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Abstract. We present a family of high-order, essentially non-oscillatory, central schemes for approx-
imating solutions of hyperbolic systems of conservation laws. These schemes are based on a new
centered version of the Weighed Essentially Non-Oscillatory (WENO) reconstruction of point-values
from cell-averages, which is then followed by an accurate approximation of the fluxes via a natural con-
tinuous extension of Runge-Kutta solvers. We explicitly construct the third and fourth-order scheme
and demonstrate their high-resolution properties in several numerical tests.

Résumé. Nous présentons une famille de schémas centrés ENO d’ordre élevé pour des solutions
approchées de systèmes hyperboliques de lois de conservation. Ces schémas reposent sur une nouvelle
version centrée de la reconstruction ENO à poids (WENO) des valeurs ponctuelles à partir des moyennes
sur les cellules, ce qui conduit à une approximation precise des flux grâce à une extension naturelle
continue des solveurs Runge-Kutta. Nous construisons explicitement les schémas d’ordre trois et quatre
et nous provons leurs propriétés de haute précision à travers des essais numériques.
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1. Introduction

In recent years, a tremendous amount of research was done in developing and implementing modern high-
resolution methods for approximating solutions of hyperbolic systems of conservation laws. A review of such
numerical methods can be found, e.g., in [7, 16,30].

Among the variety of methods for approximating solutions of such problems we focus on finite-difference
methods, which can be divided into two main categories, namely upwind schemes and central schemes.

The prototype of upwind schemes is the first-order Godunov scheme in which a piecewise-constant interpolant
(which is constructed based on previously computed cell-averages) is evolved exactly to the next time step
according to the conservation law. This evolution involves a solution of Riemann problems on the boundaries of
each cell, which is interpreted as an upwinding procedure, as one has to differ between left-going and right-going
waves in order to compute the flux in these non-smooth regions.
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For linear systems, a general procedure can be used, which is based on the characteristic decomposition of
the field [16]. If the system is nonlinear, however, a general scheme for the (exact or approximate) solution of
the Riemann problem is not known, and the upwind approach may be rather complicated and costly.

An alternative approach for quasilinear systems is given by the so-called relaxation schemes [13]. Given
a quasilinear hyperbolic system of conservation laws, a semilinear system with stiff relaxation is constructed.
Under suitable conditions the solution of the latter converges to the solution of the quasilinear system, as
the relaxation parameter tends to zero. The numerical solution of the quasilinear system is obtained by a
splitting procedure. During the convection step, a linear hyperbolic system is solved by upwind scheme. The
relaxation step is treated by an implicit scheme (which can be explicitly solved). The two steps are suitably
combined in order to obtain second order accuracy in time. They can be efficiently implemented in one and
several dimensions. However, they have the drawback that the intermediate semilinear system is larger than
the original quasilinear system, and it is difficult to design a splitting strategy that allows higher (larger than
second) order it time.

A general procedure used to obtain high accuracy in space with upwind schemes is based on high order
reconstruction of the field variables. This is obtained by approximating the field at a given time by a piecewise
polynomial rather than by a piecewise constant. Generally, a piecewise reconstruction of degree r should
guarantee spatial accuracy of order r+1 for a smooth solution. Since the drawback of a high-order reconstruction
is the oscillations it might create, several methods were suggested to combine the upwinding framework with a
mechanism to prevent the creation and evolution of such spurious numerical oscillations. In particular, a class
of Essentially Non-Oscillatory (ENO) schemes was presented in [8] and studied in numerous works (see [26,27],
and the references therein). ENO schemes are based on a reconstruction procedure (of either point-values or
cell-averages) which involves a selection of a stencil in each cell of the grid. This stencil selection is based on
minimizing the oscillations which can be created due to the approximation of the underlying function and/or
its derivatives in non-smooth regions.

Recently, a new approach for the reconstruction procedure has been suggested in [21]. There, in the so-called
Weighted Essentially Non-Oscillatory (WENO) reconstruction, instead of selecting one stencil according to a
non-oscillatory criterion, one reconstruction is created by taking a convex combination of all the candidate
stencils. The weights of this combination are determined through a non-linear computation which is based on
the local smoothness of the stencil. Every stencil is weighted according to the oscillations which it might create.
In discontinuous regions, e.g., the weights will be biased towards the stencils in the smoother regions. Since,
effectively, in smooth regions the linear combination of the different stencils can be interpreted as a wide stencil,
a higher-order scheme can be constructed without using polynomials of a higher degree in the reconstruction
procedure [11]. An efficient implementation of WENO schemes and a new criterion for measuring the local
smoothness of the stencils were also presented in [11].

Central schemes on the other hand, can be viewed as a high-order extension to the first-order Lax-Friedrichs
scheme (LxF) [6]. In its staggered version, the LxF scheme is based on constructing a piecewise-constant re-
construction which is then evolved exactly in time and finally projected on its staggered cell-averages. Due to
the staggering, the approximation of the evolved fluxes is done in smooth regions (up to an appropriate CFL
condition). Hence, no characteristic decomposition is required and the upwinding is replaced by a straight-
forward centered computation of the quantities involved. In such a way, no Riemann-solvers are required; a
quality which is evident for a general one-dimensional system and in higher space dimensions where no such
Riemann-solvers exist.

The accuracy of the schemes can be increased by using a higher-order reconstruction and a sufficiently accurate
quadrature rule for the approximation of the fluxes. The one-dimensional second-order Nessyahu-Tadmor scheme
is presented in [23]. A different approach to second-order central differencing based on characteristics tracing
was introduced by Sanders and Weiser in [25]. Extensions to third-order can be found in [9, 22]. For an
extension of the second-order scheme to two space dimensions see [1, 2, 12]. In all of the above cases, a non-
linear limiting augments the reconstruction in order to prevent oscillations. A third-order, two-dimensional
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central scheme for the two-dimensional incompressible Euler equations is presented in [17,19]. A central-scheme
on unstaggered meshes was derived in [3, 4].

We note in passing that staggering can be eliminated by transforming the staggered schemes into non-
staggered schemes without loss of accuracy (see [10]).

A first step to combining the upwind and central approaches was taken in [5]. There, high-order, non-
oscillatory central schemes were constructed based on a high-order ENO reconstruction step. These schemes were
shown to enjoy the desired properties of both approaches; the central framework provided the robustness and
the simplicity while the ENO reconstruction provided the required high-order, non-oscillatory reconstruction.
In the same paper, Runge-Kutta schemes have been used for the time integration of the flux on cell boundaries.
Function evaluations are minimized by using the Natural Continuous Extension of Runge Kutta schemes [33].
In particular, third and fourth-order schemes for general systems were presented and the expected accuracy has
been numerically confirmed.

In this work, which can be viewed as a natural extension of [5], we bring both the central and upwind
approaches even closer. Here, we construct a central scheme in which the main ingredient is a new, centered
version of a WENO reconstruction. This new approach enables one to create, e.g., from a piecewise-parabolic
reconstruction (based on cell-averages), a central, fourth-order accurate method.

In a future work [18], we will extend these ideas to the setup of two-dimensional systems of conservation
laws.

