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Abstract 

 

Relaxin-3 (INSL-7) is a recently discovered member of the insulin superfamily.  

Relaxin-3 mRNA is expressed in the nucleus incertus of the brainstem which has 

projections to the hypothalamus.  Relaxin-3 binds with high affinity to the LGR7 

receptor and to the previously orphan G-protein-coupled receptor GPCR135.  

GPCR135 mRNA is expressed predominantly in the CNS, particularly in the 

paraventricular nucleus (PVN).  The presence of relaxin-3 and its receptors in the 

PVN led us to investigate its effect on appetite by examining the effect of central 

administration of relaxin-3 on food intake in male Wistar rats, and to investigate 

which receptor may be involved in mediating these effects.  Intracerebroventricular 

(ICV) injections of human relaxin-3 (H3) in satiated rats significantly increased food 

intake 1h post-administration [0.96 ± 0.16g (vehicle) vs 1.81 ± 0.21g (180pmol H3), 

p< 0.05] and in the early dark phase [2.95 ± 0.45g (vehicle) vs 4.39 ± 0.39g (180pmol 

H3), p< 0.05].  IntraPVN administration of relaxin-3 significantly increased 1h food 

intake in satiated rats [0.34 ± 0.16g (vehicle) vs 1.23 ± 0.30g (18pmol H3), p< 0.05] 

and in the early dark phase [4.43 ± 0.32g (vehicle) vs 6.57 ± 0.42g (18pmol H3), p< 

0.05].  Feeding behavior was increased after iPVN relaxin-3 with no other altered 

behaviors.  Equimolar doses of human relaxin-2, which binds the LGR7 receptor but 

not GPCR135, did not increase feeding.  There was no acute change in NPY, POMC 

or AgRP mRNA expression 4h following ICV relaxin-3.  These results suggest a 

novel role for relaxin-3 in appetite regulation. 
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Introduction 

The relaxin peptides belong to the insulin superfamily, a group of structurally related 

hormones typified by the presence of an A and B chain linked by disulphide bridges 

and an intra-chain disulphide bond, similar to insulin (1).  Until recently, a single 

relaxin gene had been described in most mammalian species, M1 and R1 in mice and 

rats respectively (2;3) and H2 in humans (4).  The gene product is secreted by the 

corpus luteum in early pregnancy and is primarily associated with female 

reproductive physiology, as well as having a dipsogenic effect when administered 

both peripherally and centrally (5;6).  However, a further relaxin gene, relaxin-3, has 

now been identified in humans (H3) (7), mice (M3) (7) and most recently in rats (R3) 

(8).  The gene products of H3, M3 and R3 retain their insulin-like peptide structure 

and are highly homologous.  Whilst R1 and M1 mRNA are expressed in many tissues, 

R3 and M3 mRNA expression is localised to the nucleus incertus (NI) of the 

brainstem (8) which has extensive projections to the hypothalamus (9).  These include 

areas such as the lateral mammillary nucleus, the supramammillary nucleus, the 

posterior hypothalamic nucleus, the lateral hypothalamic zone, and relatively weaker 

inputs from the NI to the medial and periventricular zones (9).  Relaxin–like 

immunoreactivity has been described in the hypothalamic arcuate (ARC) and 

paraventricular (PVN) nuclei (10).  

 

Unlike insulin, relaxin peptides signal via G-protein coupled receptors to modulate 

intracellular cAMP.  The gene products of R1 and M1 act via two leucine-rich repeat-

containing receptors, LGR7 and LGR8 (11).  More recent studies suggest that relaxin-

1 may be the endogenous ligand for LGR7 and another insulin-like peptide, INSL3, 

may be the physiological ligand for LGR8 (12).  LGR7, expressed predominantly in 
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reproductive tissues but also in the CNS (11), binds relaxin-3 with high affinity (13).  

However, relaxin-3 is the cognate ligand for two previously orphan G-protein-coupled 

receptors, GPCR135 and GPCR142 (14;15).  Whilst GPCR142 expression is absent in 

the rat, GPCR135 mRNA is highly expressed in the rat brain, particularly the PVN  

and the supraoptic nucleus (SON) (14;16).  The distribution of relaxin-3 and its 

receptors suggest this system could play a role in the regulation of appetite.  The aims 

of these studies are to investigate the effects of relaxin-3 on food intake and to 

examine which receptor may mediate this effect.  

