevent aberrant miRNA expression or prevent
downstream effects of deleterious miRNA path-
ways involved in neuropathic pain [30]. Current
use of miRNA-targeted therapy is limited and
warrants further research as a possible effective
treatment.

Diagnosis of neuropathic pain is complex
and rarely definitive. It is diagnosed using cri-
teria established by Analgesic, Anesthetic, and
Addiction Clinical Trial Translations, Innova-
tions, Opportunities, and Networks public–pri-
vate partnership and the American Pain Society,
the Analgesic, Anesthetic, and Addiction Clini-
cal Trial Translations, Innovations, Opportuni-
ties, and Networks-American Pain Society Pain
Taxonomy (AAPT). Major diagnostic conditions
include central pain associated with SCI, mul-
tiple sclerosis (MS), and central post-stroke pain
(CPSP) [31]. AAPT diagnostic criteria consider
common features, common comorbidities, pain
consequences, risk factors, and neurobiologic
and psychosocial mechanisms of patients
affected with central pain [31]. The Interna-
tional Association for the Study of Pain criteria
require history of nervous system lesion with a
distribution of pain and sensory changes that
are neuroanatomically plausible given the
location of the lesion [31]. Confirmatory imag-
ing (e.g., computed tomography, magnetic res-
onance imaging), neurophysiological, or
biological tests should be used to confirm any

history of SCI, stroke, MS, or other CNS lesions
[31]. Despite fulfilling these criteria, the pro-
posed diagnostic tools cannot provide an abso-
lute diagnosis of neuropathic pain with
certainty, and the possibility of other condi-
tions should not be ruled out. Many patients
with neuropathic pain symptoms also have one
or more chronic overlapping pain conditions,
further complicating definitive diagnosis
[31, 32].

PATHOPHYSIOLOGY
AND PROPOSED MECHANISMS

Changes in Neuronal Cells Following SCI

Following ischemic injury to the spinal cord
dorsal horn, microglia cells are overstimulated
[33, 34]. Microglia cells in turn hyperproduce
pro-inflammatory markers such as brain-derived
neurotrophic factor (BDNF), chemokines, and
cytokines, causing increased numbers of
microglia cells, and excess neuronal excitability.
A test group of rats underwent induced hind
limb ischemia from O-ring use for 3 h. Fourteen
days following reperfusion, the rats were
examined and found to have increased micro-
glia, higher levels of BDNF which potentiates
excitability between neurons and C-fibers, and a
high presence of colony-stimulating factor
(CSF1R) [33, 35]. CSF1R is a signaling factor in
the proliferation of microglia cells and is typi-
cally highest in the postnatal period and lowest
in the adult brain when microglial proliferation
is rare. These microglia cells express P2X4

receptors, which adenosine triphosphate binds
to after being released from damaged neurons,
and promotes Ca2? influx, causing increased
tactile allodynia [36]. Tang et al. examined
microglia proliferation in the setting of CSFR1
inhibitor PLX5622 and found it to be sup-
pressed, confirming that the increase in CSFR1
increases microglia proliferation. Du et al.
found that neural stem cell transplantation into
damaged spinal cord dampens the P2X4 activ-
ity, and in turn decreases pain reaction in the
test group. These studies conclude that ischemic
damage reactivates the CSFR1 signaling path-
way, causing microglia accumulation, and P2X4
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receptors are upregulated increasing Ca2? influx
into these microglia. These events lead to
heightened production of inflammatory mark-
ers and BDNF, resulting in post-ischemic pain,
evidenced by the change in behavior of the
mice such as chewing their paws [33, 36].

A second study examined neuropathic pain
in the setting of sciatic nerve ligation. Lee et al.
examined the activity of macrophages follow-
ing ischemic damage of the peripheral nerve,
and found an increase in number and macro-
phage colony-stimulating factor (M-CSF) [37].
These macrophages were found to have
enhanced release of inflammatory cytokines,
and VEGF, causing a breakdown in the blood–-
brain barrier. They identified that though
damage occurred in a peripheral nerve, the
M-CSF stimulated CSFR1 in the central nervous
system, causing the same changes in microglia
cells discussed in the first study. Lee et al. sim-
ilarly identified that PLX5622 decreased CSFR1
and microglia proliferation, but also decreased
M-CSF and macrophage proliferation, and
overall decreased neuropathic pain enhance-
ment in both the central and peripheral ner-
vous systems [37].