The paper is organized as follows: In Section 2 we briefly overview the general framework of central schemes for
one-dimensional hyperbolic systems of conservation laws. Our new central-WENO reconstruction is presented
in Section 3. The resulting method is then summarized in Section 4, and finally, several canonical numerical
examples can be found in Section 5. These numerical examples clearly demonstrate the accuracy, non-oscillatory
and robustness properties of our scheme.

2. Central schemes - a short overview

We are concerned with the approximate solutions of systems of hyperbolic conservation laws,

ut + f(u)x = 0, u ∈ Rd, d ≥ 1, (2.1)

subject to the initial conditions, u(x, t = 0) = u0(x).
To approximate solutions of (2.1) we discretize both space and time assuming uniform mesh spacings of

h := ∆x and ∆t, respectively. We denote the spatial grid-points by xj = j∆x and the time steps by tn = n∆t.
Here and below λ := ∆t/∆x denotes the usual fixed mesh-ratio. Since the solutions of (2.1) can develop
discontinuous solutions (shocks) even for smooth initial data, the quantities that will be used on the discrete
level are cell-averages. The numerical approximation of the cell-average in the cell Ij := [xj−1/2, xj+1/2] centered
around xj at time tn, is denoted by ūnj :

ūnj ≈
1
h

∫ xj+1/2

xj−1/2

u(x, tn)dx.

Assuming that the cell-averages at time tn, ūnj , are known, our goal is to compute the cell-averages at the next
time step tn+1. First, from ūnj , we reconstruct a piecewise-polynomial interpolant

Pu(x, tn) :=
∑
j

Rj(x)χj , (2.2)

taking into account conservation, accuracy and non-oscillatory requirements. Here, χj is the characteristic
function of the interval Ij , and Rj(x) is a polynomial of degree r which is defined in Ij .
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Figure 2.1. Reconstruction and projection.

The interpolant Pu(x, tn) in (2.2) is then evolved to the next time step integrating (2.1) on its staggered
cells (see Fig. 2.1). Note that due to the staggering the time integration of the fluxes is performed in a smooth
region and therefore the integral can be accurately approximated by a quadrature formula. The staggered
cell-averages, ūn+1

j+1/2 are obtained by

ūn+1
j+1/2 =

1
h

∫ xj+1

xj

Pu(x, tn)dx+ λ
m∑
l=0

γl [f(û(xj , tn + βl∆t))− f(û(xj+1, t
n + βl∆t))] . (2.3)

The parameters γ and βl are the weights and the nodes of the particular quadrature formula, and û are
intermediate values predicted either by a Taylor approximation or by a Runge-Kutta (RK) method. For a
fourth-order method one can use, e.g., Simpson’s rule. The staggered cell-averages at time tn, ūnj+1/2, are
given by

ūnj+1/2 =
1
h

∫ xj+1

xj

Pu(x, tn)dx =
1
h

[∫ xj+1/2

xj

Rj(x)dx+
∫ xj+1

xj+1/2

Rj+1(x)dx

]
. (2.4)

Given a specific reconstruction {Rj}, the integrals on the RHS of (2.4) can be explicitly computed.
In the case of systems a RK method is simpler because it does not require the computation of the Jacobian

or the Hessian of the system. A great saving in function evaluation when using a RK method can be obtained
constructing its Natural Continuous Extension (NCE) described below. The main idea is to advance to the last
time node of the quadrature using a one-step RK method and computing the other intermediate values by a
suitable polynomial reconstruction.

2.1. Time evolution: Runge-Kutta with natural continuous extension

Consider the Cauchy problem {
y′ = F (t, y(t))
y(t0) = y0.
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We adapt to our context the notation used in [33] according to which the solution at the (n + 1)th time step
obtained with a ν stage Runge-Kutta scheme can be written as

yn+1 = yn + ∆t
ν∑
i=1

big
(i),

where the g(i)’s are the Runge-Kutta fluxes

g(i) = F

tn + ∆tci, yn + ∆t
ν−1∑
j=1

aijg
(j)

,

and the ci are given by ci =
∑
j aij . The method is completely determined by the vector b and the matrix a,

which is lower triangular for explicit schemes.
In our case we are solving a sequence of Cauchy problems in order to obtain the predicted mid-values required

for the quadrature of the fluxes. At the jth grid point we have

{
y′j(τ) = F (τ, yj(τ)) = −fx (y(xj , tn + τ))
yj(τ = 0) = Pu(xj , tn). (2.5)

Thus the computation of the ith Runge-Kutta flux g(i) requires the evaluation of the x-derivative of f at the
intermediate time t = tn + ci∆t. The predicted point-values of uj at time t = tn + ci∆t are used to compute
the point-values, f(uj). These predicted values of f are then used for reconstructing an interpolant from which
the point-values of the derivative (fx)j are computed. To maintain high accuracy and control over oscillations
in the evaluation of fx required in (2.5), the reconstruction of the interpolant of both f and u is essentially the
same and is described in Section 3.

Following [5], we use here Natural Continuous Extensions (NCE) of Runge-Kutta schemes which provide a
uniform accuracy of the solution in the time interval [tn, tn+1] (see [33]).

Each ν-stage Runge-Kutta method of order p has an NCE u of degree d ≤ p in the sense that there exist ν
polynomials bi(θ), i = 1, · · · , ν of degree at most d, such that

1. u(tn + θ∆t) := yn + ∆t
∑ν
i=1 bi(θ)g

(i) 0 ≤ θ ≤ 1;

2. u(tn) = yn and u(tn + ∆t) = yn+1;

3. maxtn≤t≤tn+∆t

∣∣w(l)(t)− u(l)(t)
∣∣ = O((∆t)d+1−l), 0 ≤ l ≤ d,

where yn is the numerical solution computed with the RK scheme at time level tn, and w(t) is the exact solution
of the equation with w(tn) = yn. Note that the polynomials bi(θ) depend only on the Runge-Kutta method
chosen and not on the particular ODE being solved. In Section 4 we shall show how to use Runge-Kutta
methods with NCE in order to guarantee high order accuracy in time.
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We end this section listing the NCE’s which are of interest for our scheme.

1. RK1 (for our second-order scheme)
d = ν = p = 1
b1(θ) = θ;

2. RK2 (for our third-order scheme)
d = ν = p = 2
b1(θ) = (b1 − 1)θ2 + θ
b2(θ) = b2θ

2;

3. RK3 (not used since no NCE of degree d = 3 exists in this case)
d = 2, ν = p = 3
bi(θ) = 3(2ci − 1)biθ2 + 2(2− 3ci)biθ i = 1, 2, 3;

4. RK4 (for our fourth-order scheme)
d = 3, ν = p = 4
b1(θ) = 2(1− 4b1)θ3 + 3(3b1 − 1)θ2 + θ
bi(θ) = 4(3ci − 2)biθ3 + 3(3− 4ci)biθ2 i = 2, 3, 4.

No NCE of degree d = 4 exists in this case.

(2.6)

In our case, we used the following set of coefficients. For our third order method:

b =
(

1/2
1/2

)
a =

(
0 0
1 0

)
· (2.7)

For our fourth order method:

b =


1/6
1/3
1/3
1/6

 a =


0 0 0 0
1/2 0 0 0
0 1/2 0 0
0 0 1 0

· (2.8)

We proceed in the next section by presenting our new Central-WENO (CWENO) reconstruction which supplies
the required elements, Rj , for the overall piecewise-polynomial interpolant (2.2).

