
Cell Tissue Res. 203, 35-51 (1979) 
Cell and Tissue 
Research 
�9 by Springer-Verlag 1979 

Central Projections of Fibers in the Auditory 

and Tensor Nerves of Cicadas (Homoptera: Cicadidae) 

D.W. Wohlers*, J.L.D. Williams*, F. Huber*, and T.E. Moore** 

* Max Planck Institut ffir Verhaltensphysiologie, Seewiesen, Bundesrepublik Deutschland 
** The University of Michigan, Museum of Zoology, Ann Arbor, Michigan, USA 

Summary. The auditory and tensor nerves of cicadas are mixed nerves 

containing both afferent and efferent elements. In 17-year cicadas, and in 

Okanagana rimosa, the auditory nerve contains afferents from body hairs, from 

the detensor tympani-chordotonal organ, and some 1300-1500 afferents from 

the hearing organ. Within the fused metathoracic-abdominal ganglionic 

complex the receptors from both the auditory and tensor nerves form a 

neuropilar structure that reveals the metameric organization of  this complex. 

A few fibers run anteriorly, projecting into the meso- and prothoracic ganglia. 

Within the ganglionic complex a division of auditory nerve afferents into a 

dense intermediate and a more diffuse ventral neuropile is observed. In 

addition, a dorsal motor neuropile is outlined by arborizations of the timbal 

motor  neuron. This neuron is one of several efferent cell types associated with 

the auditory nerve, and there is an indication that several efferent fibers 

innervate the timbal muscle. There is anatomical evidence for a possible 

neuronal coupling between the bilaterally symmetrical large timbal motor  

neurons. In general, central projections from the auditory and tensor nerves 

support evidence of  a structural "layering" within the CNS of  insects. 
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Insects. 

Cicadas are well-known for their production of loud sounds used in intraspecific 

communication (Alexander, 1967). In most species only the males have developed 

sound-generating systems; both sexes possess hearing organs. 

The morphology of  the auditory organs has been investigated by Vogel (1923), 

Michel (1975), and Young and Hill (1977). They show that each ear contains more 
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than  1000 scolopidia ;  their  sensory axons  form par t  o f  the aud i to ry  nerve which 

enters  the fused m e t a t h o r a c i c - a b d o m i n a l  gangl ionic  complex  (Pringle, 1954; 

Vasvary ,  1966; S immons  and  Young,  1978). In  some species s tudied,  the aud i to ry  

nerve carries bo th  the sensory fibers f rom the aud i to ry  organ  and the m o t o r  

innerva t ion  to the t imbal  muscle  (Young,  1972; S immons  and  Young,  1978). In  

others,  the large t imba l  m o t o r  neuron  is found  in a separa te  t imbal  nerve (Pringle, 

1954). 

This paper  offers a first descr ip t ion  o f  the central  p ro jec t ions  o f  sensory fibers in 

the aud i to ry  and  tensor  nerves in four  c icada  species o f  the subfami ly  Tibicininae.  

Also  revealed is the deta i led  s t ructure  o f  the m o t o r  neuron  o f  the t imba l  muscle 

(Simmons ,  1977) and  o ther  neurons  with fibers in the aud i to ry  and  tensor  nerves. 

Materials and Methods 

Adult periodical (17-year) cicadas Magicieada septendecim Linnaeus, M. cassini Fisher, and 
M. septendecula Alexander and Moore were collected in June of 1978 from Botetourt Co., Virginia and 
Okanagana rimosa Say (life-cycle 8-10 years) in July from Montmorency Co., Michigan. Both males and 
females were caged on potted cistena plum shrubs (Prunus sp.) where they could feed and were 
transported to the laboratory in Ann Arbor, Michigan for anatomical study. Auditory or tensor nerves 
were cut immediately anterior to the sternal canal (Vasvary, 1966), and ceils with axons in this region of 
the nerves were stained centrally by the cobalt axonal-filling method described by O'Shea et al. (1974). 
We used a 5 % cobaltous chloride solution with diffusion times of 12-20 h at 6 ~ C. Nervous tissue was 
removed and placed in 10ml of insect saline (Fielden, 1960) containing 3drops of concentrated 
ammonium sulphide. When the nervous elements containing cobalt ions turned dark, the tissue was 
rinsed in insect saline for 20 rain, fixed for 2 h in Bouin's fluid, dehydrated, cleared in methyl-salicylate, 
and mounted in Canada balsam. 