Chhaya et al. explored the effect of exercise
on macrophage and microglia proliferation
following damage to C5 spinal cord. They found
that mice in the non-exercise group had
increased microglia cell proliferation (10.7%
increase, p = 0.01) present within the dorsal
horn when compared with mice in the exercise
group (6.78%, p[0.05). They also found that
macrophages present in the dorsal root ganglia
of the non-exercise group versus the exercise
group were not significantly different from one
another. This study suggests some potential
benefit of exercise in decreasing microglial cell-
driven neuropathic pain [34].

Various Mechanisms of Pain Response Due
to Changes in Neuronal Cells Following
SCI

GABAergic (GABA) neurotransmitters are the
leading players in many neuropathic pain
pathways. In the uninjured spinal cord, GABAA

and glycine function on dorsal horn neurons to

cause an inhibitory effect preventing their fir-
ing. A main subunit that is involved in this
pathway is the alpha-2-delta-1 (a2d-1) subunit of
voltage-gated calcium channels [38]. This
functions in neuron excitation fast pathways for
neurotransmitter release, and is dampened by
GABA. Kusuyama et al. found that a2d-1 is
increased in the dorsal horn of the spinal cord
following SCI in rats 7–21 days following injury.
They also identified that these rats had a
decreased threshold for pain withdrawal com-
pared to control. Subsequently, following
administration of pregabalin, only tactile allo-
dynia was decreased, though overall expression
of a2d-1 was decreased (p\ 0.05), suggesting
that treatment of SCI with GABAergic agents
will decrease overall neuropathic pain response
[38].

Another important aspect of neuron
excitability is the potassium chloride cotrans-
porter (KCC2). The KCC2 cotransporter stan-
dardly causes an efflux of chloride ions and an
influx of potassium ions in dorsal horn neurons,
keeping ion concentrations appropriate for
depolarization upon excitatory stimulation.
When GABAA and glycine are released, they
cause the KCC2 transporter to allow an influx of
chloride ions into the neuron, causing hyper-
polarization, and preventing the neuron from
firing [39]. When SCI occurs, KCC2 is down-
regulated, causing GABAA and glycine to be
ineffective and resulting in a loss of inhibition
of the dorsal horn neurons, leading to spasticity
and pain. A study was conducted on 32 rats
with spinal cord hemisection. The rats were
assessed for allodynia to mechanical and ther-
mal stimuli, and found to have a decreased
threshold for withdraw (P\ 0.001) bilaterally
[39]. At day 21 postoperatively, the rats were
deemed stable to undergo pharmacologic
treatment with (4-bromo-3,6-dimethoxybenzo-
cyclobuten-1-yl)methylamine hydrobromide,
TCB-2. TCB-2 causes a release of 5-HT2A. This
study established that this pathway causes a
G-protein-coupled increase in protein kinase C,
which causes an upregulation of KCC2 in the
dorsal horn in SCI. Immunostaining for KCC2
before and after treatment with TCB-2 showed a
50% increase in KCC2 in the neuronal mem-
brane (P\0.0001) ipsilateral to the
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hemisection [39]. Post treatment with TCB-2
also found decreased allodynia to mechanical
and thermal stimuli, further confirming its
effectiveness in increasing KCC2 function and
decreasing pain due to SCI.

A second study suggests a possible treatment
to potentiate the benefits of TCB-2. This study
targets miRNA miR-15a/16, which are overex-
pressed in SCI, causing a downregulation of
G-protein-coupled receptor kinase 2 (GRK2).
When GRK2 is decreased, allodynia is increased
through the pathway discussed above, so
research into preventing overexpression of miR-
15a/16 can also improve SCI neuropathic pain
[40]. Conversely, Yang et al. found that miR-128
was downregulated in microglia following SCI,
and causing increased amounts of inflammatory
subunits. This occurred by BDNF activating the
p53 MAPK pathway, leading to a decrease in
inhibition of inflammatory cytokines such as
IL-6, IL-1B, and TNFa, all of which are vital in
causing neuropathic pain, suggesting it would
be beneficial to explore this mechanism as a
route to treating pain following SCI [41].