 

 

Methods 

Materials 

Human relaxin-3 (H3) was purchased from Phoenix Pharmaceuticals (Belmont, CA) 

and synthesized by the company using solid phase synthesis.  Recombinant human 

relaxin-2 (H2) was purchased from Dr A. Parlow, National Hormone and Peptide 

Program (Torrance, CA).  Reagents for Ribonuclease Protection Assay studies were 

purchased from Ambion (Austin, TX). 

 

Animal studies 

Male Wistar rats (Specific pathogen free, Charles River, UK) weighing 250-300g 

were maintained in individual cages for all studies.  All animals were kept under 

controlled temperature (21-23C) and light (12h light, 12h dark, lights on at 0700h) 

with ad libitum access to food (pelleted RM1 chow diet, SDS, UK) and water.  All 

procedures undertaken were approved by the British Home Office Animals Scientific 

Procedures Act 1986 (project license 70/5516).  
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Food and water intake studies 

Male Wistar rats underwent third ventricle (ICV) or unilateral intra-paraventricular 

nucleus (iPVN) cannulation 7-10 days before feeding studies and were habituated to 

regular handling and injection, as previously described (17).  Central injections (5µl 

(ICV) or 1µl (iPVN)) were administered over 1 minute via stainless steel injectors 

(27-gauge (ICV) or 31-gauge (iPVN)), placed in and projecting 1mm below the end 

of the cannula.  Spread of a 1µl injection into the PVN is reported to be limited to 1 

mm3 (18).  All compounds were dissolved in vehicle (10% acetonitrile in 0.9% saline) 

and studies were performed in satiated rats (n = 10-12) in the early light phase (0900 

– 1000h) unless otherwise stated.  Following injection, animals were returned to their 

home cage with pre-weighed chow.  Food intake was measured at 1, 2, 4, 8, and 24 

hours post-injection. NPY was administered as a positive control in food intake 

studies (5 nmol/animal ICV or 0.5 nmol/animal iPVN).  Water intake was measured 

at 1 and 2 hours post-injection.  Angiotensin II was administered ICV as a positive 

control (150 ng/rat) in water intake studies.  

 

IntraPVN cannula position was verified histologically at the end of the study (17).  

Immediately following decapitation, 1 μl Indian ink was injected into the cannula.  

The brains were removed and fixed in 4% paraformaldehyde, dehydrated in 40% 

sucrose and frozen in liquid nitrogen and stored at -70C.  Brains were sliced on a 

cryostat (Bright, Huntingdon, UK) into 15 μm coronal sections and correct PVN 

placement determined by microscopy according to the position of the Indian ink.  ICV 

cannula position was verified by a positive dipsogenic response to angiotensin II 
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(150ng/rat).  Only those animals with correct cannula placement were included in the 

data analysis.   

 

Behavioral response following ICV and  iPVN administration of relaxin-3 

Behavioral responses were monitored following ICV administration of vehicle or 180 

pmol relaxin-3 (H3) and iPVN administration of vehicle, 18 pmol or 180 pmol 

relaxin-3 (H3) (n = 10).  Animals were immediately returned to their home cages and 

observed for 1h following injection by an investigator blinded to the experimental 

treatment.  Behavior was classified into one of nine categories: feeding, drinking, 

grooming, burrowing, rearing, locomotion, sleep, head down, and tremor.  Each rat 

was observed for three 3 sec periods every 6 min and the behavior in each period 

scored as previously described (19).  

 

Hypothalamic neuropeptide expression following relaxin-3 administration 

Hypothalamic neuropeptide mRNA expression was measured following ICV 

administration of vehicle or relaxin-3 (H3) (180 pmol) (n = 10-12).  Food was 

removed immediately following injection and at four hours animals were killed, 

hypothalami dissected and snap frozen.  Hypothalamic neuropeptide Y (NPY), agouti 

related peptide (AgRP) and pro-opiomelanocortin (POMC) mRNA expression were 

determined by ribonuclease protection assay (RPA).  Briefly, RNA was extracted 

using Tri-Reagent (Helena Biosciences, Sunderland) according to the manufacturer’s 

protocol.  Rat β-actin (Ambion Inc.) was used to correct for RNA loading.  RNA was 

hybridized overnight at 42C with 1.3 x 103 Bq of 32P[CTP] labelled riboprobe.  

