Centrality measure in social networks
based on linear threshold model

Fabidn Riquelme®*, Pablo Gonzalez-Cantergiani®, Xavier Molinero®, Maria Serna?

“CITIAPS - Universidad de Santiago, Chile
bInstaGIS Inc, San Francisco, CA, USA
¢ Mathematics Department, Universitat Politécnica de Catalunya, Spain
dComputer Science Department and Barcelona Graduate School of Mathematics,
Universitat Politecnica de Catalunya, Spain

Abstract

Centrality and influence spread are two of the most studied concepts in social network
analysis. In recent years, centrality measures has attracted the attention of many researchers,
generating a large and varied number of new studies about social network analysis and
its applications. However, as far as we know, traditional models of influence spread have
not yet been exhaustively used to define centrality measures according to the influence
criteria. Most of the considered work in this topic is based on the independent cascade
model. In this paper we explore the possibilities of the linear threshold model for the
definition of centrality measures to be used on weighted and labeled social networks. We
propose a new centrality measure to rank the users of the network, the Linear Threshold
Rank (LTR), and a centralization measure to determine to what extent the entire network
has a centralized structure, the Linear Threshold Centralization (LTC). We appraise the
viability of the approach through several case studies. We consider four different social
networks to compare our new measures with two centrality measures based on relevance
criteria and another centrality measure based on the independent cascade model. Our results
show that our measures are useful for ranking actors and networks in a distinguishable way.
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1. Introduction

Centrality is one of the most studied concepts in social network analysis and it has been
exhaustively studied at least since 1948 [1]. A social network can be represented as a graph,
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whose nodes are the actors of the network, and the edges are interpersonal ties among
the actors [2]. Sometimes, edges have associated weights representing the strength of each
interpersonal tie. In this context, centrality measures aim to determine how structurally
relevant is an actor within the social network. The most traditional centrality measures,
such as degree, closeness, and betweenness, are related with the topology of the graph. In
these measures, an actor is considered more central when it has a greater degree, or it
is closer to the other actors, or it allows to interconnect the other actors in the network,
respectively [3].

In recent years, the massive increment of Internet users has allowed the emergence of
varied and complex social networks, which increases the need to create more sophisticated
centrality measures based on new relevance classification criteria. Due to the huge size of
these networks, in terms of number of nodes and relationships among them, it is necessary
that the measures can be efficiently computed. Nowadays, there are centrality measures
based on how much information can be dispersed through the nodes of a network [4, 5],
measures based on power indices of cooperative game theory [6, 7, 8], measures based on
machine learning and predictive models [9], among others. There are also measures specially
created for specific social networks, e.g., for the Twitter network, more than seventy different
centrality measures have been created only since 2010 [9].

Two of the most well-known relevance measures are the PageRank [10] and the Katz
centrality [11]. Both measures are variants of the eigenvector centrality [12]. Identifying
the relevance of users is particularly useful for many applications, such as viral market-
ing [13], information propagation [14], search strategies [15], expertise recommendation [16],
community systems [17], social customer relationship management [18], and percolation the-
ory [19]. Furthermore, centrality measures can be used to identify the most active, popular,
or influential users within a network [9].

The spread of influence models the ways in which actors influence each other through
their interactions in a social network. The nodes exert their influence through the graph.
Once a set of actors adopt a new trend they may influence other actors to also adopt it.
This is certainly an intuitive and well-known phenomenon in social network analysis [20].
The most known general models for influence spread are the linear threshold model [21] and
the independent cascade model [21]. The linear threshold model is based on some ideas of
collective behavior [22, 23]. The independent cascade model was proposed in the context of
marketing [24]. Most of the research effort has been devoted to the study of the influence
maximization problem, under the linear threshold model and other models [25]. In this
problem we attempt to find a set of k key actors that allow maximizing the influence spread
among all sets of the same size. Indeed, the influence maximization problem under the
linear threshold model is NP-hard [13]. The studies about derived centrality measures are
scarce and consider only the independent cascade model [26, 27, 28]. Those rankings were
proposed, and evaluated, to get good solutions to the influence maximization problem. In
this context, the focus lies in the set of the k higher ranked users an the amount of influence
that they can exert together.

So far we have mentioned centrality measures to rank the central users of the network.
However, although less well known, there are also centralization measures, also known as
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hierarchical measures [29]. These measures aim to determine to what extent the entire
network has a centralized structure. The most known centralization measure is the Freeman
centralization, originally called simply graph centrality [3], that measures how central its most
central node is in relation to how central all the other nodes are. It is a generic measure,
so that each centrality measure can have its own associated centralization measure. Other
measures of centralization are the average clustering coefficient (ACC) [30] and variations.

In this paper we want to analyze centrality measures based on the linear threshold
model. We propose a new centrality measure to rank the users of the network, the Linear
Threshold Rank (LTR), and a centralization measure associated to the linear threshold
model, the Linear Threshold Centralization (LTC). The LTR measure can be interpreted
as how much an actor can spread his influence within a network, investing resources to be
able to convince his immediate neighbors. This distinguishes this influence measure from
other classical measures such as the degree centrality. In this measure, an actor with small
degree might have a good ranking due to his neighbors. The LTC measure is related to
the k-core, a notion introduced to study the clustering structure of social networks [31]
and to describe the evolution of random graphs [32]. The k-core has also been applied in
bioinformatics [33, 34] and network visualization [35], and it is a key concept for the k-shell
decomposition method. It is known that the k-shell predicts the outcome of spreading more
reliably than other centrality measures like the degree or the betweenness [36].