Wholemount preparations were first photographed, then intensified, using the improved Timm's 
modification described by Bacon and Altman (1977), and embedded in Araldite. Thick sections (30-- 
401am; horizontal, sagittal, transverse) were cut and photographed individually. Single ceils and 
neuropilar structures were reconstructed using a Wild M20 microscope equipped with a drawing tube. 

To study the general features of the CNS and the peripheral pathways of nerves, whole animals were 
embedded in celloidin. Thick sections (1501am) were cut and stained with hematoxylin (Harris). 
Photographs of some sections were taken and nerve pathways were reconstructed. 

Results 

1. General Structure of the Central Nervous System 

The general  a n a t o m y  of  the C N S  is s imilar  in all 17-year c icadas  and O. rimosa 

(Fig. 1). As  found  in Cystosoma saundersii (S immons  and  Young,  1978), the 

meso thorac ic  gangl ion  is dis t inct ly  separa ted  f rom the fused meta thorac ic -  

a b d o m i n a l  gangl ionic  complex  (Fig.  1 a and  b). In  all species s tudied here, a small  

a b d o m i n a l  nerve, which has no t  been descr ibed previously,  was found  between the 

large a b d o m i n a l  nerve and  the aud i to ry  nerve (Fig. 1 b and  c, san). 

2. Peripheral Innervation of the Auditory and Tensor Nerves 

The aud i to ry  nerve leaves the m e t a t h o r a c i c - a b d o m i n a l  gangl ionic  complex  f rom a 

pos i t ion  an te ro -dorsa l  to the a b d o m i n a l  nerves and runs pos te r ior ly  beside the 

large and  small  a b d o m i n a l  nerves (Fig. 1 b and  c) t h rough  the s ternal  canal  (Fig.  2, 
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Fig. 1. a Sagittal section through a male M .  septendecim showing the position of  the condensed nervous 

system, b Outline of  the thoracic and abdominal ganglia and the origin of  the nerves used in this study, e 

Transverse section of  the nerves outlined in black in b. Labels: A C air chamber; an auditory nerve; b 

brain; lan large auditory nerve; rn mesothoracic ganglion; rna metathoracic-abdominal ganglionic 

complex; p prothoracic ganglion; s subesophageal ganglion; san small abdominal nerve; Sc  sternal canal; 

ti timbal muscle; t im timbal motor neuron; tn tensor nerve. Scale: a 5 mm; c 50 ~tm. Arrow indicates 

anterior (a, b) and dorsal (c) 
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Fig. 2. Partial transverse reconstruction from a portion of a male M. cassini, viewed posteriorly. The left 
side shows the peripheral innervation of the auditory nerve; the right side shows the innervation of the 
tensor muscle. Inset: Transverse section through the distal portion of auditory nerve branch 6 showing 
the timbal motor neuron (tim) and three other axons. Labels: 1-6 auditory nerve branches; Cx 
metacoxa; DT detensor tympani-chordotonal organ; H hearing organ; In leg nerve; t tensor musc!e; tb 
timbal; other labels as in Fig. 1. Scale: I mm. Arrow indicates dorsal 

left). Within the sternal canal the auditory nerve (an) divides, giving a branch (1) 

which, on leaving the canal, innervates body hairs. It  continues, subdividing again 

(2) to innervate the detensor tympani-chordotonal  organ (Young, 1975) and the 

detensor tympani-muscle (3). The main branch of  the auditory nerve (4) turns 

peripherally and laterally to run along the body wall, following the posterior 

surface of the tympanum. I t  again subdivides near the tympanal  organ 

(Simmons and Young, 1978). One branch containing the auditory fibers runs 

anteriorly to the hearing organ; another branch (5) runs dorsally and subdivides at 

least twice (the peripheral innervation of these branches is currently being studied). 

Branch 6 turns inward to innervate the timbal muscle (Young, 1972; Young 

and Hill, 1977). Consequently the proximal portion of  the auditory nerve contains a 

number of  efferent axons and sensory fibers from at least three sensory structures, 

one of which is the hearing organ. 
The tensor nerve leaves the metathoracic-abdominal  ganglionic complex from a 

position latero-ventral and anterior to the auditory nerve (Fig. 1 b). I t  does not pass 

through the sternal canal, but instead turns laterally in the first abdominal segment 

to innervate various muscles (Fig. 2, right) and sensory structures as shown by 

Simmons and Young (1978). 
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Pig. 3. Central projections of cobalt-stained elements from the auditory nerve in the metathoracic- 
abdominal ganglionic complex, a Horizontal view of a wholemount, b Horizontal section of the same 
preparation after Timm's intensification. Note the metameric organization. Labels: ap anterior 
projections to the mesothoracic ganglion; cb cell bodies; fp finger-like projections to intermediate 
neuropile; other labels as in Figs. 1 and 2. Scale: 200~tm. Arrow indicates anterior 

