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Abstract
In this article, we briefly review the random choice method (RCM) and ADER meth-
ods for solving one and two-dimensional hyperbolic conservation laws. The main
advantage of RCM is that it computes discontinuities with infinite resolution. In this
method, the original problem is reduced to a set of local Riemann problems (RPs).
The exact solutions of these RPs are used to form the solution of the original problem.
However, RCM has the following disadvantages: (1) one should solve the RP exactly,
however, the exact solutions are usually complex and unavailable for many problems.
(2) The accuracy of the smooth region of the flow is poor. ADERmethods are explicit,
one-step schemes with a very high order of accuracy in time and space. They depend
on the solution of the generalized RP (GRP) exactly. In Zahran (J Math Anal Appl
346:120–140, 2008), an improved version of ADER methods (central ADER) was
introduced where the RPs were solved numerically and used central fluxes, instead
of upwind fluxes. The improved central ADER schemes are more accurate, faster,
simple to implement, RP solver free, and need less computer memory. To fade the
drawbacks of the above schemes and keep their advantages, we propose, in this paper,
an improved version of the RCM. We merge the central ADER technique with the
RCM. The resulting scheme is called Central RCM (CRCM). The improvements are
listed as follows: we use the WENO reconstruction for the initial data instead of con-
stant reconstruction in RCM, we solve the RPs numerically by using central finite
difference schemes and use random sampling to update the solution, as the original
RCM. Here we use the staggered and non-staggered RCM. To enhance the accuracy
of the new methods, we use a third-order TVD flux (Zahran in Bull Belg Math Soc
Simon Stevin 14:259–275, 2007), instead of a first-order flux. Comparedwith the orig-
inal RCM and the central ADER, the new methods combine the advantages of RCM,
ADER, and central finite difference methods as follows: more accurate, very simple
to implement, need less computer memory, and RP solver free. Moreover, the new
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methods capture the discontinuities with infinite resolution and improve the accuracy
of the smooth parts. The new methods have less CPU time than the central ADER
methods, this is due to less flux evaluation in CRCM. An extension of the schemes to
general systems of nonlinear hyperbolic conservation laws in one and two dimensions
is presented. We present several numerical examples for one and two-dimensional
problems. The results confirm that the presented schemes are superior to the original
RCM, ADER, and central ADER schemes.

Keywords Hyperbolic conservation laws · WENO schemes · RCM · ADER
methods · �SSPRK Runge–Kutta · Euler equations · Burgers equation

Mathematics Subject Classification Primary 65M10; Secondary 65M05

1 Introduction

Hyperbolic conservation laws are very important and arise in many fields such as
shallowwater flow, gas dynamics, weather prediction, andmany other fields. The exact
solutions of such equations are only available in a few special cases. So, we should
use numerical methods. Since the nonlinear hyperbolic conservation laws develop
discontinuities in their solution even if the initial conditions are smooth. Therefore, if
the solutions contain discontinuities as well as rich structures, the numerical schemes
should avoid the spurious oscillations aswell as be high order accuracy. It iswell known
that the central methods are more efficient than the upwind methods in the smooth
regions of the solutions since the central methods give a less dissipative solution.
However, near discontinuities, to avoid the numerical instability, the upwind scheme
is better than the central scheme. Thus successful methods should be high order of
accuracy in smooth regions and present the discontinuities with the correct position
and without spurious oscillations.

In the past, six decades ormore, there aremany high order numerical high resolution
methods have been developed, such as Total Variation Diminishing (TVD) [6], ran-
dom choice method (RCM) [2, 4, 16], weighted essentially non-oscillatory schemes
(WENO) [1, 9, 24, 25], ADER methods [11–15, 17, 18, 23], and so on. These meth-
ods produce satisfactory numerical results. There are a lot of studies on them that
have been done to improve the computational robustness, accuracy, and efficiency and
reduce dissipation and dispersion errors. TVD schemes, introduced by Harten [6], are
at most first-order accurate near discontinuities and smooth extrema and thus they
are not suitable for many applications areas especially, acoustics, compressible turbu-
lence, and problems with long-time evolution wave propagation. In such applications,
the extrema are clipped with time evolution and thus the numerical dissipation may
become dominant. To fade this flaw, uniformly very high order methods are required
for such applications. For example, the weighted essentially non-oscillatory (WENO)
schemes and ADER methods. WENO schemes are essentially non-oscillatory. On the
other side, RCM is a shock-capturing method. It is neither a finite element nor a finite
difference method. The main advantage of the RCM is that it captures discontinuities
(shocks and contact surfaces) with infinite resolution (zero width). The first step in the
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RCM is to suppose that the initial data at a given time level tn, of the original prob-
lem, is approximated by a piece-wise constant function. Thus, the original problem is
reduced to a set of local Riemann problems (RPs). The exact solution of these local
RPs is pieced together to form the solution at the next time level tn+1. RCM takes
the updated solution at the next time level tn+1 to be computed from these solutions
by using a sequence of random numbers. RCM has the following flaws:1- although
RCM captures the discontinuities with zero width, this property comes at a cost, one
should solve the RPs exactly. However, the exact solution of RP is usually complex
and unavailable for many hyperbolic problems for practical interest. 2- the accuracy in
smooth regions of the flow, such as rarefactions, is poor. ADER methods are explicit,
one-step schemes with a very high order of accuracy in time and space. They depend
on the solution of the generalized RP (GRP). In ADER schemes the initial data are
approximated by piecewise polynomial functions of arbitrary order, unlike piece-wise
constant in RCM. The ADER methods [12–15] were developed as an extension of
the Godunov upwind methods [3]. By using Taylor expansion of the state (or flux)
functions, the GRP is reduced to a set of m conventional RPs. The first RP is non-
linear and the remaining ones are linear RPs of the k-th order spatial derivatives of
the initial conditions, with k = 0,1,…m, where m is the order of accuracy (arbitrary)
of the scheme. To compute the upwind flux, in ADER methods, the RPs are solved
exactly. Again, the exact solutions of RPs are mostly unavailable and more complex.
In [23], an improved version of ADERmethods (central ADER)was introducedwhere
the RPs were solved numerically and used central fluxes, instead of upwind fluxes.
The improved central ADER schemes are more accurate, faster, simple to implement,
RP solver free, and need less computer memory. To fade the drawbacks of the above
schemes and keep their advantages, we propose, in this paper, an improved version of
the RCM. We merge the central ADER technique with RCM. The resulting scheme
is called Central RCM (CRCM). The improvements are fourfold. Firstly, we propose
to reconstruct the initial data by piece-wise polynomial functions of arbitrary order.
Here we use theWENO reconstruction. Secondly, we use Taylor expansion of the state
functions as ADER methods, and therefore the original problem is reduced to a set of
m conventional RPs. Thirdly, we solve these RPs numerically by using central finite
difference schemes. Here we use two different finite difference schemes, fully discrete
and semi-discrete schemes. Fourthly, we use random sampling, to update the solution,
as the original RCM. Moreover, we use the staggered and non-staggered RCM. To
enhance the accuracy of the newmethods, we use a third-order TVD flux [22], instead
of a first-order Lax–Friedrichs (LxF) flux. Compared with the original RCM and the
central ADER, the newmethods combine the advantages of RCM, ADER, and central
finite difference methods as follows: more accurate, very simple to implement, and
need less computer memory and RP solver free. Moreover, the new methods capture
the discontinuities with infinite resolution (zero-width) and improve the accuracy of
the smooth parts. This is due to using the central finite difference schemes for both
the function and its derivatives. Moreover, the new methods have a faster computing
time than the central ADER method, this is due to less flux evaluation in CRCM.

The paper consists of the following: In Sect. 2 we review the original RCM. In
Sect. 3 we briefly review the ADER method. The central RCM on both staggered and
non-staggered grids is described inSect. 4. In Sect. 5 the accuracy of the new schemes is
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discussed. In Sect. 6 the new methods are tested by solving some numerical examples
for one and two-dimensional equations. Finally, in Sect. 7 we summarize the main
findings of this work and give some outlook on future work.