Reaction mixtures were digested with RNase A/T1, the protected fragments 

precipitated and separated on a 4% polyacrylamide gel.  The dried gel was exposed to 

 6



a phosphorimager screen overnight and bands quantified by image densitometry using 

ImageQuant software (Molecular Dynamics, Sunnyvale, CA) (19). 

 

Statistical analysis 

Results are shown as mean ± S.E.M. Data from feeding and water intake studies were 

compared by ANOVA with post-hoc LSD test (Systat, Evanston, IL).  Neuropeptide 

expression data were compared by unpaired Student’s t-test between control and 

treated groups.  Behavioral data were non-parametric and are expressed as median 

number of occurrences of behavior (interquartile ranges are expressed in square 

brackets).  Comparison between groups was made by Mann-Whitney U test.  In all 

cases, p < 0.05 was considered to be statistically significant.   

 
 

Results 

Feeding studies  

To investigate the hypothesis that relaxin-3 is involved in regulation of appetite, food 

intake was determined following central relaxin-3 administration. 

 

Study 1: Effect of ICV relaxin-3 on food intake in rats in early light phase and early 

dark phase 

Animals received an ICV injection of either vehicle or relaxin-3 (18, 54 or 180 pmol 

H3) in the early light phase.  Doses used were based on previously reported effects of 

porcine relaxin-1 on water intake (6).  ICV relaxin-3 significantly increased food 

intake in the first hour at both 54 pmol and 180 pmol  [0.96 ± 0.16 g (vehicle) vs 1.80 

± 0.27 g (54 pmol H3) and 1.81 ± 0.21 g (180 pmol H3), p< 0.05], (Fig 1A).  There 

was no significant difference in interval food intake between control and treated 

 7



groups at later time points.  However, cumulative food intake was significantly 

increased at all doses of relaxin-3 at 2h and 4h following ICV administration (Fig 

1B).   

 

Rats received an ICV injection of either vehicle or relaxin-3 (180 pmol H3) at the 

beginning of the dark phase.  Nocturnal food intake was significantly increased in the 

first hour following relaxin-3 administration [2.95 ± 0.45 g (vehicle) vs 4.39 ± 0.39 g 

(180 pmol H3), p< 0.05], (Fig 1C).  There was no significant effect on interval food 

intake at later time points or in cumulative food intake.  

 

Study 2: Effect of ICV relaxin-2 on food intake in satiated rats in early light phase 

To differentiate the receptor mediating the effects of relaxin-3 on food intake, the 

feeding response to relaxin-3, which binds both LGR7 and GPCR135 receptors, was 

compared to that following administration of relaxin-2 (H2), which binds LGR7 but 

not GPCR135.  Satiated rats received an ICV injection of either 180 pmol H3 or 180 

pmol H2 in the early light phase.  Following ICV administration of equimolar doses, 

relaxin-3 stimulated one-hour food intake as previously shown [0.21 ± 0.09 g 

(vehicle) vs 1.50 ± 0.40 g (180 pmol H3), p< 0.05] (Fig 2), as well as cumulative food 

intake up to 4h [0.75 ± 0.27 g (vehicle) vs 2.18 ± 0.46 g (180 pmol H3), p< 0.05]. In 

contrast, relaxin-2 had no significant effect on food intake at any time point following 

administration [0.21 ± 0.09 g (vehicle) vs 0.43 ± 0.13 g (180 pmol H2) at 1h], (Fig 2).  

 

Study 3: Effect of ICV relaxin-2 and relaxin-3 on water intake in satiated rats in early 

light phase 
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To confirm the bioactivity of relaxin-2 (H2), the water intake response was assessed 

in water replete, satiated male Wistar rats in the early light phase.  Administration of 

ICV relaxin-2 (180 pmol) significantly increased water intake in the first hour [0.43 ± 

0.26 ml (vehicle) vs 2.50 ± 0.81 ml (180 pmol H2), p< 0.05] (Fig 3), and at 2h [0.63 ± 

0.26 ml (vehicle) vs 2.87 ± 0.79 ml (180 pmol H2), p< 0.05]. ICV relaxin-3 (180 

pmol H3) increased water intake in the first hour but this did not reach statistical 

significance [0.43 ± 0.26 ml (vehicle) vs 2.11 ± 0.67 ml (180 pmol H3)], (Fig 3).  