3. The Central-WENO (CWENO) reconstruction

In this section, we present our new Central-WENO (CWENO) piecewise-parabolic reconstruction which will
be then utilized in Section 4 to construct a fourth-order method.

Let u be the exact solution at time tn, and ūnj the numerical approximation of its cell average on the cell
Ij . Starting from the data {ūnj } we apply the reconstruction scheme, obtaining the function Pu(x, tn). By
construction, Pu(x, tn) =

∑
j Rj(x)χj , where in this case Rj(x) is a polynomial of degree 2. We require that

our reconstruction satisfies the following properties:
1. Accuracy

We shall require that equation (2.4) provides a high order accurate approximation of the staggered cell
averages at time tn, i.e.

ūnj+1/2 =
1
h

∫ xj+1

xj

u(x, tn) dx+O(hs),
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where s denotes the spatial order of the method. This requirement is satisfied by imposing that the
polynomial reconstruction from cell-averages must satisfy:

1
2h

∫ xj

xj−1/2

Pu(x, tn)dx =
1

2h

∫ xj

xj−1/2

u(x, tn)dx+O(hs), (3.1)

1
2h

∫ xj+1/2

xj

Pu(x, tn)dx =
1

2h

∫ xj+1/2

xj

u(x, tn)dx+O(hs).

Moreover we require:

Pu(xj , tn) = u(xj , tn) +O(hs). (3.2)

A separate reconstruction of f will be used for the derivatives of the fluxes, f ′(u(x, t)), for which we
require

P ′f (xj , tn) = f ′(u(xj , tn)) +O(hs−1). (3.3)

2. Conservation

1
h

∫
Ij

Rj(x)dx = ūj . (3.4)

3. Non-oscillatory reconstruction
Avoid spurious oscillations in the sense of ENO/WENO reconstruction [8, 21].

In each cell, Ij , we reconstruct three polynomials of degree 2, Pj−1(x), Pj(x), Pj+1(x). Each of these poly-
nomials is constructed by posing the following interpolation requirements:



1
h

∫
Ik−1

Pk(x)dx = ūk−1,

1
h

∫
Ik
Pk(x)dx = ūk, k = j − 1, j, j + 1

1
h

∫
Ik+1

Pk(x)dx = ūk+1.

(3.5)

The reconstruction is created by considering a convex combination of the above polynomials, Pk(x),

Rj(x) = wjj−1Pj−1(x) + wjjPj(x) + wjj+1Pj+1(x), (3.6)

where the weights wjk, k = j − 1, j, j + 1, satisfy wjk ≥ 0, and
∑j+1
k=j−1 w

j
k = 1. The stencil used in the

reconstruction of the second degree polynomial Rj(x) contains five points. Note that this convex combination
retains the interpolation requirement (3.4) for Rj(x) in Ij , but otherwise does not fulfill any other interpolation
requirements in the neighboring cells.

Since deg(Pk(x)) = 2, k = j − 1, j, j + 1, one can rewrite

Pk(x) = ũk + ũ′k(x− xk) +
1
2
ũ′′k(x− xk)2, k = j − 1, j, j + 1. (3.7)
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The reconstructed point-values, ũk, and the reconstructed discrete first and second derivatives, ũ′k, ũ
′′
k, are

uniquely determined by the interpolation requirements (3.5), as

ũk = ūk −
ūk−1 − 2ūk + ūk+1

24
,

ũ′k =
ūk+1 − ūk−1

2h
, (3.8)

ũ′′k =
ūk+1 − 2ūk + ūk−1

h2
, k = j − 1, j, j + 1.

Hence, the interpolant Rj(x) can be written as

Rj(x) = uj + u′j(x− xj) +
1
2
u′′j (x− xj)2, (3.9)

where its reconstructed point-values uj , and its reconstructed derivatives, u′j, u
′′
j , are given by

uj = wjj−1(ũj−1 + hũ′j−1 +
1
2
h2ũ′′j−1) + wjj ũj + wjj+1(ũj+1 − hũ′j+1 +

1
2
h2ũ′′j+1),

u′j = wjj−1(ũ′j−1 + hũ′′j−1) + wjj ũ
′
j + wjj+1(ũ′j+1 − hũ′′j+1), (3.10)

u′′j = wjj−1ũ
′′
j−1 + wjj ũ

′′
j + wjj+1ũ

′′
j+1.

All that is left in order to end the reconstruction is to determine the weights, wjk, k = j − 1, j, j + 1. Two
ingredients are taken into account in their construction: the accuracy requirements and the non-oscillatory
requirements.

Following the notations of [11], in order to guarantee convexity,
∑j+1
k=j−1 w

j
k = 1, the weights, wjk, are

written as

wjk =
αjk

αjj−1 + αjj + αjj+1

, k = j − 1, j, j + 1, (3.11)

where

αjk =
Ck

(ε+ ISjk)p
, k = j − 1, j, j + 1. (3.12)

The constants, Ck, ε, p, and the smoothness indicator, ISjk, will be determined below.
Since we are in the framework of central schemes and not upwind schemes, our accuracy requirements are

different from those found in [11]. Here is exactly where the central philosophy enters. The constants Ck
introduced here, are computed such that they are symmetric around the center of each cell. Consequently, we
name our new centered reconstruction as Central-WENO (CWENO).

Since we can not satisfy all the accuracy requirements simultaneously, we split the computation into two
parts and by that we are led to two different sets of constants Ck. The first set corresponds to the accuracy
requirement in the reconstruction of the cell-averages (3.1), while the second set of constants corresponds to
the accuracy requirements in the reconstruction of the derivatives (3.3). Due to cancellation, any symmetric
choice of coefficients will result in a fourth-order approximation of the point-values in the center of the cells
(s = 4 in (3.2)). In order to satisfy (3.2) for s = 5 one has to use non-positive constants, namely a non-convex
combination of the stencils – see the remarks below. Clearly, the use of two separate sets of constants imposes
absolutely no problems on the implementation of the algorithm. We note that also in the original WENO
paper [21], two sets of (different) constants were suggested. There, the motivation was to adapt the constants
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Table 3.1. The constants of the Central-WENO reconstruction.

Cj−1 Cj Cj+1 accuracy
cell-averages 3/16 5/8 3/16 h5

derivatives 1/6 2/3 1/6 h4

point-values any symmetric combination h4

to the upwinding and hence they were determined by the characteristic variables. In our case, however, no such
characteristic decomposition is required. The simplicity of the central framework is projected onto our new
Central-WENO reconstruction.