Miranpuri et al. explored the actual activity
of these inflammatory markers, and found that
the MAPK pathway activates matrix metallo-
proteinase 2 and 9, which cleave the inflam-
matory markers into their active forms, further
potentiating neuropathic pain as a result [42].
Gui et al. utilized this information and studied
bexarotent in the setting of SCI. They found
that treatment with this drug inhibited the
MAPK pathway, decreased microglia prolifera-
tion, and in turn decreased the activity of
inflammatory markers (p\0.001) compared
with control [43]. Castany et al. treated mice
28 days post SCI with MR-309, which is a r1R
antagonist. This also inhibits MAPK and resul-
ted in a decrease in inflammatory markers and
mechanical and thermal allodynia in the
injured mice (p = 0.022), showing another use-
ful treatment of SCI neuropathic pain [44].
Interestingly, Sanna et al. explored the effects of
lavender essential oils in neuropathic pain
control. They studied mice with SCI and found
that 100 mg/kg of essential oils hyperphospho-
rylated the MAPK pathway, preventing overac-
tivation of the inflammatory pathway, and
effectively decreased allodynia [45].

Liu et al. explored anadditional inflammatory
pathway in mice with SCI. They found an
increase in CXCL12/CXCR4 in dorsal horn neu-
rons. They then injected healthy mice intrathe-
cally with these peptides and found that it
resulted in hyperalgesia. Finally, they utilized
neutralizing antibodies to CXCL12/CXCR4 in
the mice with SCI and found an attenuation of
the neuropathic pain. They suggest that this
pathway contributes to overactivation of micro-
glia, but it is still not exactly clear what the
mechanism leading to hyperalgesia is [46].
Interestingly, a similar experiment found that
CXCL9 andCXCL11 are also increased following
SCI, but they do not cause hyperalgesia when
injected intrathecally, suggesting that though
they are upregulated they are not involved in the
post-injury neuropathic pain response [47].

An important comment on the current lack
of neuropathic pain management is highlighted
by the frequent use of morphine. Only one in
three patients with central neuropathic pain
experience up to a 50% decrease in pain with
the current regimens. Neurons in the dorsal
root ganglia, microglia, and astrocytes express
Toll-like receptor 4 (TLR4), which is known to
be an important factor in increasing neuro-
pathic pain [48]. Ellis et al. found that while
opioids moderate pain through the typical mu
receptor pathways, they can enhance neuro-
pathic pain by stimulating TLR4 receptors for
up to 4 weeks after use [48]. Additional to this
potential increase in pain reactions, there is of
course the side effect profile of opioids that
must not be overlooked when assessing the
need for new treatment of neuropathic pain
following SCI [49].

CLINICAL EVIDENCE

There are multiple hypotheses for the etiology
of neuropathic pain originating in different
parts of the central and peripheral nervous
systems.

Development

A European meta-analysis looked at the devel-
opment of neuropathic pain in the setting of a
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recent SCI [50]. Over 1000 individuals were
screened with a European Multi-Center Study
about Spinal Cord Injury (EMSCI) pain ques-
tionnaire 1 month after injury and had their
pain status assessed at 6 months and 12 months
[50]. Risk factors for developing neuropathic
pain at any time point following SCI were
advanced age and motor and sensory preserva-
tion following less severe injury [50]. At the
initial visit 27% of patients had neuropathic
pain; 23% of patients who initially screened
negative developed pain at either the 6- or
12-month follow-up [50]. Interestingly, 30% of
patients that initially presented with pain saw
resolution over the course of the 12-month
period [50]. Thus, approximately 35% of ini-
tially screened patients with SCI had neuro-
pathic pain at the 12-month checkpoint [50].
While the pathophysiology of delayed devel-
opment of neuropathic pain is not well under-
stood, it is likely that the delay reflects time
required for neuroma development [50]. This
study demonstrated the importance of long-
term follow-up both in patients presenting with
and those presenting without symptoms
immediately after SCI [50].

Recent studies have shed light on neurolog-
ical deficit associated with SCI results not only
from direct tissue damage but also from the
inflammatory response that develops in the
weeks following injury [51]. The alpha 7 nico-
tinic acetylcholine receptor (a7-nAChR) plays a
central role in downregulating inflammatory
responses [51]. The a7-nAChR is encoded by the
CHRNA7 gene, which in some individuals is
fused with a partial duplication of gene FAM7A
to create CHRFAM7A [51]. Individuals with the
del2bp gene variant polymorphism of
CHRFAM7A encode a protein called dupDa7,
which suppresses a7-nAChR function and
induces a pro-inflammatory phenotype [51].
When a7-nAChR is suppressed, levels of pro-
inflammatory cytokines such as TNFa are
thought to increase [51]. Huang and colleagues
analyzed how the presence of CHRFAM7A con-
tributes to outcomes after SCI [51]. When levels
of noradrenergic metabolites and circulating
cytokines were measured in patients with SCI
and compared to controls, TNFa levels were
found to be three times higher in patients with

the del2bp gene variant compared to no dele-
tion genotypes 3 weeks after injury [51]. Nora-
drenergic metabolite levels were unchanged
immediately after injury but significantly
decreased in carriers of the deletion 3 weeks
following injury compared to non-carriers [51].
Interestingly, numeric pain scores in patients
with the deletion were significantly higher
compared to those without the gene variant
[51].