3. Central Projections of Sensory Fibers in the Auditory Nerve 

The distribution of sensory fiber projections from the auditory nerve into the 

metathoracic-abdominal  ganglionic complex reflects the metameric organization 

within this complex (Fig. 3). Bilateral symmetry is shown, each side having nine 

clearly distinguishable medial finger-like arborizations. The three anterior ones lie 

in the metathoracic ganglion while the six posterior ones reflect the segmentation of 

the fused abdominal  ganglia. Although most  sensory projections appear  to be 

strictly ipsilateral, some in fact do project to the contralateral side. The general 

shape of the sensory projections (Fig. 4) is similar in all of  the species studied. 

Most sensory fibers form an intermediate neuropile that extends the length of  

the metathoracic-abdominal  ganglionic complex (Figs. 3, 5, 7). From the nerve root 
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Fig. 4. General comparison of the sensory projections from the auditory nerve among species and sexes 
of 17-year cicadas. Numbers 1~6 refer to the planes of the sections shown in Fig. 5. Arrow indicates 
anterior 

one bundle projects ventrally in the area of the abdominal complex showing a 

ventro-medial metameric organization; another bundle runs anteriorly sending 

ventral projections deep into the metathoracic part of  the ganglionic complex 

(Figs. 6, 7; vp). A bundle containing about 10 fibers courses anteriorly through the 

metathoracic part of  the complex, finally projecting ipsilaterally into ventral 

neuropile of the mesothoracic ganglion (Figs. 6, 7; ap). Some of these fibers also 

project at least as far as the prothoracic ganglion, but could not be studied in detail 

there. Single fibers were observed to project into both metathoracic and abdominal 

parts of  the ganglionic complex, but because of the impregnation of the dense 

intermediate neuropile these could not be studied individually. 

4. The Timbal Motor Neuron 

The most prominent structure with an axon in the auditory nerve and arborizations 

in the metathoracic-abdominal ganglionic complex of male cicadas is the large 
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Fig. 5. Transverse sections (see Fig. 4 for the location of each section) from the meso- (1) and 
metathoracic-abdominal (2-6) ganglia of a male M. septendecim, showing the distribution of auditory 
nerve sensory fibers. Labels: ch chiasma; DN dorsal neuropile; dp dorsal projections; IN intermediate 

neuropile; ip intermediate projections; VN ventral neuropile; vp ventral projections; other labels as in 
previous figures. Scale: 100 ~tm. Arrow indicates dorsal 
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Fig. 6, Center: Reconstruction from horizontal sections showing in detail the ventral (vp) and anterior 
(ap) projections from the auditory nerve, Left and right: Reconstructions of transverse sections showing 
the position of the sensory projections relative to the ventral intermediate tract (VII). Labels: sp sensory 
projections outlined in the intermediate neuropile; other labels as in previous figures. Scale: 100 pro. 
Arrow indicates anterior (horizontal sections) and dorsal (transverse sections) 

timbal motor neuron (Fig. 8), first described anatomically in C. saundersii by 

Simmons (1977). There is a bilaterally symmetrical pair (Fig. 8b), each innervating 

the timbal muscle contralateral to the cell body position. 
Dorsally in the ganglionic complex, the auditory nerve is composed of two roots 

(Fig. 8a; dr, vr), one containing afferent elements and the other efferents. The 

afferent bundle runs ventrally to arborize in intermediate and ventral neuropiles, 
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Fig. 7. Reconstruction of the sensory projections from the auditory nerve, viewed sagittally. Note the 
metamerism of  the ventral neuropile. Labels as in previous figures. Scale: 200 ~tm. Arrow indicates dorsal 
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Fig. 8. Features of  the timbal motor  neuron (tim) within the metathoracic-abdominal ganglionic 

complex, a A sagittal view showing the motor neuron (here from a female M. cassini) with its large (ld) 

and small (sd) dendritic regions. Other labels: D M  dorso-medial cell bodies; dr dorsal root of  the 

auditory nerve; L lateral cell bodies; vr ventral root of  the auditory nerve, b A horizontal reconstruction 

of  the timbal motor neuron pair in a male M. septendecim (viewed dorsally), c A small branch in the large 

dendritic region of  the timbal motor  neuron magnified to show the extent of  arborization. Scale: a and b 