A straightforward computation results with the desired constants which are displayed in Table 3.1.
Several different ways to determine the smoothness indicator were suggested in the literature (see, e.g.,

[11, 21]). Here we use the measure taken from [11], which amounts to a measure on the L2-norms of the
derivatives:

ISjk =
2∑
l=1

∫ xj+1/2

xj−1/2

h2l−1(P (l)
k )2dx, k = j − 1, j, j + 1, (3.13)

where P (l)
k denotes the lth derivative of Pk(x). An explicit integration of (3.13) yields

ISjj−1 =
13
12

(ūj−2 − 2ūj−1 + ūj)2 +
1
4

(ūj−2 − 4ūj−1 + 3ūj)2,

ISjj =
13
12

(ūj−1 − 2ūj + ūj+1)2 +
1
4

(ūj−1 − ūj+1)2, (3.14)

ISjj+1 =
13
12

(ūj − 2ūj+1 + ūj+2)2 +
1
4

(3ūj − 4ūj+1 + ūj+2)2.

In smooth regions, a Taylor expansion of (3.14) gives

ISjk = (ũ′h)2 +
13
12

(ũ′′h2)2 +O(h6), k = j − 1, j, j + 1. (3.15)

Hence, ISjk = O(h2), and in critical points it is O(h4). In non-smooth regions, ISjk = O(1), and by that the
normalized weight of the corresponding stencil will be negligible. Therefore, our reconstruction follows the
WENO methodology by automatically avoiding the information coming from non-smooth regions which are
the cause for spurious oscillations.

The remaining parameters to be determined in (3.12) are ε and p. The constant ε was inserted in the
denominator in order to prevent it from vanishing. In [11] an ε = 10−6 was empirically selected. Here, we find
that the scheme is almost not sensitive to the value of ε, and ε = 10−6 proved adequate for the numerical results
in Section 5. The value of p was determined in [21] as one above the degree of the reconstruction polynomial,
which in our case amounts to 3. In [11] a p = 2 was empirically selected and here we use the same value p = 2.

In short, our reconstruction from cell averages routine accepts in input the values {ūj} of cell averages at
time tn, and produces in output the point values uj, u′j , u

′′
j which completely determine the reconstruction

polynomial Rj(x).
A few modifications are needed to compute the reconstruction from point values for the flux fj = f(uj)

which is needed in the Runge-Kutta step.



556 D. LEVY ET AL.

Here the candidate polynomials Pk satisfy the interpolation requirements (compare with (3.5)):
Pk(xk−1) = fk−1,

Pk(xk) = fk, k = j − 1, j, j + 1

Pk(xk+1) = fk+1.

(3.16)

Thus the reconstructed point values f̃k and the reconstructed first and second derivatives f̃ ′k and f̃ ′′k are given
by:

f̃k = fk, f̃ ′k =
fk+1 − fk−1

2h
, f̃ ′′k =

fk+1 − 2fk + fk−1

h2
, k = j − 1, j, j + 1.

For the evaluation of the intermediate values, all that will be needed is a pointwise reconstruction of the space
derivative f ′j which is given by:

f ′j = wjj−1(f̃ ′j−1 + hf̃ ′′j−1) + wjj f̃
′
j + wjj+1(f̃ ′j+1 − hf̃ ′′j+1). (3.17)

The computation of the weights in (3.17) is the same as above (3.11–3.15). Here, we use the second set of
constants Ck’s of Table 3.1, and the computation of the smoothness indicators ISjk in (3.14) involves the point
values fj , instead of the cell averages.

Several remarks are in order.

Remarks.

1. In [5] the ENO reconstruction was first combined with central schemes. There, it was shown that an ENO
reconstruction of degree 3 is required to obtain an overall third-order method (when the flux integration is
done by a Runge-Kutta solver). Here we construct a piecewise-parabolic interpolant that is then utilized
to obtain a fourth-order accurate method.

2. The piecewise-parabolic upwind-WENO reconstruction is utilized in [11] to obtain a fifth-order method,
which is more accurate than our fourth-order method. On the other hand, it suffers from the drawbacks of
the upwind approach. We can also obtain a fifth-order method, requiring s = 5 in (3.1–3.3). Unfortunately,
in (3.2), s = 5 leads to a non-convex combination. Such a combination does not fit in our framework. It
should be possible to construct a fifth-order method which reduces to lower order convex reconstruction
by taking a convex combination of the fifth-order method and the fourth-order method described above,
but we do not describe it here.

3. Practically, we have observed that the scheme depends very weakly on the value of ε. The parameter ε
must be chosen such as to avoid cancellations in the significant digits and in that sense it depends on the
order of magnitude of the solution. However, since the weights are normalized, the magnitude of ε has
very little effect on the scheme.

To summarize, our new Central-WENO reconstruction enjoyed the best of two worlds. On one hand, it
follows the WENO methodology by making use of the existing information in order to automate the selection of
the stencil and to increase the overall order of accuracy of the resulting reconstruction while retaining its non-
oscillatory properties. On the other hand, since we are dealing with the central framework, our reconstruction
makes no use of characteristic decomposition and by that we are left with a simple and robust machinery.

4. The method

In this section we combine the central framework which was overviewed in Section 2 with our new CWENO
reconstruction of Section 3. The derivation of the resulting scheme is straightforward and is summarized in the
following algorithm, which applies to the scalar case.
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Algorithm 4.1 (Scalar). Given the cell-averages ūnj , at time tn, compute the staggered cell-averages at the next
time step ūn+1

j+1/2, as follows.

Step 1: Compute the coefficients of the parabolic interpolant Rj(x) ∀j, (3.9),

Rj(x) = uj + u′j(x− xj) +
1
2
u′′j (x− xj)2.

The point-values uj, and the discrete derivatives, u′j and u′′j , are given in (3.8, 3.10). The weights wk required
in (3.10) are computed by (3.11–3.12) and are based on the oscillatory indicators ISjk in (3.14). The constants
Ck are the first set of constants appearing in Table 3.1 (cell-averages).

Step 2: Compute the point-values of the flux f(unj ), where the point-values uj are given from the reconstruction
Step 1. Utilize these point-values to reconstruct the discrete first derivative of the flux f ′(unj ) following the
reconstruction procedure (3.16–3.17).

f ′j = wjj−1(f̃ ′j−1 + hf̃ ′′j−1) + wjj f̃
′
j + wjj+1(f̃ ′j+1 − hf̃ ′′j+1).

The weights in (3.17) are based on (3.12) where this time the constants Ck are the second set of constants
appearing in Table 3.1, and the smoothness indicators are given by (3.14) where ūk is replaced by fk, k =
j − 2, . . . , j + 2.

Step 3: Compute the predicted values, at the nodes βl of the quadrature formula û(xj , tn + βl∆t). We use a
Runge-Kutta method with NCE (see Sect. 2.1):

û(xj , tn + βl∆t) = uj + ∆t
ν∑
i=1

bi(βl)Ki;j ,

Ki;j = F (Y ij ; j), Y ij = uj + ∆t
i−1∑
s=1

aisKs;j ,

where the function F (û; j) is an approximation of the space derivative −∂f(û)/∂x, computed as to satisfy (3.3),
F (Y ij ; j) = −f ′(Y ij ) according to Step 2. The values of the coefficients aij are listed in (2.7) for our third order
method and in (2.8) for our fourth order method. In particular, for the third and fourth-order schemes one can
use Simpson’s quadrature rule which requires to predict ûn+1/2

j , ûn+1
j , (β1 = 1/2, β2 = 1).

