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Centrality in Social Networks

Vladimir Batagelj∗

Abstract

In the paper an introduction to main social networks centrality measures is
given. A new view on these measures is proposed, based on relational algebra.
All described measures are implemented in computer programs CENTRAL and
FLOWIND.
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1 Mathematical prelude

Let E be a finite set of units, n = card(E). A binary relation on E is any subset R
of the Cartesian product E × E . Instead of (x, y) ∈ R we usually write xRy. By
R(x) = {y ∈ E : xRy} we denote the set of immediate successors of unit x.

For example:

R = {(a, d), (a, e), (d, c), (e, c), (e, e)}
is a relation on E = {a, b, c, d, e}.

We can represent a given relation by graph, by a matrix, or by the list of sets of
immediate successors.

The representation by a graph, see Figure 1, is used to visualize the relation
(provided that there are not too many units) and to support our intuition about
several notions about relations. The representation by matrix is appropriate for
computations – it enables us to use matrix algebra.





















0 0 0 1 0 0
0 0 0 0 0 0
1 0 0 0 0 1
0 0 0 1 0 1
0 0 0 0 0 0
1 1 0 0 0 0





















∗University of Ljubljana, Department of Mathematics, Jadranska 19, 61 111 Ljubljana, Slovenia,
e-mail: vladimir.batagelj@uni-lj.si



Centrality in Social Networks 101

a

c b

d

e

f

Figure 1: Graph of relation R

The representation by list of sets of immediate successors

R(a) = {d} R(d) = {d, f}
R(b) = ∅ R(e) = ∅
R(c) = {a, f} R(f) = {a, b}

is a basis for the usual input form for computer programs. Suppose that we num-
bered each element from the set of units E by its sequence number.

6 -1 4 -3 1 6 -4 4 6 -6 1 2 0

The first number equals the cardinality of set E . A negative number −i starts the list
of immediate successors of node i. The description of a relation/graph is terminated
by number 0.

We denote by I = {(x, y) : x ∈ E} the identity (diagonal) relation. Relation R
is reflexive iff I ⊆ R; and it is irreflexive iff I ∩ R = ∅.

Since relations are sets, all operations on sets ∩,∪, \,⊕ can be used on them.
Beside these, we can introduce also some special operations.

Inverse relation
R−1 = {(x, y) : (y, x) ∈ R}

Relation R is symmetric iff R = R−1. We can represent pairs of opposite arcs (x, y)
and (y, x) by an unoriented edge (x: y).

Product of relations R, S ⊆ E × E is called the relation

R ∗ S = {(x, y) : ∃z ∈ E : (xRz ∧ zSy)}

The product operation ∗ is associative. Using it we can introduce the n-th power of
relation R as Rn = R ∗ R ∗ . . . ∗ R. The relation R is transitive iff R2 ⊆ R.

xRny iff there exists a walk of length n from x to y in graph (E , R).
Let Q be a property defined on relations. A Q-closure of relation R is the smallest

relation RQ, if it exists, which contains R and has the property Q.
The symmetric closure of R is denoted by R̂. It holds

R̂ = R ∪ R−1
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The relation R is symmetric iff R̂ = R = R−1. In the graph of symmetric relation
all arcs appear in opposite pairs – it can be viewed also as an undirected graph.

The transitive closure of R is denoted by R

R =
⋃

k∈IN
+

Rk

The relation R is transitive iff R = R. xRy iff y is reachable from x in the graph
of relation R. Therefore card(R(x)) equals the number of nodes reachable from the
node x.

2 Node centrality measures

It seems that the most important distinction between centrality measures is based
on the view/decision whether the relation is considered directed or undirected. This
gives us two main types of centrality measures:

• directed case: measures of importance; with two subgroups: measures of in-

fluence, based on relation R; and measures of support, based on relation R−1;

• undirected case: measures of centrality, based on relation R̂.

Since for symmetric relations R = R−1 = R̂, in this case all three types of measures
coincide.

Another important division of centrality measures is:

• local measures, which consider only immediate neighbors of a given node;

• global measures, which consider all nodes connected by paths with a given
node.

Other general discussions of centrality measures can be found in [14, 10, 13, 15, 7, 6].