2 Random choicemethod

In this section, we review the RCM on both staggered and non-staggered grids [16,
19].

2.1 RCM on non-staggered grids

Firstly, we consider the one-dimensional system of conservation laws, namely

ut + [f(u)]x = 0 (2.1)

with initial and boundary conditions. Where u (x,t) is the vector of conservative vari-
ables and f (u) is the flux vector. Throughout this article, we consider regular grids. Let
�x and �t be small spatial and time scales, xj = j �x, x

j± 1
2

= xj ± 1
2�x, tn =

n�t, unj = u(xj, tn) and the cell Ij =
⌊
x
j− 1

2
, x

j+ 1
2

⌋
. Suppose that the solution unj at

the time t = tn is given. To compute the solution at the next time step tn+1, the RCM
assumes that the data at tn for (2.1) can be approximated by a piecewise constant
function over the cell Ij as

u(x, t) = unj , x
j− 1

2
≤ x ≤ x

j+ 1
2

(2.2)

Therefore the problem (2.1) becomes a sequence of local RiemannProblems {RP(j,j
+ 1)}, that is the initial value problem (2.1) subject to the initial condition

u(x, tn) =
⎧⎨
⎩
unj , x < x

j+ 1
2

unj+1, x ≥ x
j+ 1

2

(2.3)

The exact solutions to these Riemann Problems are pieced together to give the
solution for the next time level tn+1. Each local problem has an exact solution as
shown in Fig. 1 (for Euler equations) [19].

The RCM updates the solution unj in Ij at t
n to the un+1

j at tn+1, for sufficiently small
�t, in two steps as follows:

Step 1 Solve both RP (j − 1, j) and RP (j, j + 1) exactly, to obtain the solutions at
tn+1.

Step2 Sample these solutions at tn+1 in the cell Ij at a random position u(Qj, tn+1)

where Qj = (x
j− 1

2
+ θn�x, tn+1). This sampling depends on a quasi-random number

θn ∈ [0, 1][0, 1], see [16]. The updated solution un+1
j can be written in the form

123



Central random choice methods for hyperbolic conservation laws

Fig. 1 Solution of local Riemann problems RP (j − 1, j) and RP(j, j + 1)

Fig. 2 RCM sampling on
non-staggered grids

un+1
j =

⎧⎨
⎩
u(x

j− 1
2

+ θn�x) 0 ≤ θn ≤ 1
2

u(x
j+ 1

2
+ (θn − 1)�x) 1

2 ≤ θn ≤ 1
(2.4)

This sampling is shown in Fig. 2, [19]. It is clear that for θn = 0, Qj lies on the

inter-cell boundary x = x
j− 1

2
and therefore the solution un+1

j is the exact solution of

RP (j − 1,j) at this position. For θn = 1, Qj lies on the right boundary and the solution

x = x
j+ 1

2
and the solution un+1

j equals the exact solution of RP(j,j + 1). For θn = 0.5,

the solution un+1
j = unj , i.e., the same old value. See [19] for more details.

2.2 RCM on staggered grids

In this section, we describe the RCM on a staggered grid to solve the problem (2.1).
It updates unj to the u

n+1
j in two steps as follows: [19]
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Step 1 Solve the Riemann problems RP (j − 1, j) and RP (j, j + 1) to find the

solutions u
n+ 1

2

j± 1
2

at tn+
1
2 .

Step 2. Sample these solutions at tn+
1
2 as

u
n+ 1

2

j− 1
2

= u
n+ 1

2

j− 1
2

(x
j− 1

2
+ (θn − 1

2 )�x, tn+
1
2 ) 0 ≤ θn ≤ 1

u
n+ 1

2

j+ 1
2

= u
n+ 1

2

j+ 1
2

(x
j+ 1

2
+ (θn − 1

2 )�x, tn+
1
2 ) 0 ≤ θn ≤ 1 (2.5)

Step 3. Solve the RP(u
n+ 1

2

j− 1
2

, u
n+ 1

2

j+ 1
2

), exactly, to obtain the solution un+1
j (x, t) and

then sample it, randomly, to get un+1
j (x, t) as

un+1
j = un+1

j− 1
2

(x
j− 1

2
+ θn+1�x, tn+

1
2 ) 0 ≤ θn+1 ≤ 1 (2.6)

Note: we choose the time step �t according to the CFL condition.

CFL ≤ 0.25 (2.7)

where CFL = max
j

(
Snj

�t
�x

)
, Snj is the maximum propagation speed in Ij at time level

n.

3 ADERmethods

Here we review the ADER methods for a system of hyperbolic conservation laws

ut + f(u)x = 0, −∞ < x < ∞, t ≥ 0, u(x, 0) = u0(x) (3.1)

This equation may be written in the non-conservative form

ut + λ(u) ux = 0, (3.2)

whereλ(u) = d f
du is the characteristic speed.We integrate (3.1) over the control volume

in x-t space [x
j− 1

2
, x

j+ 1
2
] × [tn, tn+1] to get the fully discrete scheme

un+1
j = unj − �t

�x

[
F
j+ 1

2
− F

j− 1
2

]
(3.3)
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Here unj is the space average of the solution in the cell Ij = [x
j− 1

2
, x

j+ 1
2
] at tn

unj = 1

�x

x
j+ 1
2∫

x
j− 1
2

u(x, tn)dx (3.4a)

and the flux F
j+ 1

2
is the time average of the flux at the cell interface x

j+ 1
2
:

F
j+ 1

2
= 1

�t

tn+1∫
tn

f(u(x
j+ 1

2
)dt, (3.4b)

The ADERmethods define the numerical fluxes F
j+ 1

2
in such a way that the scheme

(3.3) calculates the numerical solutions of (3.1) to arbitrary high order in both space and
time. They rely on the solution of GRP (exactly) with the initial condition consisting
of polynomial functions of arbitrary order, unlike piece-wise constant construction in
RCM. We will mention the details in the next subsections.

3.1 Original (upwind) ADERmethod

Let the solution at time tn, unj , be known, the ADER methods [11–13] update the

solution at the next time tn+1(un+1
j ) in the following steps:

Step 1: Reconstruction
The first step is to generate a piece-wise polynomial reconstruction from the cell

averages i.e.,

u(x, t) = Pnj (x), x
j− 1

2
≤ x ≤ x

j+ 1
2

(3.5)

where the polynomial Pnj (x), defined on Ij, must be conservative, high order accurate,
and non-oscillatory. Thus, we obtain at each cell interface x

j+ 1
2
the following local

GRP(j,j + 1):

ut + f(u)x = 0,

u(x, 0) =
⎧⎨
⎩

uL(x) = Pj(x, t), x < x
j+ 1

2
uR(x) = Pj+1(x, t), x > x

j+ 1
2

⎫⎪⎪⎬
⎪⎪⎭

(3.6)

It iswell known thatWENOreconstruction producesmore accurate, non-oscillatory
results and therefore we used here the WENO reconstruction in the design of our
schemes.