In continuing the molecular approach to the
post-SCI inflammatory response, gap junction
(GJ) channels, specifically connexin43 (Cx43),
have been implicated in the development of
neuropathic pain [52]. Cx43 is the most abun-
dant connexin in mammals and is most com-
monly expressed in astrocytic glial cells of the
central nervous system [52]. While neuropathic
pain treatments have traditionally focused on
neurons, new disease models suggesting that
Cx43 expression increases after SCI are now
shifting the focus to glial cells [52]. It is thought
that following nerve injury, upregulation of GJs
and Cx43 causes sensitization of glial cells to
pain media such as ATP and other inflammatory
cytokines, resulting in increased synaptic pain
signaling [52]. Of note, the functionality of
connexins also includes extracellular exchange
via unpaired hemichannels [53]. These specific
hemichannels have been targeted by short
peptides called peptidomimetics that act on
components of the connexin pathways and
ultimately prevent hemichannel opening. In rat
models, these peptidomimetics have proven
successful in reducing neuroinflammation after
SCI [53]. With increased specificity, hemichan-
nels can be targeted without inhibition of GJs
using peptidomimetics, directed antibodies, or
non-peptide analogues of connexin mimetic
peptides. Further investigation is required to
better understand the mechanism by which
Cx43 and its hemichannel are involved in the
pathogenesis of neuropathic pain to pave the
way for future therapeutic strategies [52].

Sensitization

A Danish research group explored the modula-
tory response of the body to neuropathic pain
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and the process of sensitization in the presence
of SCI [54]. They compared patients with acute,
subacute, and chronic SCI to healthy controls to
determine whether or not sensitization above
the lesion was comparable between the groups
[54]. They also assessed whether or not use of
analgesics results in a central sensitization effect
[54]. While unmedicated, patients in the SCI
group had reduced pressure and pain detection
thresholds as measured through pressure
algometry and repetitive pin prick compared to
the control group [54]. This observation sup-
ports the phenomenon of central sensitization,
which involves neurologic structures such as
the anterior cingulate cortex (ACC), hip-
pocampus, and amygdala but is generally
poorly understood [55]. However, individual
patients in the SCI group did not demonstrate
an increase in pain and pressure sensitization
compared to their own baselines [54]. The
overall group also did not appear sensitized to
pain or pressure when patients were sorted by
their medication histories into low (non-opi-
oid), moderate (non-opioid, weak opioid), and
heavy (strong opioid) medicated subgroups
[54].

Treatment

Various medications have been assessed for
their potential to reduce the intensity of neu-
ropathic pain of various etiologies. First-line
pharmacologic interventions for treatment of
neuropathic main include gabapentinoids,
TCAs, selective serotonin reuptake inhibitors
(SSRIs), and SNRIs [56]. Unfortunately, contro-
versy exists regarding the efficacy of even these
first-line agents. Studies have suggested that
there may be lack of evidence regarding suc-
cessful treatment with amitriptyline, but this
conclusion must be balanced against the many
patients who have achieved pain relief with this
drug [57]. In a case report of a patient with
central neuropathic pain secondary to a diffuse
glioma and refractory to these medications, the
patient subsequently achieved adequate pain
control on gabapentin, methadone, and high-
dose oxycodone [56]. While many patients rely
on opioids for pain control, the known risks

associated with this class of drugs begs for fur-
ther research into safer treatment options for
neuropathic pain.

Another case report describes a 58-year-old
patient who suffered a traumatic SCI in Spain;
his injury also proved refractory to the afore-
mentioned first-line agents [58]. He tried
experimental treatments such as celiac plexus
stimulation and neuromodulation to no avail
[58]. Moderate results were achieved using
hypnosis from a qualified psychiatrist with
overall pain levels decreasing from a numeric
rating scale (NRS) 7 to an NRS 5 [58]. While this
case report illustrates the success of hypnotic
intervention in a single patient, it exemplifies
the lengths to which individuals will go for
even marginal results.