2.1 Degree

We consider some ways of constructing node measures. Let S ⊆ E × E be an
irreflexive relation. We can base a measure on the cardinality of the set S(x). To
ensure comparability of measures for relations on different sets we normalize it by
dividing it with the maximal possible value dmax. This gives us a measure

c(x; S) =
card(S(x))

dmax

It holds 0 ≤ c(x; S) ≤ 1.

As special examples of this measure we get:
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measure definition program CENTRAL

local influence c(x; R) c_o

local support c(x; R−1) c_i

local centrality c(x; R̂) c

global influence c(x; R) ct_o

global support c(x; R−1) ct_i

global centrality c(x; R̂) ct

We can define

dmax = max{card(S(x)) : S ⊆ E × E ∧ card(E) = n}

In this case dmax = n; and for irreflexive relations dmax = n − 1. The relation S \ I
is always irreflexive. Note that for an irreflexive relation R its transitive closure (R)
need not be irreflexive. In program CENTRAL we restrict to irreflexive relations by
selecting the option exclude diagonal.

If the graph of relation R is not connected, other normalizations can be consid-
ered – for example, based on the maximal cardinality of activity regions a(x; R) =

card(R
−1

(x) ∪ R(x)) (implemented in program CENTRAL); or on the cardinality of
the connected component to which a given node belongs.

2.2 Closeness

Let S be irreflexive. Sabidussi [17] introduced the following measure of closeness

cl(x; S) =











card(S(x))
∑

y∈S(x) d(x, y)
· card(S(x)) + 1

n
S(x) 6= ∅

0 S(x) = ∅

where d(x, y) is the length of the shortest path from x to y. It holds 0 ≤ cl(x; S) ≤ 1.
We distinguish

measure definition program CENTRAL

out-closeness cl(x; R) cl_o

in-closeness cl(x; R−1) cl_i

(total) closeness cl(x; R̂) cl

If graph is strongly connected, then card(S(x)) = n − 1. In this case

cl(x; S) =
n − 1

∑

y∈S(x) d(x, y)

2.3 Betweenness

Freeman [9, 10, 11] defined betweenness of a node x by

b(x; S) =
1

(n − 1)(n − 2)

∑

y,z∈E:n(y,z) 6=0
y 6=z,x 6=y,x 6=z

n(y, z; x)

n(y, z)
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where n(y, z) is the number of shortest paths from y to z and n(y, z; x) is the
number of shortest paths from y to z passing through x. It holds 0 ≤ b(x; S) ≤ 1
and b(x; S) = b(x; S−1).

We distinguish

measure definition program CENTRAL

betweenness b(x; R) b

(weak) betweenness b(x; R̂) bw

2.4 Flow measures

Degree, closeness and betweenness measures are based on the economy assumption

– communications use the geodesics. Bonacich [3, 4] and Stephenson and Zelen [18]
proposed two indices which consider all possible communication paths.

Let a(x, y; m) denote the number of all walks from node x to node y of length
not exceeding m. A(m) = [a(x, y; m)]. Therefore A(1) = R. Then the number of
all walks from node x of length not exceeding m equals

v(x; m) =
∑

y∈E

a(x, y; m)

Let v∗(m) = max{v(x; m) : x ∈ E} then the Bonacich index for node x is defined by

B(x) = lim
m→∞

v(x; m)

v∗(m)

It can be shown that B(x) equals to the x-component of normalized (maxx B(x) = 1)
eigenvector of relational matrix R corresponding to the largest eigenvalue λmax.

Stephenson and Zelen index is also based on the total flow in a symmetric and
connected network, weighting each walk by the reciprocial of its length. It is difficult
to give a short explanation of this index; see [18] for details.

Here is its definition in the general case. Let A = [a(x, y)] be a symmetric
network matrix. We compute from it a new matrix B = [b(x, y)] determined by

b(x, y) =







1 +
∑

z∈E

a(x, z) x = y

1 − a(x, y) x 6= y

Let C = [c(x, y)] = B−1 and define

k =
1

n

∑

y∈E

(c(y, y)− 2c(x, y))

The value of k is identical for all x ∈ E . Then the Stephenson and Zelen index for
node x is determined by

I(x) =
1

k + c(x, x)

This index is defined only for symmetric and connected networks.
Both indices can be computed by program FLOWIND.
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3 Network centralization measures

Network centralization measures measure the extent to which the network sup-
ports/is dominated by a single node. They are usually constructed combining the
corresponding node values. We have to consider two problems:

• is a node measure defined also for nonconnected networks; isolated nodes?