Step 2 State expansion
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Firstly, we compute the approximate solution u(x
j+ 1

2
, τ ), where τ is local time

τ = t− tn which is sufficiently small. Using Taylor expansion of the interface state in
time, we get:

u(x
j+ 1

2
, τ ) = u(x

j+ 1
2
, 0+) +

m−1∑
k=1

{
∂k

∂tk
u(x

j+ 1
2
, 0+)

}
τ k

k! (3.7)

where 0+ = lim
t→0+ t. Secondly, apply Cauchy-Kowaleski [11] procedure to replace all

time derivatives in (3.7) by space derivatives. Equation (3.7) becomes

u(x
j+ 1

2
, τ ) = u(x

j+ 1
2
, 0+) +

m−1∑
k=1

{
A(k)(u(0)

x (x
j+ 1

2
, 0+), . . . , u(k)

x (x
j+ 1

2
, 0+)

}
τ k

k!
(3.8)

The first term u(x
j+ 1

2
, 0+) is obtained by solving the conventional (piece-wise

constant) RP:

ut + f(u)x = 0,

u(x, 0) =
⎧⎨
⎩
uL(x

j+ 1
2
), x < x

j+ 1
2

uR(x
j+ 1

2
), x > x

j+ 1
2

⎫⎪⎪⎬
⎪⎪⎭

(3.9)

This is done by using the upwind Godunov method. The remaining terms
u(k)
x (x

j+ 1
2
, 0+), (k = 1,2…,m-1) are obtained by solving the k-th order derivative

RPs which are locally linearised around the leading term u(0)
x (x

j+ 1
2
, 0+) of (3.8):

vt + λ(u(x
j+ 1

2
, 0+))vx = 0,

v(x, 0) =
⎧⎨
⎩
u(k)
L (x

j+ 1
2
), x < x

j+ 1
2

u(k)
R (x

j+ 1
2
), x > x

j+ 1
2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.10)

where v = u(k)
x . The numerical flux F

j+ 1
2
of Eq. (3.3) is evaluated by using the m-th

order accurate Gaussian rule

F
j+ 1

2
=

N∑
α=0

F(u(x
j+ 1

2
, γα�t))Kα (3.11)

where γj and Kj are scaled nodes and weights of the rule and N is the number of nodes
[11].
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3.2 Central ADERmethod

However, the high order accuracy of the upwind ADER schemes comes at a cost, RPs
must be solved exactly. The exact solutions of the RPs are mostly unavailable and
more complex. To overcome this problem, central ADER schemes were presented in
[23]. In these methods, central fluxes are used instead of upwind fluxes as the building
block. These fluxes are the central first-order monotone LxF flux and the third-order
TVD flux [22]. Now, we give a brief review of the central ADER methods.

To evaluate the terms in (3.8), we proceed as follows:
For the first term u(x

j+ 1
2
, 0+), we use the staggered form of the central LxF scheme

to solve the RP (3.9):

u0+
j+ 1

2

= 1

2
[uL(x

j+ 1
2
, 0) + uR(x

j+ 1
2
, 0)] − α0�t

�x
[f(uR(x

j+ 1
2
, 0)) − f(uL(x

j+ 1
2
, 0))]
(3.12)

For u(k)
x (x

j+ 1
2
, 0+), (k= 1,2…,m-1), are obtained by solving the k-th order deriva-

tive RPs which are locally linearized around the leading term u(0)
x (x

j+ 1
2
, 0+) of (3.8)

and they are computed by staggered LxF scheme:

v0+
j+ 1

2

= 1

2
[vL(x

j+ 1
2
, 0) + vR(x

j+ 1
2
, 0)] − λ

αk�t

�x
[vR(x

j+ 1
2
, 0) − vL(x

j+ 1
2
, 0)]
(3.13)

here the time weight αk = 1

(k+1)
1
k

, k ≥ 1 see [11, 23]. It is easy to see that αk lie

in the interval [0.5,1] and we take α0 = 0.36788. To get the flux F
j+ 1

2
of (3.2), there

are two options. The first option is the m-th order accurate Gaussian rule. The second
option is the flux expansion in which Taylor expansion of the flux directly is used [23].
To improve the accuracy of the central ADER method, the third-order TVD flux [22]
is used rather than the first-order flux as the building block. For details see [23].

4 Central random choicemethods

To fade the drawbacks of the above schemes and maintain their advantages, we merge
the central ADER technique into RCM to obtain an improved version of RCM. We
call these methods Central RCM (CRCM). We consider the system of hyperbolic
conservation laws

ut + f(u)x = 0, −∞ < x < ∞, t ≥ 0, u(x, 0) = u0(x) (4.1)
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This equation may be written in the non-conservative form

ut + λ(u)ux = 0, (4.2)

where λ(u) = df
du is the characteristic speed.We integrate (4.1) over the control volume

in x-t space [x
j− 1

2
, x

j+ 1
2
] × [tn, tn+1] to get the fully discrete finite difference scheme

un+1
j = unj − �t

�x

[
F
j+ 1

2
− F

j− 1
2

]
(4.3)

unj is the space average of the solution in the cell Ij = [x
j− 1

2
, x

j+ 1
2
] at tn and the

flux F
j+ 1

2
is the time average of the flux at the cell interface x

j+ 1
2
:

unj = 1

�x

x
j+ 1
2∫

x
j− 1
2

u(x, tn)dx F
j+ 1

2
= 1

�t

tn+1∫
tn

f(u(x
j+ 1

2
)dt, (4.4)

There are two types of finite difference schemes to compute the numerical solutions;
one-step and two-step finite difference schemes.

4.1 One-step RCM on non-staggered grids

Assuming that the solution at time tn, unj is known, our task is to get the solution at the

next time tn+1(un+1
j ). The implementation of this method is described in the following

steps:
Step 1:
The first step is to generate a piece-wise polynomial reconstruction from the cell

averages i.e.

u(x, t) = Pnj (x), x
j− 1

2
≤ x ≤ x

j+ 1
2

(4.5)

where the polynomial Pnj (x), defined on Ij, must be conservative, high order accurate,
and non-oscillatory. We used here the WENO reconstruction in the design of our
schemes. Thus, we obtain at each cell interface x

j+ 1
2
the following local RP(j,j + 1):

ut + f(u)x = 0,

u(x, 0) =
⎧⎨
⎩

uL(x) = Pj(x, t), x < x
j+ 1

2
uR(x) = Pj+1(x, t), x > x

j+ 1
2

⎫⎪⎪⎬
⎪⎪⎭

(4.6)

Step 2
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We solve the local RPs RP(j − 1,j) and RP(j,j + 1), numerically, by using the
staggered LxF scheme of (4.1)

un+1

j− 1
2

= 1

2
[uL(x

j− 1
2
, tn) + uR(x

j− 1
2
, tn)] − α0�t

�x
[f(uR(x

j− 1
2
, tn)) − f(uL(x

j− 1
2
, tn))]
(4.7a)

un+1

j+ 1
2

= 1

2
[uL(x

j+ 1
2
, tn) + uR(x

j+ 1
2
, tn)] − �t

�x
[f(uR(x

j+ 1
2
, tn)) − f(uL(x

j+ 1
2
, tn))]
(4.7b)

For the case of the piece-wise constant data uL(x
j− 1

2
) = unj−1 and uR(x

j− 1
2
) =

unj , the scheme (4.7a) becomes a monotone first order LxF scheme in the staggered
form [10]

un+1

j− 1
2

= 1

2
[unj−1 + unj ] − α0�t

�x
[f(unj ) − f(unj−1)] (4.8a)

Similarly, the scheme (4.7b) leads to

un+1

j+ 1
2

= 1

2
[unj + unj+1] − α0�t

�x
[f(unj+1) − f(unj )] (4.8b)

Then we use a Taylor expansion to compute the updated solution at a random
position Qj = (x

j+ 1
2

+ θn�x, tn+1) in the x-t plane:

u(x
j+ 1

2
+ θn�x, tn+1) = u(x

j+ 1
2
, tn+1) +

m−1∑
k=1

{
∂k

∂xk
u(x

j+ 1
2
, tn+1)

}
(θn�x)k

k! + o(�x)m

(4.9)

The first term u(x
j+ 1

2
, tn+1) is the solution of conventional (piece-wise constant)

RP:

ut + f(u)x = 0,

u(x, 0) =
⎧⎨
⎩
uL(x

j+ 1
2
), x < x

j+ 1
2

uR(x
j+ 1

2
), x > x

j+ 1
2

⎫⎪⎪⎬
⎪⎪⎭

(4.10)

The first term should be calculated by a monotone scheme in order to fade entropy
violation. It is well known that the LxF scheme is the best central monotone scheme.
Here we use the staggered LxF schemes (4.7–4.8). The terms u(k)

x (x
j+ 1

2
, tn+1) (k =

1,2,…,m-1) are the solutions of the k-th order derivative RPs linearized locally around
the first term u(x

j+ 1
2
, tn+1) ≡ un+1

j+ 1
2

of (4.9):
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vt + λ(u(x
j+ 1

2
, tn+1))vx = 0,

v(x, 0) =
⎧⎨
⎩
u(k)
L (x

j+ 1
2
), x < x

j+ 1
2

u(k)
R (x

j+ 1
2
), x > x

j+ 1
2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.11)

Here v = u(k)
x are evaluated by the staggered LxF scheme [10]:

vn+1

j+ 1
2

= 1

2
[vnL(x

j+ 1
2
) + vnR(x

j+ 1
2
)] − λ

αk�t

�x
[vnR(x

j+ 1
2
) − vnL(x

j+ 1
2
)] (4.12a)

Again, in the case of piece-wise constant, the scheme (4.12a) becomes

vn+1

j+ 1
2

= 1

2
[vnj + vnj+1] − λ

αk�t

�x
[vnj+1 − vnj )] (4.12b)

Once we obtain all the spatial derivatives, we calculate the Taylor expansion (4.9)
and therefore compute the updated solution u(x

j+ 1
2

+ θn�x, tn+1).