200 ~tm: c 20 ~tm. Arrow indicates dorsal in a and anterior in b 
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Fig. 9. Efferent elements within the metathoracic-abdominal ganglionic complex which are associated 
with the auditory nerve in M. septendecim males, a--c Reconstructions from transverse sections of one 
animal, d A slightly oblique horizontal reconstruction from a different animal, e A reconstruction from 
transverse sections of yet another animal. Labels as in previous figures. Scale: 1 O0 ~tm. Arrow indicates 
dorsal (anterior in the case of d) 

while the efferent bundle runs more dorsally and contains several different 

elements, including the timbal motor  axon. 

Most efferent elements could not be classified in terms of ganglionic origin 

(metathoracic or abdominal).  However, the large timbal motor  neuron (axon 

diameter 20 ~tm) appears to be an abdominal structure with a large dendritic region 

located dorso-lateral and ipsilateral to the axon (Fig. 8). The cell body is located on 

the contralateral side in a more medio-lateral position and wraps itself around the 

afferent bundle from the auditory nerve on that side. In projecting across the 

midline the two axons come into close contact with one another in the medial 

position and then course ventrally together before turning laterally away from each 

other (Figs. 5 ch, 8, 9). This "cross-over" point marks the anterior border to the 
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Fig. III. a An oblique schematic drawing of the metathoracic-abdominal ganglionic complex (viewed 
anteriorly) showing the main components of the auditory nerve including the intermediate sensory 
neuropile and several efferent neuron types. Labels as in previous figures, b Hook-electrode recording 
showing spike activity from at least three different motor units, the spikes with the highest amplitude 
coming from the timbal motor neuron (tim). The auditory nerve was cut peripheral to the electrode to 
eliminate afferent activity. Time scale 20 msec. c An histogram of spike amplitudes from a continuous 
hook-electrode recording of the proximal auditory nerve as shown in b. Abscissa: relative amplitude of 
spikes. Ordinate: number of spikes of a given amplitude. The histogram shows three distinctly different 
spike amplitudes, the highest amplitude coming from the timbal motor neuron (tim) 

abdominal  por t ion  o f  the ganglionic complex. There is also a small dendritic region 

on the cell-body side (Fig. 8 a, sat) which overlaps the large dendritic region of  the 

mirror- image timbal m o t o r  neuron.  In addition, there is indication o f  arborizat ion 

at the cross-over point. These have not  been mentioned in earlier work.  

Females have an homologous  m o t o r  neuron.  It  is reduced in size and dendritic 

elaborat ion in M.septendecim and M. septendecula. However,  in females o f  

M. cassini (Fig. 8a) and O. rimosa it could not  be distinguished f rom that  found in 

males. 

5. Other Efferent Fibers Associated with the Auditory Nerve 

Several other types o f  efferent neurons also have axons in the audi tory nerve. One 

has cell bodies located on the dorso-medial  surface o f  the metathoracic  par t  o f  the 

ganglionic complex (Fig. 9d, DM; Fig. 8a); they have dorsal  dendritic ar- 

borizations in both  hemispheres o f  metathoracic  and abdominal  portions.  Their 

axons leave the ganglionic complex th rough  the audi tory nerve contralateral  to the 

cell body  position, a l though the cell bodies sometimes appear  to lie directly on the 

midline. As many  as four cells o f  this type have been observed coursing in each 

audi tory nerve. 
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Two more neurons with dorsal cell bodies located just posterior to the "cross- 

over" position of the timbal motor neurons were also stained from the auditory 

nerve (Fig. 9a and b, DM). The larger of the two (Fig. 9a) has a medially positioned 

cell body with dendrites in both abdominal ganglionic hemispheres, and a pair of 

axons, one coursing to each auditory nerve. The smaller cell (Fig. 9b) also has a 

dorsal cell body which is positioned a little more laterally. It has dendrites in both 

abdominal ganglionic hemispheres and a single ipsilaterally-projecting axon. 

There is a third cell type with lateral cell bodies and dorsal ipsilateral dendrites 

in the abdominal portion of the ganglionic complex (Fig. 9c, L). Several of these 

have been found on each side. A fourth cell type with medio-ventral cell bodies 

(Fig. 9e, V) resembles the common inhibitors described by Burrows (1973) for 

Schistocerca gregaria. Cells of this type also appear to arise from abdominal 

portions of the ganglionic complex. Some have dorsal dendritic processes lying 

ipsilateral to the axon. Others have more lateral dendritic processes. 