Step 4: Compute the staggered cell-averages ūn+1
j+1/2 according to (2.3),

ūn+1
j+1/2 = ūnj+1/2 + λ

m∑
l=0

γl [f(û(xj , tn + βl∆t))− f(û(xj+1, t
n + βl∆t))]

:= I1 + I2. (4.18)

Here:
1. The staggered cell-averages on the RHS of (4.18), I1, are given in (2.4),

I1 := ūnj+1/2 =
1
h

[∫ xj+1/2

xj

Rj(x)dx+
∫ xj+1

xj+1/2

Rj+1(x)dx

]

=
uj + uj+1

2
−
u′j+1 − u′j

8
h+

u′′j + u′′j+1

48
h2.
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The point-values and the derivatives, uj , u′j, u
′′
j , were computed in Step 1.

2. For a third and fourth-order schemes, I2 can be written as Simpson’s rule

I2 :=
λ

6
{[f(ûnj ) + 4f(ûn+1/2

j ) + f(ûn+1
j )]− [f(ûnj+1) + 4f(ûn+1/2

j+1 ) + f(ûn+1
j+1 )]},

where the predicted point-values ûn+1/2
j = û(xj , tn + 1/2∆t) and ûn+1

j = û(xj , tn + ∆t), are the result of
Step 3.

We end this section sketching the algorithm for the case of d×d systems of conservation laws. In the following,
u denotes the vector with components u = (u1, · · · , ud).

Algorithm 4.2 (Systems). Given the cell-averages ūnj , at time tn, compute the staggered cell-averages at the
next time step ūn+1

j+1/2, as follows.

Step 1: Compute the coefficients of the parabolic interpolant Rj(x) ∀j, applying Step 1 of Algorithm 4.1 at
each component of the vector ūnj . Note that the coefficients of the interpolant are now d component vectors. For
the computation of the oscillatory indicators ISjk several strategies are possible. One can apply formulas (3.14)
obtaining different smoothness indicators for each component. Alternatively, one can use information coming
from all components as in the Global strategy defined in (5.1) below. For more details, see the discussion in
Section 5.2.

Step 2: Compute the point-values of the flux f(unj ), where the point-values (u1
j , · · · , udj ) are reconstructed in

Step 1. Utilize these point-values to reconstruct the discrete derivative of each component of the flux function
f(unj ) applying the reconstruction procedure (3.16–3.17) at each component of f . As in Step 1, the smoothness
indicators can be computed either by a componentwise or a global strategy.

Step 3: Compute the predicted values of f(u), at the nodes βl of the quadrature formula, using a Runge-Kutta
method with NCE (see Sect. 2.1). Observe that now û, u,Ki, and Y ij are d components vectors. In particular,
note that each component of Yi

j must be updated before f(Yi
j) can be computed. Each component of F(Yi

j ; j)
can be then computed applying our discrete differentiation scheme component by component to the vector f(Yi

j).

Step 4: Apply Step 4 of Algorithm 4.1 to each component of the conservation law.

Remark. The central framework is based on the assumption that the solution remains smooth at the boundaries
of the staggered cell (xj , xj+1), if the appropriate CFL condition is satisfied. The discontinuities arising from
the generalized Riemann problems defined at xj+1/2 do not have the time to reach the cell boundaries. Thus it is
quite reasonable to assume that the degree of smoothness of the solution at xj and xj+1 will not change abruptly
within one time step. Therefore the smoothness indicators can be computed only once per time step. More
precisely, we can compute the smoothness indicators from cell averages, as indicated in Step 1 of our algorithms,
and utilize these same quantities when computing the weights of our reconstruction at each intermediate stage
of the RK step. We implemented this simplified technique in our numerical simulations in Section 5.2 below.
We emphasize that this reduction in the complexity of the computation of the smoothness indicators is closely
linked to the central framework.

5. Numerical results

In this section we test our third and fourth-order schemes summarized in Section 4. We start from a single
scalar equation where we numerically compute the order of accuracy of our schemes. We also demonstrate on
a model problem how the smoothness indicators trigger the selection of the correct stencil when discontinuities
are present. We end the discussion of the scalar case with a linear problem proposed by Jiang and Shu in [11].
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The construction of the smoothness indicators is more delicate for systems of equations than in the scalar
case. We show with numerical examples that a naive component by component extension of the scalar scheme
does not yield the best results. We formulate and test two different algorithms to address this problem.

We then apply our scheme to some classical test problems of gas dynamics. Our results show that the use of
the same smoothness indicator for all the components produces better results and is computationally cheaper
compared with the componentwise indicator.

5.1. Scalar equation

We study the performance of our schemes by applying them to the following test problems:

Test 1.
ut + ux = 0,
u(x, t = 0) = sin(πx),
periodic boundary conditions on [−1, 1],
integration time: T = 10.

This test is used to check the convergence rate at large times.

Test 2.
ut + ux = 0,
u(x, t = 0) = sin4(πx),
periodic boundary conditions on [−1, 1],
integration time: T = 1.

This test is used to detect possible deteriorations of accuracy due to strong oscillations in the parameters that
determine the stencil (such as in ENO schemes). See the discussion in [5] and references therein.

Test 3.
ut + (1

2u
2)x = 0,

u(x, t = 0) = 1 + 1
2 sin(πx),

periodic boundary conditions on [−1, 1],
integration times: T = 0.33 and T = 1.5.

Here T = 0.33 is used for convergence tests, and T = 1.5 for the shock capturing test (the shock develops at
Ts = 2/π).

Test 4.
ut + ux = 0,
u(x, t = 0) = u0(x),
periodic boundary conditions on [−1, 1],
integration time: T = 8.

This test is used to show the resolution properties of the scheme. The initial data u0(x) is defined in the
Example 1 of [11] as:

u0(x) =


1
6 (G(x, z − δ) +G(x, z + δ) + 4G(x, z)) , −0.8 ≤ x ≤ −0.6,
1, −0.4 ≤ x ≤ −0.2,
1− |10(x− 0.1)|, 0 ≤ x ≤ 0.2,
1
6 (F (x, a− δ) + F (x, a+ δ) + 4F (x, a)) , 0.4 ≤ x ≤ 0.6,
0, otherwise,

where
G(x, z) = e−β(x−z)2

,

F (x, a) =
(
max(1− α2(x− a)2, 0)

)1/2
.
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Table 5.1. T = 10, λ = 0.9 × λmax. For m = 3, λmax = 3/7. For m = 4, λmax = 2/7.
ε = 10−6, p = 2.

Linear advection, u0 = sin(πx)
m = 3 m = 4

N L1 error L1 order L1 error L1 order
20 0.8464E-02 0.1224E-01
40 0.6110E-03 3.7921 0.4938E-03 4.6311
80 0.5485E-04 3.4776 0.2282E-04 4.4357

160 0.6090E-05 3.1709 0.1261E-05 4.1777
320 0.7346E-06 3.0514 0.7573E-07 4.0575
640 0.9091E-07 3.0145 0.4670E-08 4.0192

N L∞ error L∞ order L∞ error L∞ order
20 0.8653E-02 0.1202E-01
40 0.5047E-03 4.0996 0.4674E-03 4.6847
80 0.4354E-04 3.5350 0.1831E-04 4.6739

160 0.4793E-05 3.1834 0.9943E-06 4.2027
320 0.5770E-06 3.0542 0.5962E-07 4.0599
640 0.7136E-07 3.0154 0.3682E-08 4.0173

The constants are taken as a = 0.5, z = −0.7, δ = 0.005, α = 10, and β = (log 2)/36δ2.
Let u(x, tn) and unj be, as usual, the exact solution and the reconstructed solution at (xj , tn), respectively.