Now, we evaluate the updated solution un+1
j as follows:

un+1
j =

⎧⎨
⎩
u(x

j− 1
2

+ θn�x, tn+1), 0 ≤ θn ≤ 1
2

u(x
j+ 1

2
+ (θn − 1)�x, tn+1), 1

2 ≤ θn ≤ 1
(4.13)

4.2 Two steps RCM on staggered grids

In this section, we propose to use the two steps RCM on staggered grids. This method
consists of the following steps:

Step 1
Firstly, we solve the local RPs: RP(j − 1, j) and RP(j, j + 1) by using the staggered

LxF scheme of (4.1) at time tn+
1
2 = (n + 1

2 )�t

u
n+ 1

2

j− 1
2

= 1

2
[uL(x

j− 1
2
, tn) + uR(x

j− 1
2
, tn)] − α0�t

2�x
[f(uR(x

j− 1
2
, tn)) − f(uL(x

j− 1
2
, tn))]
(4.14a)

u
n+ 1

2

j+ 1
2

= 1

2
[uL(x

j+ 1
2
, tn) + uR(x

j+ 1
2
, tn)] − α0�t

2�x
[f(uR(x

j+ 1
2
, tn)) − f(uL(x

j+ 1
2
, tn))]
(4.14b)
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For the case of piece-wise constant data uL(x
j− 1

2
) = unj−1 and uR(x

j− 1
2
) = unj ,

these schemes become monotone first order LxF schemes in the staggered form

u
n+ 1

2

j− 1
2

= 1

2
[unj−1 + unj ] − α0�t

2�x
[f(unj ) − f(unj−1)] (4.15a)

u
n+ 1

2

j+ 1
2

= 1

2
[unj + unj+1] − α0�t

2�x
[f(unj+1) − f(unj )] (4.15b)

Step 2
The updated solution to be determined by the numerical solutions of the local RPs:

RP(j− 1, j) and RP(j, j+ 1), evaluated at a random positionQj = (x
j+ 1

2
+θn�x, tn+

1
2 )

and computed by Taylor expansion

u(x
j+ 1

2
+ θn�x, tn+

1
2 ) = u(x

j+ 1
2
, tn+

1
2 ) +

m−1∑
k=1

{
∂k

∂xk
u(x

j+ 1
2
, tn+

1
2 )

}
(θn�x)k

k! + o(�x)m

(4.16)

The first term is the solution of conventional RP (4.10) by using the scheme (4.15).

The terms u(k)
x (x

j+ 1
2
, tn+

1
2 ) (k = 1,2,…,m-1) are the solutions of the k-th order

derivative RPs linearized locally around the first term u(x
j+ 1

2
, tn+

1
2 ) of (4.16):

vt + λ(u(x
j+ 1

2
, tn+

1
2 ))vx = 0,

v(x, 0) =
⎧⎨
⎩
u(k)
L (x

j+ 1
2
), x < x

j+ 1
2

u(k)
R (x

j+ 1
2
), x > x

j+ 1
2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.17)

Here v = u(k)
x are computed by the staggered LxF scheme:

v
n+ 1

2

j+ 1
2

= 1

2
[vnL(x

j+ 1
2
) + vnR(x

j+ 1
2
)] − λ

αk�t

2�x
[vnR(x

j+ 1
2
) − vnL(x

j+ 1
2
)] (4.18a)

In the case of piece = wise constant, the scheme (4.18a) becomes

v
n+ 1

2

j+ 1
2

= 1

2
[vnj + vnj+1] − λ

αk�t

2�x
[vnj+1 − vnj )] (4.18b)
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Having computed all the derivatives in (4.16), we compute the updated solutions

u
n+ 1

2

j− 1
2

and u
n+ 1

2

j+ 1
2

as follows:

u
n+ 1

2

j− 1
2

= u(x
j− 1

2
+ (θn − 1

2
)�x, tn+

1
2 ) and u

n+ 1
2

j+ 1
2

= u(x
j+ 1

2
+ (θn − 1

2
)�x, tn+ 1

2 )

(4.19)

Step 3
Solve the RP(j− 1

2 , j+ 1
2 ) with initial data (4.19) to find u

n+1
j and then find Taylor

expansion

u(xj + θn+1�x, tn+1) = u(xj, t
n+1) +

m−1∑
k=1

{
∂k

∂xk
u(k)(xj, t

n+1)

}
(θn+1�x)k

k! + o(�x)m

(4.20)

where the first term is the solution of conventional RP(j− 1
2 , j+ 1

2 ) by using the LxF
scheme

un+1
j = 1

2
[un+

1
2

j− 1
2

+ u
n+ 1

2

j+ 1
2

] − α0�t

2�x
[f(un+

1
2

j+ 1
2

) − f(u
n+ 1

2

j− 1
2

)] (4.21)

The terms u(k)
x (x

j+ 1
2
, tn+

1
2 )(k = 1,2,…,m-1) are the solutions of the k-th order

derivative RPs linearized locally around the first term of (4.20):

vt + λ(u(xj, tn+1))vx = 0,

v(x, 0) =
{
u(k)
L (xj), x < xj

u(k)
R (xj), x > xj

⎫⎪⎬
⎪⎭ (4.22)

v = u(k)
x are evaluated by the LxF scheme:

v
n+ 1

2
j = 1

2
[vn+

1
2

L (xj) + v
n+ 1

2
R (xj)] − λ

αk�t

2�x
[vn+

1
2

R (xj) − v
n+ 1

2
L (xj)] (4.23a)

In the case of piece-wise constant, this scheme becomes

vn+1
j = 1

2
[vn+

1
2

j + v
n+ 1

2
j+1 ] − λ

αk�t

2�x
[vn+

1
2

j+1 − v
n+ 1

2
j )] (4.23b)

After computing all the derivatives in (4.20), we sample the updated solutions un+1
j

as follows:

un+1
j = u(xj + (θn+1 − 1

2
)�x, tn+1) 0 ≤ θn+1 ≤ 1 (4.24)
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4.3 Central RCMwith third-order Flux

The main target of this paper is to enhance the accuracy of the CRCM. For this
purpose, we use the central third-order TVD flux [22] instead of the first-order flux
as the building block of the presented methods. The new method is denoted by the
CRCM-r-TVD method. It consists of the following steps:

Step 1
Firstly, we solve the RP(j − 1

2 , j + 1
2 ) to obtain the solution un+1

j as

un+1
j = 1

2
[un

j− 1
2

+ u
n+ 1

2

j+ 1
2

] − α0�t

�x
[Fn

j+ 1
2

− Fn
j− 1

2
] (4.25)

Here we use the third-order TVD flux presented in [22]. For linear Eq. (4.1–4.2)