The anatomical finding of several efferent fibers within the auditory nerve is 

substantiated by hook electrode recordings from the proximal stump of this nerve 

(Fig. 10). Such recordings show several easily distinguished efferent neurons. 

6. Central Projections of Sensory Fibers in the Tensor Nerve 

Projections of sensory fibers from the tensor nerve also reveal a metameric 

organization within the metathoracic-abdominal ganglionic complex (Fig. 11 a, tn). 

When comparing this structure to that of the auditory nerve (Fig. 11 a, an), the 

tensor fibers also show finger-like medial projections to the intermediate neuropile. 

A few fibers appear to project contralaterally, though most remain ipsilateral to the 

nerve root. The main sensory neuropile from the tensor nerve lies ventral to that 

from the auditory nerve with some spatial overlap, and no fibers were observed to 

project from the tensor nerve to areas of ventral neuropile within the ganglionic 

complex. A few fibers leaving the tensor nerve root do course to the mesothoracic 

ganglion and further. The projections of these fibers in the mesothoracic ganglion 

appear to be more diffuse, reaching more laterally than those arising from the 

auditory nerve (compare Fig. 11 a, ap left and right). The sensory fibers in the tensor 

nerve probably arise from the two chordotonal organs described by Young (1975). 

In addition, a contribution from body hairs may exist (see Simmons and 

Young, 1978). 

7. Efferent Fibers Associated with the Tensor Nerve 

There are several types of efferent neurons distinguished by their cell-body position 

(Fig. 11 e). Two of these have ventral cell bodies, one medially and the other more 

laterally positioned (Fig. 11 b). Both have ipsilaterally projecting axons and are 
bilaterally represented. They exhibit branching in both hemispheres of the 
metathoracic and abdominal portions of the ganglionic complex. 

Other neurons with lateral cell bodies were also found. Their branching pattern 

is mainly ipsilateral and is less extensive than that of the ventral cells (Fig. 11c). 
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Fig. 11. Horizontal reconstructions of elements in the metathoracic-abdominal ganglionic complex 
which are associated with the tensor nerve, a The general shape of the sensory neuropile from the tensor 
nerve (left) compared to that from the auditory nerve (right), both showing bundles (ap) projecting into 
the mesothoracic ganglion. Ir--d Efferent dements from the tensor nerve (for details see text), e Schematic 
transverse section showing the location of cell bodies from elements drawn in b-d. Scale: 100 ~tm. Arrow 
indicates anterior 

There are several cells of  this type, all appearing to arise from the abdominal 

portion of  the ganglionic complex. 

There is also a large and elaborate neuron with medio-dorsal cell body and 

profuse dorsal branching on both sides of  the midline (Fig. 11 d). The exact number 

of  elements of  this type is not known, although three cell bodies have been stained 

on occasion. 

Discussion 

The metathoracic-abdominal  ganglionic complex of the cicada has a basic tripartite 

organization (Zawarzin, 1924). On structural grounds alone we can discern an up- 

per motor  region, a lower non-motor  keel which can be further subdivided into in- 

termediate and ventral neuropile regions, and a core region (Williams in prep.) 

These are conservative features of  all insect ganglia and are a reflection of  the set of  

relationships individually identifiable neurons have to each other. 

1. Af ferent  Elements  

Various Orthopterans, including crickets (Rehbein, 1973; Eibl, 1976; Popov 

et al., 1978; Eibl and Huber, 1979; Esch et al., in prep.), Tettigonids (Kalmring 
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et al., 1978), and Acridids (Rehbein et al., 1974), have distinct intermediate auditory 
neuropiles, projections being purely ipsilateral. Cicadas (Homoptera) show the 

same intermediate neuropilar structure from afferents of both the auditory and 

tensor nerves (see Figs. 3, 5, 11 a). Therefore, a "formanalytic homology" (Jacobs- 

hagen, 1925) is apparent not only among species, but also among orders of insects. 
By comparing the projection areas of sensory afferents (from leg nerves) into the 

pro-, meso-, and metathoracic ganglia of crickets, Eibl (1976) shows that even 

though sensory structures vary between segments, there is nevertheless a serial 

homology of intermediate sensory neuropile in all three ganglia (Eibl and 
Huber, 1979). In the metathoracic-abdominal ganglionic complex of cicadas there 
is also a serially metameric organization of sensory neuropiles arising from 

individual sensory structures. It is evident therefore, that at least the sensory part of 
insect nervous systems contributes to highly-ordered structural and functional 
"layering" (Williams, in prep.). 