Then the norms of the error are given by:

L1 − error : ||Error||1 =
∑N
j=1 |u(xj , tn)− unj |h,

L∞ − error : ||Error||∞ = max1≤j≤N |u(xj , tn)− unj |.

The computational parameters used in the following tests are ε = 10−6, p = 2. The mesh ratio was chosen as
λ = 0.9λmax for the linear tests, while λ = 0.66λmax for the nonlinear (Burgers) equation. The parameter λmax

was computed in order to satisfy stability conditions and it depends on the scheme. We used λmax = 3/7 for
m = 3, while λmax = 2/7 for m = 4.

Table 5.1 shows the results obtained with Test 1. It can be seen that our third and fourth order schemes are
fully third and fourth order accurate, even after a long integration time, in both the L1 and L∞ norms.

Comparing the magnitudes of the errors with the results obtained with our previous Central ENO scheme
in [5], we note that our new third order method yields smaller errors than the third order Central ENO scheme
(here the space reconstruction is more accurate). On the other hand, the old m = 4 Central ENO scheme is
more accurate than the present 4th order CWENO scheme. It must be noted, however, that the new scheme
is based on second degree polynomials in the reconstruction, instead of the much more costly fourth degree
polynomials of the Central ENO m = 4 reconstruction.

The results obtained for Test 2 are shown in Table 5.2. Here we observe “super-convergence”, a phenomenon
already observed in [11]. We can explain this behavior comparing the values of the error in Table 5.2 with those
obtained with the linear scheme (i.e. CWENO scheme with fixed weights). These results are not shown for
brevity, but it appears that the code based on linear CWENO gives the expected order of accuracy (namely
3 for m = 3 and 4 for m = 4). The difference with the full non-linear CWENO scheme is noticeable only on
coarse grids, where the linear CWENO scheme is more accurate. On fine grids, both codes yield comparable
errors: thus the full CWENO scheme “catches up” as the grid is refined, and the order of accuracy, for this test
problem, appears overestimated.
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Table 5.2. T = 1, λ = 0.9 × λmax. For m = 3, λmax = 3/7. For m = 4, λmax = 2/7.
ε = 10−6, p = 2.

Linear advection, u0 = sin4(πx)
m = 3 m = 4

N L1 error L1 order L1 error L1 order
20 0.5514E-01 0.9541E-01
40 0.6353E-02 3.1174 0.7728E-02 3.6258
80 0.5247E-03 3.5981 0.8175E-03 3.2408
160 0.2940E-04 4.1577 0.3002E-04 4.7673
320 0.2625E-05 3.4853 0.1130E-05 4.7309
640 0.3048E-06 3.1063 0.6141E-07 4.2023
N L∞ error L∞ order L∞ error L∞ order
20 0.6643E-01 0.1012
40 0.8657E-02 2.9398 0.9660E-02 3.3896
80 0.9784E-03 3.1454 0.1510E-02 2.6778
160 0.3827E-04 4.6760 0.7870E-04 4.2618
320 0.2669E-05 3.8421 0.2185E-05 5.1704
640 0.2983E-06 3.1613 0.6022E-07 5.1814

Table 5.3. T = 0.33, λ = 0.66 × λmax. For m = 3, λmax = 3/7. For m = 4, λmax = 2/7.
ε = 10−6, p = 2.

Burgers equation, u0 = 1 + 1/2 sin(πx)
m = 3 m = 4

N L1 error L1 order L1 error L1 order
20 0.2010E-02 0.2926E-02
40 0.1770E-03 3.5052 0.2459E-03 3.5728
80 0.1019E-04 4.1187 0.1419E-04 4.1150
160 0.5285E-06 4.2692 0.6821E-06 4.3787
320 0.3785E-07 3.8034 0.3227E-07 4.4017
640 0.4376E-08 3.1126 0.1766E-08 4.1916
N L∞ error L∞ order L∞ error L∞ order
20 0.6699E-02 0.9462E-02
40 0.8913E-03 2.9100 0.1139E-02 3.0549
80 0.5859E-04 3.9272 0.8631E-04 3.7216
160 0.2624E-05 4.4809 0.4461E-05 4.2742
320 0.1542E-06 4.0884 0.2296E-06 4.2800
640 0.1338E-07 3.5273 0.1269E-07 4.1779

We end the accuracy tests with a non linear problem (Test 3), computing the order of accuracy at T = 0.33,
well before the shock formation time T = 2/π. The results appear in Table 5.3. Once again, we observe the
correct order of accuracy.

The shock-capturing properties of the CWENO scheme are illustrated in Figure 5.1 for the Burgers equation
(Test 3). The pictures on the left refer to the solution before shock formation (T = 0.5) and the pictures on the
right refer to the solution after shock formation (T = 1.5). The bottom part of the picture shows the weights
wjk computed in the reconstruction from cell averages. In particular, the central weight corresponds to wjj ,
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Figure 5.1. Burgers equation. Solution and weights. Weights computed from cell averages,
m = 4.

while the left weight corresponds to wjj−1. Before the shock formation, the weights remain close to their
equilibrium values (given in Tab. 1). An abrupt change can be seen after the shock formation. Here the stencils
that would yield oscillations are assigned almost a zero weight. Thus the solution is oscillation-free even after
the shock forms. The shock transition occurs within two cells.

Figure 5.2 shows the results obtained on Test 4, for m = 3 and two grid sizes, N = 200 and N = 400. The
solution has no spurious oscillations: the scheme is able to control oscillations arising from discontinuities in the
solution and in its derivatives. The resolution of the contact discontinuities present in the square wave seems
better than the analogous results obtained in the ENO and WENO case with Roe flux by Jiang and Shu (see
Fig. 1 in [11]). Their results are better if they couple their scheme with the artificial compression method by
Yang [32]. We have not yet tried to adapt Yang’s algorithm to the central framework. This issue might be
addressed in future work. We also note that the resolution of the left peak in the wave train is not as sharp as
in the WENO case.
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Figure 5.2. Shu’s linear test, with m = 3. N = 200 (top), N = 400 (bottom).

There is a curious lack of symmetry appearing in the right hump of the figure in the N = 400 case, which
changes according to the direction of the wind. It is less pronounced in the N = 800 case. The same feature
appears for m = 4. This is the only test problem in which we observed this phenomenon. We did not observe
similar phenomenon in our non-linear tests and we leave its investigation for a future study.

We obtain very similar results if we compute the smoothness indicators only once per time step instead of
computing them at every stage of the RK scheme, as described in the Remark at the end of Section 4. We do
not include these results because they appear identical to the plots we have already shown.