Fj+1/2
= 1

2

(
λuj + λuj+1

) − 1

2
|λ|�j+1/2

u

+ |λ|
{
A0�j+1/2

u + A1�j+L+1/2
u
}
ϕj + |λ|A2�j+M+1/2

uϕj+M (4.26)

where L = −1,M = 1 for c > 0 and L = 1, M = −1 for c < 0.
Here c = λ �t

�x is the Courant number and �j+1/2
u = uj+1 − uj,

A0 = 1

2
− |c|

4
, A1 = −|c|

8
− c2

8
, A2 = −|c|

8
+ c2

8
(4.27)

Here φj and φj+M are flux limiter functions see [22].
For nonlinear scalar problems λ = λ(u), we define the wave speed

λ
j+ 1

2
=

⎧⎪⎪⎨
⎪⎪⎩

�
j+ 1
2
f

�
j+ 1
2
u �

j+ 1
2
u �= 0

∂f
∂u

∣∣
uj

�
j+ 1

2
u = 0

(4.28)

The numerical flux (4.2) takes the form

Fj+1/2
= 1

2

(
fj + fj+1

) − 1

2

∣∣∣∣λj+ 1
2

∣∣∣∣�j+1/2
u

+
∣∣∣∣λj+ 1

2

∣∣∣∣
{
A0�j+1/2

u + A1�j+L+1/2
u
}
φj +

∣∣∣∣λj+ 1
2

∣∣∣∣A2�j+M+1/2
uφj+M (4.29)

The coefficients Aj are the same (4.27) with replacing c by c
j+ 1

2
= �t

�xλj+ 1
2
.

Then we use Taylor expansion

u(xj + θn+1�x, tn+1) = u(xj, t
n+1) +

m−1∑
k=1

{
∂k

∂xk
u(k)(xj, t

n+1)

}
(θn+1�x)k

k! + o(�x)m (4.30)
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where un+1
j is given by (4.25). The terms u(k)

x (x
j+ 1

2
, tn+

1
2 )(k = 1,2,…,m-1) are the

solutions of the k-th order derivative RPs linearized locally around the first term of
(4.30):

vt + λ(u(xj, tn+1))vx = 0,

v(x, 0) =
{
u(k)
L (xj), x < xj

u(k)
R (xj), x > xj

⎫⎪⎬
⎪⎭ (4.31)

v = u(k)
x are evaluated by the finite difference scheme:

vn+1
j = 1

2
[vn

j− 1
2

+ v
n+ 1

2

j+ 1
2

] − αk�t

�x
[Fn

j+ 1
2

− Fn
j− 1

2
] (4.32)

with the third-order TVD (4.25).
After computing all the derivatives in (4.30), we sample the updated solutions un+1

j
as follows:

un+1
j = u(xj + (θn+1 − 1

2
)�x, tn+1) 0 ≤ θn+1 ≤ 1

4.4 semi-discrete finite volume scheme

There is another approach for establishing numerical methods, this is the semi-discrete
method. In this approach, we consider the discretization in space, while leaving the
problem continuous in time. This produces an Ordinary Differential Equation (ODE)
in time. This approach gives more flexibility and is well suitable for constructing very
high–order schemes.

By integrating (4.1) with respect to x and keeping the time variable continuous, we
obtain the semi-discrete finite volume scheme

d

dt
uj(t) = − 1

�x

{
F
j+ 1

2
− F

j− 1
2

}
(4.33)

where uj(t) and F
j+ 1

2
are

uj(t) = 1

�x

x
j+ 1
2∫

x
j− 1
2

u(x, t) dx, F
j+ 1

2
= F(u

j+ 1
2
(t)) (4.34)

Equation (4.33) is a system of time-dependent ODEs that should be solved by using
a stable ODE solver that keeps the spatial accuracy of the scheme. In this study, we

123



Central random choice methods for hyperbolic conservation laws

use the linear strong-stability-preservingRunge–Kutta algorithm �SSPRK (s,s-1) i.e.,
s-stage and (s-1)-th order method, presented by Gottlieb [5].

For our central RCM, we use the semi-discrete scheme (4.33) instead of fully
discrete schemes (4.3).

5 Accuracy

In this section, we discuss the accuracy of the central CRCM based on a semi-discrete
scheme on non-staggered grids. We will discuss the accuracy of the assumption of a
smooth solution.

Firstly, we reconstruct, at tn, the cell averages unj by a piece-wise polynomial Pj (x).
To fade the spurious oscillations near discontinuities, we use the WENO polynomial
reconstruction. For r stencils, we construct the polynomial Pj(x) of degree (r-1) and
therefore the spatial accuracy is (2r-1)-th order i.e.,

Pj(x) = u(x, tn) + o(�x)2r−1 (5.1)

and the spatial accuracy for the k-th order derivative for u is (r-k)-th order

∂(k)
x Pj(x) = u(k)

x (x, tn) + o(�x)r−k (5.2)

Also, the function gj(x) = f(Pj(x)) has the order of accuracy [11, 23]

gj(x) = f(x, tn) + o(�x)2r−1 (5.3a)

∂(k)
x gj(x) = f(k)x (x, tn) + o(�x)r−k (5.3b)

The numerical solution defined in (4.13) with (4.9) can be written as

un+1
j = u(x

j+ 1
2

+ θn�x, tn+1) = u(x
j+ 1

2
, tn+1)

+
m−1∑
k=1

{
∂k

∂xk
u(x

j+ 1
2
, tn+1)

}
(θn�x)k

k! + o(�x)m (5.4)

where the first term is the solution of (4.10) using the semi-discrete scheme (4.33)
with the truncation error

T0(xj, t
n) = duj

dt
+ 1

�x

{
F
j+ 1

2
− F

j− 1
2

}
= [ut + o(�t)s] + [fx + o(�x)2r−1]

= o(�t)s + o(�x)2r−1 (5.5)

Since ut + fx = 0. Here s is the order of the time discretization method.
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The remaining terms of (5.4) are the solutions of (4.11) with (4.33) with the error

Tk(xj, t
n) = o(�t)s + o(�x)r−k (5.6)

Therefore from (5.4–5.6) we get the solution un+1
j with the total truncation error

T(xj, t
n+1) = [o(�t)s + o(�x)2r−1] +

m−1∑
k=1

[o(�t)s + o(�x)r−k] (θ�x)k

k! + o(�x)m

= o(�t)s + o(�x)2r−1 + o(�t)s
m−1∑
k=1

o(�x)k
θk

k! + o(�x)r.
m−1∑
k=1

θk

k! +o(�x)m

(5.7)

If the ratio �t
�x is constant, we get

T(xj, t
n+1) = o(�t)s + o(�x)2r−1 + o(�x)s

m−1∑
k=1

o(�x)k
θk

k! + o(�x)r
m−1∑
k=1

θk

k! +o(�x)m

Since θ ≤ 1 i.e., θk

k! is bounded, therefore

∣∣T(xj, t
n+1)

∣∣ ≤ o(�t)s + o(�x)2r−1 + o(�x)s
m−1∑
k=1

A1o(�x)k + A2o(�x)r + o(�x)m

where A1 and A2 are constants.
Therefore

∣∣T(xj, t
n)

∣∣ ≤ C1(�x)d + C2(�t)s (5.8)

where C1 and C2 are constants and d=min{s+ 1,r,m}. Using theWENO reconstruc-
tion of order r, the time discretization of order s and Taylor expansion (4.9) of order
m, we get the scheme of order s in time and d in space.

For the central RCM on staggered grids and RCM with TVD fluxes, we will see
the accuracy empirically.

6 Numerical experiments

In this section, we study, numerically, the efficiency and convergence properties of
our schemes presented here. To show the efficiency of the schemes, we compare
their numerical results with those of other state-of-the-art high-order shock-capturing
schemes, e.g., RCM [16] and central ADER schemes [22] and others. For all schemes
we use CFL = 0.45. For all examples, we use a uniform mesh with N as the number
of cells. In all graphs, the exact solution is shown by the full line while the numerical
solution is shown by symbols.
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Here, we compare the following schemes:

1. RCM is the original RCM [16]
2. NONS-CRCM-r is the non-staggered central RCM of the r-th order.
3. STAG-CRCM-r is the staggered central RCM of r-th order.
4. ADER-r is the r-th order central ADER scheme [23] with LxF flux.
5. ADER-r-TVD is the r-th order central ADER scheme [23] with third-order TVD

flux [23].
6. CRCM-r- TVD is the CRCM of order r with third-order TVD flux [22].