• is a measure comparable over different networks?

There are two general approaches.

3.1 Extremal approach

Let p(x; S) be a node measure. We introduce the quantities

p⋆(S) = max
x∈E

p(x; S)

D(S) =
∑

x∈E

(p⋆(S) − p(x; S))

D⋆ = max{D(S) : S ⊆ E × E ∧ card(E) = n}

Then we can define

pmax(S) =
D(S)

D⋆

It can be shown [10, 3]

D⋆

measure p(x; S) general S = R symmetric S = R̂
degree/all c(x; S) n − 1 n − 1
degree/irreflexive c(x; S \ I) (n − 1)2/n n − 2
closeness cl(x; S \ I) n − 1 (n − 1)(n − 2)/(2n − 3)
betweenness b(x; S) n − 1
Bonacich B(x; S) n − 1 −

√
n − 1

and that among connected graphs in all these cases the (directed) star (with a loop
in the root) is a maximal graph (pmax = 1) and the complete graph is a minimal
graph (pmax = 0). Since activity a(x; S) is defined only for general relations we have

D∗ = (n−1)2

n
for all relations; and D∗ = (n−1)(n−2)

n
for irreflexive relations.

3.2 Variational approach

The other approach is based on variance. First we compute the average node cen-
trality

p(S) =
1

n

∑

x∈E

p(x; S)

and then define

pV (S) =
1

n

∑

x∈E

(p(x; S) − p(S))2
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Figure 2: Network – discussion, recall

4 Algorithmic aspects

It can be shown [2] that transitive closure matrix and matrices of number and length
of geodesics can be computed by Fletcher’s algorithm [8] as closure matrices over
corresponding semiring.

In computing of flow indices we need an algorithm for determining the largest
eigenvalue and the corresponding eigenvector, and an algorithm for inverting a ma-
trix. These algorithms can be found in any book on numerical analysis [5, 16].

5 Example

For an example the presented indices were applied to the Student Government Data,
Discussion, recall [12]. The network is presented in Figure 2.

In Table 1 all degree indices are given, while the advanced indices are presented in
Table 2. The relation was considered over all irreflexive relations and the indices were
normalized over all units. All values of indices are multiplied by 100 – presented as
percentages. For the largest eigenvalue of relation R we obtained λmax(R) = 3.28637.
The Stephenson-Zelen index is not computed since the network is not symmetric.

The interpretation of results is left to the reader.
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unit c(R−1) c(R) c(R̂) c(R−1) c(R) c(R̂) a(R)
1 minister 1 20 30 40 20 90 100 100
2 minister 2 50 10 50 100 70 100 100
3 minister 3 20 60 70 20 90 100 100
4 minister 4 70 20 70 100 70 100 100
5 minister 5 20 50 60 100 70 100 100
6 minister 6 40 50 80 100 70 100 100
7 minister 7 60 40 70 100 70 100 100
8 minister 8 80 40 80 100 70 100 100
9 adviser 1 20 40 40 100 70 100 100

10 adviser 2 0 40 40 0 100 100 100
11 adviser 3 30 30 40 100 70 100 100
centralization 51.7 27.5 26.4 28.6 28.6 0.0 0.0

Table 1: Degree indices

unit cl(R−1) cl(R) cl(R̂) b(R) b(R̂) B(R)
1 minister 1 27.27 48.13 58.82 0.74 1.50 60.66
2 minister 2 66.67 29.95 66.67 0.59 2.10 17.79
3 minister 3 27.27 68.18 76.92 4.70 7.83 100.00
4 minister 4 76.92 33.94 76.92 1.48 8.22 39.35
5 minister 5 40.00 56.57 71.43 2.22 4.49 81.54
6 minister 6 55.56 56.57 83.33 12.67 11.98 81.54
7 minister 7 71.43 46.28 76.92 12.11 5.54 70.84
8 minister 8 83.33 46.28 83.33 15.85 10.24 58.46
9 adviser 1 47.62 46.28 58.82 0.74 0.76 70.84

10 adviser 2 0.00 55.56 58.82 0.00 2.10 85.67
11 adviser 3 52.63 46.28 58.82 12.22 0.80 64.16
centralization 36.80 21.60 14.58 11.10 7.62 53.99

Table 2: Closeness, betweenness and Bonacich’s index
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