In patients with neuropathic pain secondary
to traumatic injury causing central cord syn-
drome refractory to conventional analgesics, a
group of orthopedists in China examined the
effect of treatment with methylprednisolone on
acute neuropathic pain [59]. In a small sample
of 34 patients that was not placebo controlled,
patients received seven methylprednisolone
infusions daily for 1 week [59]. Allodynia relief
exceeding 50% was seen in 91% of patients
during the 3-month follow-up period [59]. A
separate hypothesis included a small, 13-sub-
ject, placebo-controlled study that used
intrathecal baclofen as an intervention to
improve neuropathic pain. Baclofen, a GABA
analogue, has been previously shown to exert
antinociceptive effects [60]. A single bolus of
baclofen was administered after treatment ran-
domization and was observed to result in a sig-
nificant decrease in neuropathic pain at the 4-
and 8-h marks, but not the 24-h mark [61]. The
baclofen bolus was also associated with a sig-
nificant decrease in spasticity at the 4-h mark,
suggesting that it could be used as an acute
intervention [61]. Further, it improved quality
of life by decreasing the interference of chronic
pain in the daily lives of affected patients [61].
In a French study, the use of ziconotide, an
omega-conotoxin analogue that blocks neu-
ronal N-type voltage-sensitive calcium chan-
nels, was examined in 20 patients [62]. After an
intrathecal injection of ziconotide, 14 of 20
patients had decreases in pain scores greater
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than 40% [62]. Three of the 14 patients experi-
enced side effects [62]. Two of the patients had
serum creatine phosphokinase (CPK) elevations
to greater than 3000 lg/L and were immediately
withdrawn from treatment; the other patient
experienced acute urinary retention and vol-
untarily withdrew from the study [62]. The
remaining 11 of 14 responders opted to have
permanent ziconotide pumps implanted [62].
In eight of these 11 patients, the analgesic effect
persisted for an average follow-up of over 3
years [62]. The promising effects of methyl-
prednisolone, baclofen, and ziconotide on
neuropathic pain should be subject to further
exploration.

A Brazilian research group examined two
separate areas of the brain as potential targets
for central stimulatory therapy [63]. Ninety-
eight patients of various ages with clinically
diagnosed central neuropathic pain were cho-
sen as subjects for transcranial magnetic stim-
ulation (TMS) of either the ACC or the posterior
superior insula (PSI) [63]. These patients
underwent repetitive TMS over the course of 16
sessions over 12 weeks [63]. TMS has demon-
strated promise in the treatment of fibromyal-
gia, complex regional pain syndrome, and
peripheral neuropathic pain and is believed to
act by influencing blood flow and neurotrans-
mitter release [63]. This double-blind study
featured a control group receiving placebo
stimulation [63]. While pain scores were not
significantly different between the two groups,
activation of the PSI induced analgesia while
activation of the ACC had anxiolytic effects
[63]. This observation suggests a proof of con-
cept of a biological response to TMS; the
observed significant differences suggest that the
framework used in this study provides a method
for future research [63].

Transcranial direct current stimulation
(tDCS) is an alternative to TMS whose applica-
tion has also been tested for the reduction of
neuropathic pain in patients post-SCI. Thibaut
and colleagues assessed the initial and long-
term effects of tDCS directed at the primary
motor cortex (M1) on pain (visual analogue
scale, VAS), quality of life (Patient Health
Questionnaire, PHQ-9), and life satisfaction
(Satisfaction with Life Scale, SWLS) [55]. M1 was

the chosen target given its role in central pain
modulation and evidence that M1 stimulation
leads to local and distant pain reduction [55].
Patients had the option of enrolling in one or
two phases of the randomized controlled study
[55]. In the first phase, patients underwent 5
days of tDCS with 3 months of follow-up while
in the second phase tDCS was performed for 10
days with 8 weeks of follow-up [55]. Signifi-
cantly reduced pain was observed at 1 week of
follow-up in phase 1 and at 4 weeks in phase 2
[55]. This delay in tDCS effects indicates that
the resultant reduction in pain is caused by
changes in cortical plasticity rather than
immediate changes in excitability [55]. These
finding indicate that tDCS, while a promising
tool for managing pain in patients with SCI,
requires an optimized treatment protocol with
repeated stimulation sessions to achieve long-
lasting reduction in pain [55].