We use the �SSPRK (s, s-1), s = 6 method for time integration for the linear
problems while for the nonlinear problems we replace the linear SSPRK schemes
with SSPRK(5,4) method. [5]

6.1 Example 1 (Convergence tests)

Firstly, we test the accuracy of the new schemes on the linear scalar problems.

ut + ux = 0, x ∈ [−1, 1] (6.1)

with periodic initial conditions

u(x, 0) = sin(πx − sinπx

π
) (6.2)

defined on [− 1, 1]. Table 1 presents the convergence rates and errors in L1 norm at
time t= 20. We notice, from the table, that ADER5, NONS-CRCM-5, STAG-CRCM-
5, ADER-5-TVD, and CRCM-5-TVD methods reach the designed order of accuracy.
Also, we observe that the central RCM schemes, presented here, are more accurate
in both error sizes and order of accuracy while ADER-5-TVD and CRCM-5-TVD
are more accurate (approximately 6.5). Moreover, CRCM-5-TVD is comparable with
ADER-5-TVD. From Table 1 we have the following notes:

1- the CPU time used by the NONS-CRCM-5 scheme is about 66% of that by the
ADER5 scheme on a given mesh. While the CPU time used by the Stag-CRCM-5
scheme is about 75% of that by the ADER5 scheme on a given mesh. This is due to a
less flux evaluation in CRCM than in the ADER methods.

2- As expected, ADER-5-TVD and CRCM-5-TVD are the most accurate in both
error sizes and order of accuracy. This is due to utilizing high-order flux (third-order
TVD) instead of first-order flux. However, the CPU time used by CRCM-5-TVD
is about 35% of ADER-5-TVD on given meshes. Moreover, the CPU time used by
CRCM5-TVD is about 52%of that by NONS-CRCM-5 and is about 57% of STAG-
CRCM. This is due to the evaluations of the updated solution of NONS.CRCM-5 and
STAG-CRCM methods are computed by using the information of the adjacent two
RPs, while for CRCM-5-TVD, we use only one RP. Figure 3 shows the comparison
of the efficiency of L1 errors versus CPU time. We observe that the scheme with the
least CPU time to achieve the same error would have the best efficiency, therefore
CRCM-5-TVD is the most efficient. It is beneficial to see how the numerical solution
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Table 1 Convergence study for example 1

Method Mesh L1 error L1 order CPU time

ADER-5-TVD 10 2.17E-6 3.67E-2

20 2.38E-8 6.51 1.27E-1

40 2.45E-10 6.60 5.13E-1

80 2.36E-12 6.69 1.91E+0

160 2.53E-14 6.54 7.61E+0

ADER-5 10 8.01E-5 2.91E-2

20 2.43E-6 5.04 1.08E-1

40 7.51E-8 5.02 4.01E-1

80 2.42E-9 4.95 1.53E+0

160 7.11E-11 5.09 5.75E+0

NONS-CRCM-5 10 6.13E-5 1.92E-2

20 1.53E-6 5.32 7.34E-2

40 3.82E-8 5.33 2.80E-1

80 9.74E-10 5.30 1.06E+0

160 2.44E-11 5.32 4.05E+0

STAG-CRCM-5 10 7.21E-5 2.16E-2

20 1.97E-6 5.19 6.24E-2

40 5.31E-8 5.21 3.12E-1

80 1.43E-9 5.21 1.19E+0

160 3.83E-11 5.22 4.54E+0

CRCM-5-TVD 10 2.37E-6 1.23E-2

20 2.46E-8 6.59 4.76E-2

40 2.63E-10 6.55 1.81E-1

80 2.57E-12 6.68 6.89E-1

160 3.11E-14 6.37 2.65E+0

depends on the number of grid points N. For this target the errors of the numerical
solutions in L1 norms are shown in Fig. 4 as a function of the number of grid points
N. It is clear that NONS-CRCM-5, STAG-CRCM-5, and ADER-5 schemes achieve
the fifth-order accuracy even on coarse grids. The ADER-5-TVD and CRCM-5-TVD
schemes achieve approximately seventh order. For reference targets, we plot the lines
with N−5 and N−7 slopes, which are consistent with the formal order of accuracy of
the schemes.

6.2 Example 2. (Example with discontinuities)

We consider the linear Eq. (6.1) with the following initial data
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Fig. 3 CPU time and L1 error curve for Example 1

Fig. 4 Rate of convergence in terms of L1 error for example 1

u(x, 0) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
6 [G(x, z − δ) + G(x, z + δ) + 4G(x, z)], −0.8 ≤ x ≤ −0.6
1, −0.4 ≤ x ≤ −0.2
1 − |10(x − 0.1)| 0 ≤ x ≤ 0.2
1
6 [F(x, a − δ) + F(x, a + δ) + 4F(x, a)], 0.4 ≤ x ≤ 0.6
0, otherwise

(6.3)

Here G(x, z) = exp(−β(x − z)2), F(x, a) = {max(1 − α2(x − a)2, 0}1/2 and peri-
odic boundary conditions on [-1,1]. Where the constants a = 0.5, z = −0.7, δ =
0.005, α = 10 and β = (log 2)/36δ2. It is clear that the initial condition consists of
different shapes which are difficult for numerical schemes to resolve correctly. Some
of them are not smooth and the others are smooth but very sharp. We compute the
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solution to this problem at time t = 20 with 200 cells. Figures 5, 6, 7 and 8 show
the results of RCM, NONS-CRCM-5, Stag-CRCM-5 and CRCM-5-TVD schemes
respectively. Comparing these results with the ADER5 and ADER5-TVD schemes
(Figures 3–4 in [23]), we observe that the RCM produces sharp discontinuities while
the accuracy in the smooth regions is poor, the numerical solution obtained by the
ADER5 is quite satisfied. NONS-CRCM-5 and STAG-CRCM-5 schemes are better
results while the numerical solutions obtained by CRCM-5-TVD and ADER-5-TVD
schemes are almost indistinguishable from the exact solution. Comparing the results
here with the sixth-orderWENO schemes presented in [7, 8, 20] (figure 5 in [8] with N
= 400, figure 4 in [20]withN= 400, and figure 6 in [7]withN= 200)we observed that
our schemes are comparable to them but they are much better in capturing the shocks
and approximating top of the semi-ellipse. Also, we notice that the CRCM-5-TVD
is superior. In Table 2, the errors and the CPU time are presented. It is clear that the

Fig. 5 Solution of Example 2 using RCM scheme at t = 20

Fig. 6 Solution of Example 2 using NONS-CRCM-5 scheme at t = 20
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Fig. 7 Solution of Example 2 using Stag-CRCM-5 scheme at t = 20

Fig. 8 Solution of Example 2 using CRCM-5-TVD scheme at t = 20

CPU time used by the NONS-CRCM-5 scheme is about 68% of that by the ADER5
scheme on a given mesh. While the CPU time used by the Stag-CRCM-5 scheme is
about 75% of that by the ADER5 scheme on a given mesh. However, the CPU time
used by CRCM-5-TVD is about 39% of ADER-5-TVD on a given mesh. Moreover,
the CPU time used by CRCM5-TVD is about 75% of that by NONS-CRCM-5 and is
about 69% of STAG-CRCM. Figure 9 shows the comparison of the efficiency of L1

errors versus CPU time. We note that the CRCM-5-TVD scheme is the most efficient.
Figure 10 shows the distribution of the L1 norm of the solution error as a function
of N. It is clear that all schemes achieve first-order accuracy, since the convergence
rate is reduced to N−1 approximately, which is to be expected when discontinuities
are involved.
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Table 2 Convergence study for example 2