 

Study 4: Effect of iPVN relaxin-3 on food intake in satiated rats in early light phase 

and early dark phase  

Animals received an iPVN injection of either vehicle or relaxin-3 (1.8, 5.4 or 18 pmol 

H3) in the early light phase.  Doses used were ten-fold less than those eliciting a 

feeding response following ICV administration (17).  Intra-PVN relaxin-3 

administration significantly increased food intake in the first hour at 18 pmol [0.34 ± 

0.16 g (vehicle) vs 1.23 ± 0.30 g (18 pmol H3), p< 0.05], (Fig 4A).  There was no 

significant difference in interval food intake but cumulative food intake was 

significantly increased at 2h and 4h following iPVN administration of 18 pmol 

relaxin-3 [0.38 ± 0.18 g (vehicle) vs 1.49 ± 0.31 g (18 pmol H3) at 2h and 0.63 ± 0.27 

g (vehicle) vs 1.61 ± 0.35 g (18 pmol H3) at 4h, p< 0.05].  

 
Rats received an iPVN injection of either vehicle or relaxin-3 (18 pmol H3) at the 

beginning of the dark phase.  Nocturnal food intake was significantly increased in the 

first hour following relaxin-3 administration [4.43 ± 0.32 g (vehicle) vs 6.57  ± 0.42 g 

(18 pmol H3), p< 0.05] (Fig 4B). There was no significant effect on interval food 

intake at later time points but cumulative food intake was significantly increased in 
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relaxin-3-treated animals for 4h following administration in the early dark phase [9.68 

± 0.60 g (vehicle) vs 12.28  ± 0.76 g (18 pmol H3), p< 0.05].  

 
Study 5: Effect of iPVN relaxin-2 on food intake in satiated rats in early light phase 

To reinforce the ICV findings suggesting that relaxin-3 probably mediates its 

orexigenic action via the GPCR135 receptor, satiated rats received an iPVN injection 

of either 1.8-18 pmol H3 or 1.8-18 pmol H2.  Following an iPVN administration of 

equimolar doses, relaxin-3 stimulated one-hour food intake as previously shown [0.27 

± 0.11 g (vehicle) vs 1.52  ± 0.51 g (18 pmol H3), p< 0.05].  In contrast, relaxin-2 had 

no significant effect on food intake at any time point following administration [0.27 ± 

0.11 g (vehicle) vs 0.14  ± 0.04 g (18 pmol H2) at 1h] (Fig 5). 

 

Study 6: Behavioral response following ICV and iPVN administration of relaxin-3 

There were no significant differences in feeding or drinking behaviors following an 

ICV injection of relaxin-3 (180 pmol H3) to satiated rats in the early light and dark 

phase, and no abnormal behaviors observed.  Feeding behavior was significantly 

increased following iPVN administration of relaxin-3 (180 pmol H3) to satiated rats 

in the early light phase.  There were no significant differences in other behaviors and 

there were no abnormal behaviors following iPVN injection of relaxin-3 (Table 1).   

 

Study 7: Hypothalamic neuropeptide mRNA expression 

Following an ICV injection of 180 pmol H3, there was no difference in hypothalamic 

NPY, AgRP or POMC mRNA expression 4 hours post-injection compared to vehicle 

treated animals [NPY: 26.8 ± 1.26 (vehicle) vs 27.8  ± 2.90 (180 pmol H3). AgRP: 

13.1 ± 1.35 (vehicle) vs 13.0  ± 0.78 (180 pmol H3). POMC: 1.90 ± 0.17 (vehicle) vs 

1.85 ± 0.24 (180 pmol H3), units are arbitrary]. 
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Discussion 

The insulin superfamily comprises functionally diverse peptides with a common 

structure: A and B chains with interchain disulphide bridges.  Relaxin-1 in mice and 

rats and the human homologue, relaxin-2, were among the first hormones described 

but it is only recently that an additional relaxin peptide, relaxin-3, and its receptors 

have been identified.  Unlike relaxin-1, relaxin-3 mRNA is expressed in few 

peripheral tissues and only at low levels. There is less than 50% homology between 

relaxin-1 and relaxin-3 peptides (7).  The dominant brainstem expression of relaxin-3, 

the extensive projections from the NI to several hypothalamic nuclei and the rich 

expression of GPCR135 receptors in the hypothalamic PVN and SON suggest that 

this ligand and its receptor may play an important role in the central nervous system.  