5.2. Systems of equations

We apply our schemes to the system of Euler equations of gas dynamics for a polytropic gas with constant
γ = 1.4. The variables ρ,m,E, and p below, denote the density, momentum, total energy per unit volume
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Figure 5.3. Componentwise smoothness indicator. Density (top) and central weights
(bottom) for Sod’s problem: λ = 0.1, T = 0.16. The weight shown is computed in the re-
construction from cell-averages for the density component.

and the pressure, respectively. We consider the following test problems:

Test 5. Shock tube problem with Sod’s initial data [28].{
(ρl,ml, El) = (1, 0, 2.5), x < 0.5,
(ρr,mr, Er) = (0.125, 0, 0.25), x > 0.5.

Test 6. Shock tube problem with Lax’ initial data [14].{
(ρl,ml, El) = (0.445, 0.311, 8.928), x < 0.5,
(ρr,mr, Er) = (0.5, 0, 1.4275), x > 0.5.

In both cases the computational domain is [0, 1]; we integrate the equations up to T = 0.16, i.e. before the
perturbations reach the boundary of the computational region. Following Liu and Tadmor [22], the CFL was
taken as λ = 0.1. Note that λ = 0.1 is the optimal CFL for Lax initial data since the maximal characteristic
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Figure 5.4. Global smoothness indicator. Density (top) and central weights (bottom) for
Sod’s problem: λ = 0.1, T = 0.16. The weight shown is computed once per time step during
the reconstruction from cell-averages.

speed is of order 5. For Sod’s initial data, however, one can use λ up to 0.2. This yields similar results which
are omitted for brevity. The number of cells, N , was taken as N = 100 in order to compare with the upwind
literature, and also as N = 400 to show the behavior of the weights: when the solution is well resolved, the
weights coincide almost everywhere with the linear weights. One can observe in Figure 5.6 that the height of
the oscillations slightly decreases in the finer grid. We believe that this loss of self-similarity on coarse grids is
due to the non-linear interactions between oscillatory indicators in different regions, a behavior which changes
when the solution is sufficiently resolved.

Test 7. Double blast wave by Woodward and Colella [31]. (ρl,ml, pl) = (1, 0, 1000), x < 0.1,
(ρc,mc, pc) = (1, 0, 0.01), 0.1 < x < 0.9,
(ρr,mr, pr) = (1, 0, 100), x > 0.9.

In this case, the boundary is reflective at both ends. The equations are integrated up to T = 0.038.
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Figure 5.5. Componentwise and global smoothness indicators. Density (top) and central
weights (bottom) for Lax’ problem: λ = 0.1, T = 0.16, m = 4, N = 400. The weight shown is
computed once per time step during the reconstruction from cell-averages for the density.

We start applying our scheme component by component to each equation of the Euler system, as described in
Section 3. With this strategy the smoothness indicators are computed as in (3.14) using the formulas of the scalar
case for each component. The smoothness indicators are computed at each intermediate time level tn + cl∆t of
the Runge-Kutta integration, applying again our scheme componentwise. We call this straightforward extension
to systems of the scalar formulas for the computation of the weights “componentwise smoothness indicators”. In
the m = 4 case, we need 5 evaluations of the smoothness indicators for each component (one from cell averages
and one from point values at each of the four Runge-Kutta steps). Thus we have 15 evaluations of the quantities
ISjk at each time step, in the case of Euler equations.

Applying this scheme with m = 4 to Sod’s problem with a fixed value of λ = 0.1, we find the results shown
in Figure 5.3, for N = 200 and N = 400. We note that there are some small amplitude oscillations close to the
contact discontinuity.

The bottom part of the picture shows the behavior of the central weights obtained at the beginning of the last
time step in the reconstruction from cell averages for the density. We note that the solution is oscillation free
close to the shock, where the smoothness indicators sharply recognize the discontinuity, setting almost to zero
the weight of the “bad” stencils. The situation is more confused close to the contact discontinuity. The weights
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Figure 5.6. Density smoothness indicator. Density (top) and central weights (bottom) for
Lax’ problem: λ = 0.1, T = 0.16, m = 4. The weight shown is computed once per time step
during the reconstruction from cell-averages for the density.

of the “bad” stencils do not go to zero, because the contact discontinuity is spread on several cells (unlike the
shock), and therefore it is not recognized as a discontinuity by the scheme.

The behavior of the weights becomes very irregular in the neighborhood of the contact wave, probably because
the pressure and the velocity fields are continuous across the contact wave, and therefore each component
selects a different stencil. This suggests that the scheme might improve if all components feel the presence
of a discontinuity through their smoothness indicators. This can be obtained, e.g., by using one smoothness
indicator for all the components:

ISjk =
1
d

d∑
r=1

1
||ūr||2

(
2∑
l=1

∫ xj+1/2

xj−1/2

h2l−1
(
P

(l)
k,r

)2

dx

)
, k = j − 1, j, j + 1. (5.1)
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Figure 5.7. Woodward and Colella bang. Density plot with global smoothness indicator.
T = 0.038. The weight is computed once per time step during the reconstruction from cell-
averages.

Here d is the number of equations, and Pk,r denotes the kth polynomial for the rth component. The quantity
||ūr||2 is a scaling factor, and it is defined as the L2 norm of the cell averages of the rth component of u, namely:

||ūr||2 =

∑
all j

|ūj,r|2h

1/2

.

The integral in (5.1) can be exactly integrated [see (3.14)].
We find that this strategy is effective even if the quantities ISjk are computed at the beginning of the time

step in the reconstruction from cell averages, and are not changed at every level of the RK scheme. See the
remark at the end of Section 4. This strategy will be called “global smoothness indicators”: its results on Sod’s
problem are shown in Figure 5.4. We note a slight improvement on the control of the spurious oscillations,
and the oscillations in the weights are more localized. A more marked improvement can be observed on Lax’
problem (see Fig. 5.5).
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Figure 5.8. Woodward and Colella bang. Density plot with density smoothness indicator.
T = 0.038. The weight is computed once per time step during the reconstruction from cell-
averages.

To summarize, the “global smoothness indicators” strategy is much less expensive and gives better results
than the “componentwise smoothness indicators” strategy.

We can further improve our results if we take into account the particular structure of the system. Since
the density jumps at both shocks and contact waves, we can use the density alone to compute the smoothness
indicators for all components.

Again, we find that it is enough to compute the smoothness indicators only once per time step. This strategy
is slightly more diffusive than the previous one, because the biased stencils will be chosen more often. The
results are slightly better than the “global smoothness indicators” strategy. The drawback of this approach is
that we use information about the particular structure of the system.

The application of the three strategies that we are proposing to Lax’ test problem (Test 6) are shown in
Figures 5.5 and 5.6. The first figure shows the density and the central weight computed for the density component
for the componentwise and the global strategies, for m = 4 and N = 400. The second figure shows the results
obtained with the density strategy with m = 4 and two grid sizes, N = 200 and N = 400. From Figure 5.6, we
see that the amplitude of the spurious wiggles near the contact discontinuity decays as the grid is refined.
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In these pictures we see similar behavior as in Sod’s problem. In all three strategies, shock waves are well
resolved and oscillation free. Clearly, the global strategy produces a more reasonable selection of the weights,
compared with the componentwise approach. This behavior results in smaller wiggles in the numerical solution.
It is remarkable that even the wild weights produced by the componentwise strategy result in a reasonable
solution. We believe that this fact illustrates the robustness of our scheme.