Method Mesh L1 error L1 order CPU time

ADER-5-TVD 200 3.34E-4 9.25E+0

400 1.45E-4 1.20 3.49E+1

800 6.26E-5 1.21 1.33E+2

1600 2.72E-5 1.20 5.05E+2

ADER5 200 7.68E-3 7.04E+0

400 3.52E-3 1.13 2.72E+1

800 1.62E-3 1.12 1.06E+2

1600 7.53E-4 1.11 4.11E+2

NONS-CRCM-5 200 2.68E-3 4.81E+0

400 1.19E-3 1.17 1.82E+1

800 5.36E-4 1.15 7.05E+1

1600 2.37E-4 1.17 2.66E+2

Stag-CRCM-5 200 2.77E-3 5.26E+0

400 1.26E-3 1.14 2.02E+1

800 5.81E-4 1.12 7.64E+1

1600 2.62E-4 1.15 2.91E+2

CRCM-5-TVD 200 3.94E-4 3.63E+0

400 1.79E-4 1.16 1.36E+1

800 7.86E-5 1.19 5.17E+1

1600 3.61E-5 1.12 1.93E+2

Fig. 9 CPU time and L1 error curve for Example 2
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Fig. 10 Rate of convergence in terms of L1 error for example 2

6.3 Example 3 (Burgers’ equation)

It is well known that the Burger problem has simple acoustic waves and therefore
allows shocks. It has the form

ut +
(
u2

2

)
x

= 0, (6.4)

with initial condition

u(x, 0) =
{−1 |x| ≥ 0.5
2 |x| < 0.5

(6.5)

The breakdown of the initial discontinuity gives a shock wave with a speed of 0.5
and a simple centered expansion fan with a sonic point. At t = 2/3 the rarefaction
hits the shock and therefore the solution has a rarefaction wave only. Figures 11,
12, 13 and 14 show the results at t = 0.4 (before the collision of the head of the
rarefaction with the shock) and t = 1 (after collision), with 80 grid points, obtained by
RCM, NONS-CRCM-5, STAG-CRCM-5, and CRCM-5-TVD schemes respectively.
We notice from the figures that the RCM produces sharp discontinuities while the
accuracy in the smooth regions is poor. The numerical solution obtained by theADER5
is quite satisfied. NONS-CRCM-5 and STAG-CRCM-5 schemes are better results
while and the numerical solutions obtained by CRCM-5-TVD and ADER-5-TVD
schemes are almost indistinguishable from the exact solution.
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Fig. 11 Solution of Example 3 using RCM scheme

Fig. 12 Solution of Example 3 using NONS-CRCM-5 scheme

6.4 Example 4 (Buckley-Leverett Equation)

To show the performance of our schemes, we solve the Buckley-Leverett problem
with non-convex fluxes

ut +
(

4u2

4u2 + (1 − u)2

)
x

= 0, (6.6)

with initial condition

u(x, 0) =
{
1 −0.5 ≤ x ≤ 0
0 elsewhere

(6.7)

The exact solution to this problem is a shock-rarefaction-contact discontinuity mix-
ture. It is observed that, for this problem, some high-order schemes fail to converge
to the correct entropy solution. Figures 15, 16, 17 and 18 show the numerical results
at t = 0.4 obtained by RCM, NONS-CRCM-5, Stag-CRCM-5 and CRCM-5TVD
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Fig. 13 Solution of Example 3 using STAG-CRCM-5 scheme

Fig. 14 Solution of Example 3 using CRCM-5-TVD scheme

Fig. 15 Solution of Example 4 using RCM
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Fig. 16 Solution of Example 4 using NONS-CRCM-5 scheme

Fig. 17 Solution of Example 4 using STAG-CRCM-5 scheme

schemes respectively with 80 cells. We notice that NONS-CRCM-5 and Stag-CRCM-
5 schemes capture the correct entropy solution well, with good resolutions for all the
major features in the solution. While the RCM scheme produces the smooth regions
of the solution with poor accuracy. Comparing these figures with the solution obtained
by ADER5and ADER-5-TVD (Figures. 13–14 in [23]), we observe that our schemes
are more accurate.
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Fig. 18 Solution of Example 4 using CRCM-5-TVD scheme

6.5 Systems of conservation laws

Here we extend our schemes to solve the system of Euler equations of gas dynamics
as hyperbolic systems of conservation laws of the form

Ut + F(U)x = 0, (6.8)

where U = (ρ, ρu,E)T, F(U) = (ρu, ρu2 + P, u(E + P))T, where ρ, u, P, E denote
density, velocity, pressure, and the total energy E = 1

2ρu
2 + P

(γ−1) respectively. The
parameter γ denotes the ratio of specific heats, taken as 1.4 here.

6.5.1 Example 5. Lax’s Problem

This problem is the Eq. (6.8) with the initial condition consisting of two states, left
(L) and right (R)

(ρL, uL,EL) = (0.445, 0.698, 8.928) and (ρR, uR,ER) = (0.5, 0.0, 0 .571)
(6.9)

separated by a discontinuity at x = 0.5.The computational domain is taken as [0,1].
Figures 19, 20, 21 and 22 show the results obtained by RCM, NONS-CRCM-5,
STAG-CRCM-5 and CRCM-5TVD schemes respectively at t = 0.16 with 100 cells.
Comparing these results in the figures and Fig. (16–17) in [22] and figure 9 in [8], we
note that our schemes are still better than the other schemes.

123



Y. H. Zahran, A. H. Abdalla

Fig. 19 Solution of Example 5 using RCM

Fig. 20 Solution of Example 5 using the NONS-CRCM-5 scheme

Fig. 21 Solution of Example 5 using STAG-CRCM-5 scheme

6.5.2 Example 6. Blast wave problem

In order to examine the robustness of the numerical schemes presented here, we solve
the blast problem introduced by Woodward and Colella [21] which is a severe test
problemand is very difficult to be solved numerically. Its solution contains the collision
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Fig. 22 Solution of Example 5 using CRCM-5-TVD scheme

of strong shockwaves and interaction of shockwaves and rarefactions, the propagation
of strong shock waves into low-pressure regions, and is, therefore, a good test of the
schemes. The initial condition consists of three states [21]

U(x, 0) =
⎧⎨
⎩

(ρL, uL,PL) = (1, 0, 1000), x < 0.1
(ρM, uM,PM) = (1, 0, 0.01), 0.1 < x < 0.9
(ρR, uR,PR) = (1, 0, 100), x > 0.9

(6.10)

with γ = 1.4. The boundary conditions are reflective at both boundaries. We present
the numerical results of the density and velocity of this complex problem in Fig. 23
obtained by the CRCM-5-TVD scheme with 200 cells at time t= 0.028 and t= 0.038.

Fig. 23 Solution of Example 6 using NONS-CRCM-5 scheme at t = .028 (up)and t = .038 (down)
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The exact solution is computed by the fifth-orderWENO [1] schemewith 4000 cells. It
is clear that our scheme can compute such sharp resolution of the complex double-blast
problem, especially, since the density peaks have almost the correct value. Comparing
the figures here with the results in [7, 8, 20], we conclude that our schemes are more
accurate and more efficient.

Note: For the results obtained by NONS-CRCM-5 and STAG-CRCM-5 (not pre-
sented here), they are similar to Fig. 23.

6.5.3 Example 7. Shock/turbulence interaction problem

In order to show the advantages of the schemes presented here, we solve an example
with a rich smooth structure and a shock wave. This example is the problem of shock
interaction with entropy waves.