The PVN is crucial in the control of appetite and this led us to investigate the role of 

relaxin-3 in food intake.  

 

We have shown for the first time that ICV relaxin-3 significantly increased food 

intake both in satiated animals in the early light phase and at the beginning of the dark 

phase. Similarly, relaxin-3 injection into the PVN, an area with a high level of 

expression of GPCR135, also stimulated food intake in the early light phase and was 

able to potentiate nocturnal feeding. These studies were performed using human 

relaxin-3.  However, there is a high level of homology among the relaxin-3 peptides 

of different species, the mouse and rat peptides are identical and share 92% sequence 

identity to human relaxin-3 (16).  At the present time, only human relaxin-3 is 

commercially available but this binds with high affinity to rat GPCR135 (16).  
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Some orexigenic neuropeptides, for example orexin A, have been found to alter 

behaviors such as increasing spontaneous physical activity and arousal following 

iPVN administration (20).  Our behavioral studies did not show any abnormal 

behaviors following ICV administration of relaxin-3.  There was, however, a 

significant increase in feeding behavior following iPVN relaxin-3 administration with 

no change in other behaviors that could have accounted for the significant increase in 

food intake.  

 

The doses of relaxin-3 required to elicit a significant feeding response are in the 

picomolar range and similar to effective doses of other orexigenic peptides such as 

ghrelin.  For example, a significant orexigenic response with iPVN ghrelin has been 

seen at 30 pmoles (17) compared to 18 pmoles of H3 relaxin.  Similarly, the lowest 

dose of the potent orexigenic peptide NPY to significantly stimulate feeding in the 

PVN is 24 pmol (21).  As with NPY and ghrelin, the effect of relaxin-3 occurs in the 

first hour following administration but cumulative food intake remains elevated for 

several hours.  

 

Centrally administered porcine relaxin has been shown to increase water intake in 

male and female rats (6).  We have shown that human relaxin-2 (H2), which binds to 

the LGR7 receptor with a similar affinity to porcine relaxin (13), significantly 

increases water intake following ICV administration in male Wistar rats (Figure 3).  

This indicates that the commercially available relaxin-2 (H2) used was biologically 

active.  Relaxin-3 (H3) also increased water intake at one hour although this did not 

reach statistical significance.  The effect of relaxin-3 on water intake, albeit less 

 12



potent compared to relaxin-2, is likely to occur via LGR7 receptors in the subfornical 

organs and related circuits (22). 

 

In contrast to relaxin-3, equimolar doses of human relaxin-2 did not elicit any increase 

in feeding following ICV or iPVN administration to satiated animals in the early light 

phase.  Whilst both relaxin-2 and relaxin-3 bind to the LGR7 receptor with high 

affinity, only relaxin-3 binds to GPCR135 with similarly high affinity.  This suggests 

that the GPCR135 receptor may mediate the effects of relaxin-3 on food intake.  In 

keeping with this, neither relaxin-1 null mice nor LGR7 null mice have any reported 

obesity or feeding phenotype (23).   

 

The action of some orexigenic peptides, for example ghrelin, is mediated via NPY, 

AgRP and the melanocortin system (24).  Central administration of ghrelin 

upregulates the expression of NPY and AgRP mRNA in the hypothalamus 4h after 

injection (25;26).  In contrast, relaxin-3 (180 pmol H3) did not alter acute 

hypothalamic NPY, POMC or AgRP mRNA expression 4h after ICV administration.  

The absence of change in mRNA expression does not exclude altered expression of 

these important regulatory neuropeptides following administration of relaxin-3 at 

different doses and/or time points.  Nevertheless, these studies suggest that altered 

NPY, POMC or AgRP mRNA expression may not be required in the orexigenic 

action of relaxin-3.  It would be of interest to determine the effect of relaxin-3 on 

other hypothalamic mRNA and peptides and to determine whether it acts via an 

unknown mechanism or downstream of NPY, AgRP and POMC.  