We end this section applying our scheme to Test 8: the blast wave problem of Woodward and Colella [31].
Since in this problem the characteristic speeds change wildly with time, we used an adaptive evaluation of the
time step, namely:

∆t = C
h

maxj(cj + |uj |)
, C = 0.9λmax,

where cj and uj are the local sound speed and velocity respectively. In our tests λmax depends on the scheme,
as already discussed for the scalar case.

We show the density component of the solution at T = 0.038 in Figure 5.7 and Figure 5.8, for the global
and the density strategies respectively. The global strategy is clearly slightly less dissipative, especially on the
coarse grid, but there are small ENO-type wiggles. In both cases, the two peaks in the density are very well
resolved (compare with WENO schemes in [11]).

6. Conclusions

We have presented new third and fourth order central schemes which are based on a new central WENO
(CWENO) reconstruction. The time marching scheme is constructed through Runge-Kutta integration with
natural continuous extensions.

In particular, we develop simple and efficient techniques for the evaluation of the smoothness indicators in
the case of systems.

Our results suggest that these schemes are fast and robust tools for the integration of general systems of
conservation laws.

These new schemes require no approximate Riemann solvers, no projection along characteristic directions,
no fancy splitting of the flux function in upwind and downwind directions, and finally no exact or approximate
evaluation of eigenvalues and eigenvectors of the Jacobian of the flux.

A 2D extension of these schemes will be presented in a following paper [18].

Research was supported by Hyperbolic systems of conservation laws TMR grant #ERBFMRXCT960033. Part of this
work was done while the first and second authors were visiting L’Aquila, and while the third author was visiting ENS,
Paris. We would like to thank G.-S. Jiang and S. Osher for their useful suggestions.
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dimensions d’espace. C.R. Acad. Sci. (Paris) Ser. I Math. 320 (1995) 85–88.

[3] P. Arminjon, M.-C. Viallon and A. Madrane, A Finite Volume Extension of the Lax-Friedrichs and Nessyahu-Tadmor Schemes

for Conservation Laws on Unstructured Grids. IJCFD 9 (1997) 1–22.
[4] P. Arminjon, M.-C. Viallon, A. Madrane and L. Kaddouri, Discontinuous Finite Elements and Finite Volume Versions of the

Lax-Friedrichs and Nessyahu-Tadmor Schemes for Compressible Flows on Unstructured Grids. Computational Fluid Dynamics
Review. M. Hafez and K. Oshima Eds., Wiley (1997).

[5] F. Bianco, G. Puppo and G. Russo, High Order Central Schemes for Hyperbolic Systems of Conservation Laws. SIAM J. Sci.
Comp. (to appear.)

[6] K.O. Friedrichs and P.D. Lax, Systems of Conservation Equations with a Convex Extension. Proc. Nat. Acad. Sci. 68 (1971)
1686–1688.



CENTRAL WENO SCHEMES 571

[7] E. Godlewski and P.-A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer, New York
(1996).

[8] A. Harten, B. Engquist, S. Osher and S. Chakravarthy, Uniformly High Order Accurate Essentially Non-oscillatory Schemes
III. JCP 71 (1987) 231–303.

[9] H.T. Huynh, A Piecewise-parabolic Dual-mesh Method for the Euler Equations. AIAA-95-1739-CP, The 12th AIAA CFD
conference (1995).

[10] G.-S. Jiang, D. Levy, C.-T. Lin , S. Osher and E. Tadmor, High-Resolution Non-Oscillatory Central Schemes with Non-
Staggered Grids for Hyperbolic Conservation Laws. SINUM 35 (1998) 2147–2168.

[11] G.-S. Jiang and C.-W. Shu, Efficient Implementation of Weighted ENO Schemes. JCP 126 (1996) 202–228.
[12] G.-S. Jiang and E. Tadmor, Nonoscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws. SIAM J.

Sci. Comp. 19 (1998) 1892–1917.
[13] S. Jin and Z.-P. Xin, The Relaxation Schemes for Systems of Conservation Laws in Arbitrary Space Dimensions. CPAM 48

(1995) 235–277.
[14] P.D. Lax, Weak Solutions of Non-Linear Hyperbolic Equations and Their Numerical Computation. CPAM 7 (1954) 159–193.
[15] B. van Leer, Towards the Ultimate Conservative Difference Scheme, V. A Second-Order Sequel to Godunov’s Method. JCP

32 (1979) 101–136.
[16] R.J. LeVeque, Numerical Methods for Conservation Laws. Lectures in Mathematics, Birkhauser Verlag, Basel (1992).
[17] D. Levy, A Third-order 2D Central Schemes for Conservation Laws, Vol. I. INRIA School on Hyperbolic Systems (1998)

489–504.
[18] D. Levy, G. Puppo and G. Russo, Central WENO Schemes for Multi-Dimensional Hyperbolic Systems of Conservation Laws

(in preparation).

[19] D. Levy and E. Tadmor, Non-oscillatory Central Schemes for the Incompressible 2-D Euler Equations. Math. Res. Lett. 4
(1997) 1–20.

[20] X.-D. Liu and S. Osher, Nonoscillatory High Order Accurate Self-Similar Maximum Principle Satisfying Shock Capturing
Schemes I. SINUM 33 (1996) 760–779.

[21] X.-D. Liu, S. Osher and T. Chan, Weighted Essentially Non-oscillatory Schemes. JCP 115 (1994) 200-212.
[22] X.-D. Liu and E. Tadmor, Third Order Nonoscillatory Central Scheme for Hyperbolic Conservation Laws. Numer. Math. 79

(1998) 397–425.
[23] H. Nessyahu and E. Tadmor, Non-oscillatory Central Differencing for Hyperbolic Conservation Laws. JCP 87 (1990) 408–463.
[24] P.L. Roe, Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes. JCP 43 (1981) 357–372.
[25] R. Sanders and A. Weiser, A High Resolution Staggered Mesh Approach for Nonlinear Hyperbolic Systems of Conservation

Laws. JCP 1010 (1992) 314–329.
[26] C.-W. Shu, Numerical experiments on the accuracy of ENO and modified ENO schemes. J. Sci. Comp. 5 (1990) 127–149.
[27] C.-W. Shu and S. Osher, Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes, II. JCP 83 (1989)

32–78.
[28] G. Sod, A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws. JCP 22 (1978)

1–31.
[29] P.K. Sweby, High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws. SINUM 21 (1984) 995–1011.
[30] E. Tadmor, Approximate Solutions of Nonlinear Conservation Laws. CIME Lecture notes (1997), UCLA CAM Report 97-51.
[31] P. Woodward and P. Colella, The Numerical Simulation of Two-Dimensional Fluid Flow with Strong Shocks. JCP 54 (1984)

115–173.
[32] H. Yang, An Artificial Compression Method for ENO schemes: the SLOpe Modification Method. JCP 89 (1990) 125–160.
[33] M. Zennaro, Natural Continuous Extensions of Runge-Kutta Methods. Math. Comp. 46 (1986) 119–133.