As already mentioned, projections of auditory afferents in Orthopterans are 

intermediate, and Hustert (1978) shows that chordotonal proprioceptors are also 
represented in intermediate neuropile. Studies of auditory organs (Michel, 1975) 
and chordotonal organs of cicada (Young, 1975) reveal that the auditory nerve 
receives on the order of 1300 axons from the auditory organ and 500 axons from the 
detensor tympani-chordotonal organ (Fig. 2, left). 

Our auditory nerve fills show a high concentration of sensory arborization 

within the intermediate neuropile. On a comparative basis we can say that this 
concentration comes from auditory and chordotonal receptors. On the other hand, 

sensory cells from head and body hairs are known to project into ventral neuropile 
(Honegger, 1977; Hustert, 1978; Tyrer et al., 1979). The relatively few sensory fibers 

from the auditory nerve projecting into ventral neuropile in cicadas probably 
represent body hairs (see Fig. 2, left). 

Simmons and Young (1978) showed that the majority of sensory elements in the 
tensor nerve originate from the timbal and tensor chordotonal organs. Our tensor 
fills reveal an intermediate neuropilar structure which is similar to that found in 

auditory fills (see Fig. 11 a), showing a chordotonal projection to this region. 

Since Hustert (1978) found no chordotonal organ in locusts and crickets 
without at least a few plurisegmental fibers, we propose that the through-fibers to 
the meso- and prothoracic ganglia from both the tensor and auditory nerves in our 

cicada preparations are also chordotonal in origin. 

2. Efferent Elements 

The variety of efferent elements in the metathoracic-abdominal ganglionic complex 
which have axons in the auditory nerve (see Fig. 10) can be correlated to studies of 
the periphery. In all species studied here, and as shown by Young (1975) for 
C. saundersii, both the detensor tympani and timbal muscles are innervated by 
peripheral branches of the auditory nerve (see Fig. 2, left). The large timbal motor 

neuron is, however, the only element which could be anatomically identified both 
centrally and peripherally. In C. saundersii, Simmons (1977) described the large 
dendritic region contralateral to the cell body. In addition, we have shown a small 
ipsilateral dendritic region which spatially overlaps the large dendritic region of the 
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opposite paired member. Its functional significance is not known; however, one 

must return to the early work of  Hagiwara and Watanabe (1956) where they 

proposed a mechanism of  coupling between the two timbal motor neurons to 

control the alternation of  firing. Such a coupling could occur between the large and 

small dendritic regions as well as at the cross-over point. 

In females there is no sign of a timbal muscle (Pringle, 1957: Moore, 

unpublished results). The presence of an elaborate motor neuron, which is similar in 

size, shape, and position (within the ganglionic complex), is therefore very 

surprising. Its function can be worked out after its peripheral innervation has been 

determined; this work is in progress. 

The timbal muscle of male cicadas has been a classic example of a muscle 

innervated by a single motor neuron (Pringle, 1957: Simmons, 1977). We have 

found that there are at least three additional axons invading the timbal muscle of  

male 17-year cicadas (Fig. 2, inset). The structure of these elements has not been 

established, but there may indeed be a more typical polyneural innervation of the 

timbal muscle. 

Independent of cell-body position, efferent neurons having axons in either the 

auditory or tensor nerve arborize in the dorsal motor region of  the metathoracic- 

abdominal ganglionic complex. From comparative studies, the neurons with 

ventral cell bodies may include common inhibitors (Burrows, 1973). The ele- 

ments having lateral cell bodies are most likely fast and slow motor neurons. 

The axons of neurons with dorso-medial cell bodies may be ipsi-, contra-, or 

bilateral in distribution. One of these cells is similar in structure to the DUM cells of  

the locust (Plotnikova, 1969; Crossman et al., 1971 ; Hoyle, et al., 1974; Goodman 

and Spitzer, 1979). Whether this cell contains octopamine and is functionally 

similar to the DUM cells (Evans and O'Shea, 1978) has not yet been established in 

cicadas. 

These studies of the central projections of afferent and efferent elements which 

are a part of the sound communication system in cicada, reveal a complexity 

making it impossible at present to give further suggestions about neuronal 

connectivity. This goal can only be reached through detailed studies of clearly 

defined afferent structures and through identification of  central nervous 

components to which they project, some studies of which have already been 

initiated (Huber et al., in press, 1980). 
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