 

 13



In summary,  these results suggest that ICV and PVN administration of relaxin-3 

stimulate feeding in male rats and that this effect may be mediated via the GPCR135 

receptor.  The mechanism for the orexigenic action of relaxin-3 remains to be 

established but does not appear to be via regulation of hypothalamic NPY, POMC or 

AgRP expression.  Determining the role of relaxin-3 in appetite regulation is currently 

limited by the absence of specific antagonists for relaxin receptors or antisera for rat 

relaxin-3.  Further work is required to determine if relaxin-3 plays a physiological role 

in regulation of appetite and body weight. 
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Legends 

Figure 1: Effect of ICV administration of relaxin-3 in satiated male Wistar rats.  A) 

Effect of relaxin-3 (18-180 pmol H3) on 1h food intake * = p < 0.05 vs vehicle in 

early light phase  B) Effect of relaxin-3 (18-180 pmol H3) on cumulative food intake 

over 4h in early light phase. & = p < 0.05 at 18 pmol vs vehicle, * = p < 0.05 at 54 

pmol vs vehicle,  # = p < 0.05 at 180 pmol vs vehicle  C) Effect of relaxin-3 (180 

pmol H3) on 1h food intake in early dark phase, * = p < 0.05 vs vehicle. 

 

Figure 2: Effect of ICV administration of relaxin-3 (180 pmol H3) and relaxin-2 (180 

pmol H2) on 1h food intake in early light phase in satiated male Wistar rats, * = p < 

0.05 vs vehicle. 

 

Figure 3: Effect of ICV administration of relaxin-3 (180 pmol H3) and relaxin-2 (180 

pmol H2) on water intake in satiated male Wistar rats, * = p < 0.05 vs vehicle. 

 

Figure 4 : Effect of iPVN administration of relaxin-3 in male Wistar rats.  A) Effect 

of relaxin-3 (1.8-18 pmol H3) on 1h food intake in early light phase  B) Effect of 

relaxin-3 (18 pmol H3) on 1h food intake in early dark phase, * = p < 0.05 vs vehicle. 

 

Figure 5: Effect of iPVN administration of equimolar doses of relaxin-3 (H3) and 

relaxin-2 (H2) on 1h food intake in satiated male Wistar rats, * = p < 0.05 vs vehicle. 
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Table 1: Effect of iPVN administration of relaxin-3 (18 pmol or 180 pmol) on 

behavior in the first hour following injection.  Behavior was classified into one of 

nine categories.  Each rat was observed for three 3 sec periods every 6 min and the 

behavior in each period scored as previously described (19).  Behavioral data are 

expressed as median number of occurrences of behavior (interquartile ranges are 

expressed in square brackets), * = p < 0.05 vs vehicle. 
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Table 1: 

 

Behavior Vehicle 
Relaxin-3 

(18pmol H3) 

 Relaxin-3 

(180pmol H3) 

Feeding 2 [0-4] 2 [2-5] 6 [4-7] * 

Drinking 0 [0] 0 [0] 0 [0] 

Grooming 7 [1-8] 6.5 [4.25 -8] 6 [5-6] 

Burrowing 0 [0] 0 [0] 0 [0] 

Rearing 8 [ 3-10] 5 [4-9.75] 6 [4-8] 

Locomotion 4 [2-4] 3 [3-4] 3 [1-5] 

Sleep 0 [0-3] 0 [0-2.25] 0 [0-8] 

Head down 10 [5-19] 14.5 [6.5-16] 9 [6-9] 

Tremor 0 [0] 0 [0-1] 0 [0] 

 

Table 1: Effect of iPVN administration of relaxin-3 (18 pmol or 180 pmol) on 

behavior in the first hour following injection.  Behavior was classified into one of 

nine categories.  Each rat was observed for three 3 sec periods every 6 min and the 

behavior in each period scored as previously described (19).  Behavioral data are 

expressed as median number of occurrences of behavior (interquartile ranges are 

expressed in square brackets), * = p < 0.05 vs vehicle. 
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