We take Eqs. (6.8) with a moving Mach = 3 shock interacting with sine waves in
density; i.e., the initial condition is

(ρL, uL,PL) = (3.857143, 2.629369, 10.3333), for x ≤ 0.1

(ρR, uR,PR) = (1 + 0.2 sin 50x, 0, 1), for x > 0.1 (6.11)

The solution contains physical oscillations which should be resolved by the numer-
ical method. We compute the solution at t = 0.18 with 200 grid points. Figures 24, 25
and 26 show the computed density by NONS-CRCM-5 STAG-CRCM-5 and CRCM-
5TVD schemes against the reference solution, which is computed by the fifth-order
WENO scheme [1] with 4000 grid points. Comparing the results with ADER 5 and
ADER-5-TVD schemes (figure 19–20 in [23]) and the results in [7, 8, 20], we observe
that all the schemes presented here produce the most accurate solution and are more
efficient.

Figure24 Solution of Example 7 using the NONS-CRCM-5 scheme
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Fig. 25 Solution of Example 7 using STAG-CRCM-5 scheme

Fig. 26 Solution of Example 7 using CRCM-5-TVD scheme

6.6 Extension to two-dimensional problems

The schemes presented here can be applied to two-dimensional problems by using
the space operator splitting technique. For example, we consider the two dimensional,
Euler equations

Ut + [F(U)]x + [G(U)]y = 0 (6.12)

where U = (ρ, ρu, ρv,E)T, F(U) = (ρu,P + ρu2, ρuv, u(P + E))T , G(U) =
(ρv, ρuv,P+ρv2, v(P+E))T, P = (γ−1)

[
e − 0.5ρ(u2 + v2)

]
, S = P

ργ , γ = 1.4.here
ρ,P,S, e, u, v are density, pressure, entropy, the specific total energy of the fluid, x-
component, and y-component of the velocity respectively. There are several forms of
space splitting. We take here the simplest one, where the two-dimensional problem
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Fig. 27 Double Mach reflection problem (Example 8). 30 density contours are equally spaced from 1.5 to
22.7 on a system size 960 × 240 for Stag-CRCM-5 (top), NONS-CRCM-5 (middle) and CRCM-5-TVD
(bottom)

(6.12) is replaced by the sequence of two one-dimensional problems [16, 19]

Ut + [F(U)]x = 0 (6.13a)

Ut + [G(U)]y = 0 (6.13b)

If Un is the data at time level n for the problem (6.12) are given, then the solution
Un+1 at the time level n + 1 is obtained in the following two steps:

(a) solve the Eq. (6.13a) with data Un to obtain an intermediate solution U
n+1

(x-
sweep);
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Table 3 CPU time (in seconds)
for the double Mach reflection
problem (Example 8)

Method 480 × 120 960 × 240 1920 × 480

Stag-CRCM-5 1821 14,270 111,827

NONS-CRCM-5 1637 12,863 100,315

CRCM-5-TVD 1137 9187 71,682

(b) solve the Eq. (6.13b) with data U
n+1

to obtain the complete solution Un+1 (y-
sweep);

For three-dimensional problems, we add an extra z-sweep.

6.6.1 Example 8. Double Mach reflection problem

This problem is the two-dimensional Eqs. (6.12) on the domain is [0, 4] × [0, 1].The
reflecting wall is starting from x = 1

6 at the bottom of the domain. A right-moving
Mach 10 shock is, initially, positioned at (x, y) = ( 16 , 0) and forms 60◦ an angle with
the x-axis. The exact post-shock condition is assumed from x = 0 to x = 1

6 , for the
bottom boundary, and a reflective boundary condition is used for the rest of the x-axis.
The data is put to describe the exact motion of the Mach 10 shock, at the top boundary
of the computational domain [21]. We take the output time as t= 0.2. Figure 27 shows
the density obtained byNONS-CRCM-5 STAG-CRCM-5 andCRCM-5TVD schemes
on the 960 × 240 cells. Comparing these results with those in the existing literature
e.g., [7, 21] it is noticed that our schemes produce the flow pattern generally accepted
at present as corrected. All discontinuities are correctly positioned and well resolved.
In Table 3, we show the CPU time for the schemes presented here. We observe that
the CRCM-5TVD is more efficient.

6.6.2 Example 9. Two-dimensional Vortex evolution problem

Here we examine the accuracy of our methods in the two dimensions. We solve the
Eq. (6.12) with the initial conditions, corresponding to a smooth vortex, moving at
45o to the Cartesian mesh lines in the domain [−5, 5] × [−5, 5]. We use periodic
boundary conditions. The temperature and entropy are given as T = P

ρ
and S = P

ργ .
The vortex is defined as the following isentropic perturbation to the uniform flow of
unit values of primitive variables (ρ,P, u, v) = (1, 1, 1, 1):

u = 1 − ∈
2π

e
1
2 (1−r2)y, v = 1 + ∈

2π
e
1
2 (1−r2)x,

and the temperature

T == 1 − (γ − 1) ∈2

8γπ2 e(1−r2),
p

ργ
= 1
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Fig. 28 CPU time and L1 error curve for Example 9

where r2 = x2 + y2 and the vortex strength is ∈= 5. The numerical solution is
computed at the time t = 10 when the vortex returns to the initial position. We used
periodic boundary conditions in both directions. We observe that, although the flow is
smooth over the whole domain, there are critical points at the center of the vortex and
symmetric planes. Table 4 shows the errors and convergence for the NONS-CRCM-5,
Stag-CRCM-5,ADER-5, andRCM-5-TVDschemes.We observe thatNONS-CRCM-
5 and Stag-CRCM-5 schemes achieve the theoretical accuracy while the ADER-5
scheme achieves approximately a fourth-order convergence rate. We note here that
the CRCM-5-TVD is superior. Figure 28 shows the comparison of the efficiency of
L1 errors versus CPU time. We observe that the scheme with the least CPU time to
achieve the same error would have the best efficiency, therefore CRCM-5-TVD is the
most efficient.

6.6.3 Example 10 Forward-facing step problem [21]

The problem is as follows: the wind tunnel is of length wide unit and three length
units long. The step is 0.2 length units high and is located at 0.6 length units from
the left-hand end of the tunnel. The problem is started by a right-going Mach 3 flow.
Along the wall of the tunnel, the reflective boundary conditions are applied. At the
entrance and the exit, in and outflow boundary conditions are applied. The corner of
the step is a singular point and we treat it the sameway as in [21], which is based on the
assumption of a nearly steady flow in the near the corner. We compute the solution at
t = 4. We show in Fig. 29 the numerical results on mesh with 480×160 uniform cells
by the NONS-CRCM-5 STAG-CRCM-5 and CRCM-5TVD schemes. The results are
shown in Fig. 29 at t = 4. The figure shows 30 equally spaced density contours from
0.32 to 6.15. We can see that all the schemes capture the vortex sheet roll-up with
better resolution in comparison to the other schemes.
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Fig. 29 Forward step problem (Example 10). 30 density contours are equally spaced from 0.32 to 6.15 on a
system size 480 × 160 for Stag-CRCM-5 (top), NONS-CRCM-5 (middle), and CRCM-5-TVD (bottom)

7 Conclusions

In this paper, we presented an improved version of the RCM. We merge the central
ADER technique with the RCM for solving hyperbolic conservation laws. The result-
ing scheme is called Central RCM (CRCM). We use the WENO reconstruction for
the initial data instead of constant piece-wise reconstruction in RCM. Also, we use
the high order central finite difference schemes to solve the RPs numerically and then
use random sampling to update the solution, as the original RCM. Here we use the
staggered and non-staggered RCM. To enhance the accuracy of the new methods, we
use a third-order TVD flux [22], instead of a first-order flux. The resulting methods
have the advantages of the following methods: original RCM, ADER, and central
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finite difference methods. They capture the discontinuities with infinite resolution, are
more accurate, faster, simple to implement, RP solver free, use less computer mem-
ory, and improve the accuracy in smooth regions. An extension of the schemes to
general systems of nonlinear hyperbolic conservation laws in one and two dimensions
is presented. Many numerical examples are presented for one and two-dimensional
problems to confirm that the new schemes are superior to the other high-order schemes.
In the future, we plan to use the present schemes for balance laws, multidimensional
computations, and unstructured meshes.
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