Another potential novel treatment for neu-
ropathic pain utilizes breathing-controlled
electrical stimulation (BreEStim) to attempt to
dampen autonomic changes that are thought to
be associated with neuropathic pain. In short,
BreEStim modulates the autonomic system,
which is associated with the pain neuroma-
trix–central autonomic network, an area that
has been shown to be partially responsible for
mediating pain [64–66]. The successful activa-
tion of the pain neuromatrix–central auto-
nomic network can be quantified by looking at
combined effects on autonomics as measured
by heart rate variability [67]. A small sample of
patients post SCI completed a controlled trial in
which the treatment group received 120 BreES-
tim impulses [67]. The treatment group experi-
enced a decrease in heart rate variability,
indicating that BreEStim may provide for a
viable treatment strategy for decreasing post-
SCI pain [67].

Individuals with CNP experience major
decreases in quality of life secondary to not only
pain but also a general decrease in motor and
sensory function. Given the well-known
importance of physical activity, a Japanese
study group looked at a placebo-controlled
study of the effect of exercise on neuropathic
pain [68, 69]. Exercise consisted of vigorous
wheelchair propulsion while the patient was
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assessed by EEG [68, 69]. The subject completed
a subjective NRS for neuropathic pain and a
profile of mood states [68, 69]. Objectively, peak
alpha frequencies were measured in four areas
of the brain: frontal, central, parietal, and
occipital [68, 69]. In comparison to the control
group, the SCI group showed significantly lower
pre-wheelchair parietal and occipital peak alpha
frequencies that have previously been shown to
signify increased neuropathic pain [68, 69].
Post-exercise central peak alpha frequencies
were significantly higher in the SCI group and
unchanged in the placebo group [70]. Further,
subjective measures of pain were shown to
decrease and perceptions of mood were shown
to increase following treatment [70].

CONCLUSION

CNP is a common, chronic complication of SCI
that affects a significant proportion of the
population; its etiology is attributed to increases
in inflammatory mediators and voltage-gated
ion channel dysfunction leading to afferent
nerve sensitization, chronic pain sensation, and
allodynia. This is secondary to increased
expression of pro-inflammatory components
such as IL-2 and TNFa, and changes in the levels
of regulatory microRNA. The underlying
mechanism involves the neuron–glia cross talk
and activation of the latter. Current treatments
include gabapentinoids, TCAs, SNRI, and lido-
caine, capsaicin, tramadol, and other opioids if
the first group fails to elicit the desired results.
Unfortunately, these provide overall limited
pain control. More recently, interventional
techniques have been studied with mixed
results.

The diagnosis of CNP requires a history of a
nervous system lesion with a distribution of
pain and sensory changes that are in agreement
with that lesion location. However, diagnosis is
challenging and rarely definitive; many patients
also suffer from overlapping chronic pain
conditions.

The pathophysiology of CNP most likely
begins with nerve injuries leading to local glial
and macrophage activation, migration, and
proliferation. These inflammatory cells are

responsible for the overexpression of pro-in-
flammatory cytokines that alter the expression
milieu of receptors on the cell surface of the
glial and neuronal cells; this interaction leads to
increased C-fiber signaling and sensitization.
Another key player in pathophysiology is the
GABAergic neurons; alterations in ion channel
expression and activation lead to reduced acti-
vation of these neurons, reducing their attenu-
ation capacity.

Treatment options, as listed above, are lim-
ited and studies are inconclusive regarding their
efficacy, and the data available is limited.
Baclofen, an antispastic medication, has been
shown to be effective in several studies, possibly
linked to the GABAergic theory of pathophysi-
ology; however, more research is required to
determine its efficacy. Less conventional treat-
ments, including hypnosis, were tried with
some success. More novel drugs are actively
being researched; the voltage-sensitive calcium
channel blocker ziconotide showed encourag-
ing results, although further research is required
to evaluate both efficacy and the toxicity
profile.

Non-medical interventions are also being
studied, including brain stimulation (TMS,
tDCS) and biofeedback techniques (BreEStim),
are actively being studied with encouraging
preliminary results.

Further research is likely to provide evidence
for these and other novel therapeutic agents. A
deeper understanding of the molecular events
leading to sensitization and chronicity of CNP
will lead to the identification of other candi-
dates for therapy. Effective therapy will likely
require a multidisciplinary approach that
includes lifestyle modifications, psychosocial
support, medical and non-medical therapies.
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