We are interested in analyzing whether those new measures differ or not from other
centrality measures based on relevance or influence. For doing so we fix our attention in
two relevance measures: the PageRank and the Katz centrality. For an influence based
centrality we consider a measure naturally derived from the independent cascade model,
the Independent Cascade Rank (ICR) introduced in [37]. These centrality measures are
implemented using different approaches, so we also discuss the computational resources and
the accuracy required by each algorithm. Our aim is to compare the different rankings
as special purpose centrality measure without having in mind the influence maximization
problem as it was done with the independent cascade proposed measures. As centralization
measures we consider the average clustering coefficient and the local clustering coefficient.

We evaluate the proposed centrality and centralization measures on four social net-
works. Two of them are large networks: the Higgs network (directed) and the arXiv net-
work (undirected) [38]. The other two are well known small networks: the Dining-table
network (directed) [39, 40] and the Dolphins social network (undirected) [41]. We correlate
the four centrality measures by using both the Spearman and the Kendall correlation coeffi-
cients [42, 43]. Table 5 summarizes the results. Each centrality measure provides a different
centrality criteria except for the Dolphins social network where LTR, PageRank and Katz
centrality tend to be similar. Observe that LTR and ICR do not appear to be correlated in
any of the networks. This fact indicates another structural difference among the two models
of influence spread. As we will see, LTR measure is a useful measure for ranking actors in
a distinguishable way.

The paper is organized as follows. Section 2 briefly describes the related work regarding
centrality and centralization measures for general social networks. Next section is devoted
to influence graphs, which are social networks where the influence spread is exerted under
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the linear threshold model. Section 4 contains the main novelty of this paper, which is the
definition of the new measures of centrality and centralization. Section 5 shows our exper-
imental setting. We compare all the previous defined measures in four different networks.
Finally, the paper ends up presenting our main conclusions and several directions for future
work.

2. Preliminaries

In this section we introduce some known centrality measures and give some intuition
about how they work. We also explain how to correlate centrality measures. Finally, we
introduce centralization measures.

In all what follows, we consider a social network as a graph G = (V, E), where V(G) is
the set of actors and E(G) is the set of edges of G. Sometimes we require a weighted graph
(G,w), where G is a graph and w : E(G) — N is a weight function which assigns a weight to
every edge. Let us denote w((i, 7)) = w;; for any edge (i,7) € E(G), n = |V|, and m = |E].

2.1. Centrality under relevance criteria

A widely used measure related with relevance criteria is the eigenvector centrality [12],
which considers that an actor in the network is important if it is linked from other important
actors or if it is highly linked. More formally, consider an adjacency matrix A, so that the
elements (a;;) of A take a value 1 if actor or node 7 is connected to actor j, and 0 otherwise.
The eigenvector centrality of an actor u, denoted by Ev(u), is given by

EV(u) :; Z (@y)EV (V)

veV(Q)

where A is a constant called eigenvalue.

The eigenvector centrality provides reasonable results only if the graph is highly con-
nected, like in the case of undirected networks with strongly connected components. In
real directed networks, we can obtain several vertices with a null eigenvector centrality, so
the measure becomes useless. For instance, this is the case for the vertices that can reach
strongly connected components but that are not recheable from them.

Nevertheless, the Katz centrality [11] overcome this deficiency of the eigenvector central-
ity, by giving a small amount of centrality for free, regardless of the position of the actor in
the network. The Katz centrality of an actor u, denoted by KATZ(u), is given by

KATZ(u) = o Y (ayu)KATZ(0) + 3

veV(G)

where 3 is a constant which is independent of the network structure, and « is called the
damping factor, a number between 0 and t, where A\nax is the largest eigenvalue of A.

Note that when o = =— and § = 0, if we calculate EV(u) with Apay, then KATZ(u) = EV(u).



Additionally, there is a well-known centrality measure called PageRank [10], denoted for
an actor u by PR(u). It is given by

PRu) = (1—a) 4o 3 (PR

+
veV(Q) 0 (U)

where §1 (v) is the out-degree of node v and the damping factor a here is such that 0 < o < 1.

Although the Katz and PageRank centrality measures can be solved in polynomial time,
a naive algorithm to solve them in O(n?) can be infeasible for a real network with millions
of nodes. By avoiding the computation of \,.., the computational complexity of the Katz
centrality can be reduced to O(n + m) [44]. Furthermore, for sparse networks, PageRank
can be computed in almost linear time [45].

Both centrality measures solve the problem of division by zero presented in the eigenvec-
tor centrality. One way to implement the algorithm is by using multiplication of matrices.
However, for large networks this approach may be useless due to high memory consump-
tion. Another way to implement these algorithms is by using mathematical methods like the
power method, which may consume too much runtime, or even never converge. Standard
computational tools, such as Python’s NetworkX library,! try to avoid this second problem
by adding two additional parameters: a tolerance parameter (tol), i.e., the number of sig-
nificant digits that we want to accept in the results, and the maximum number of iterations
(max_iter). Thus, the algorithm will stop after max_iter iterations, or after an error toler-
ance of n-tol has been reached, where n is the number of network actors. Sometimes, if the
tolerance is too high, the algorithm may not converge, whereas if the number of iterations
is too small, the algorithm may end up yielding partial results.

2.2. Centrality under influence criteria

Besides these measures based on the eigenvector centrality, there exist other centrality
measures based on influence spread on the independent cascade model [26, 27, 28]. Under
this model, each actor has a probability to influence the actors he targets. To spread its
influence, the actor must be active, and it has only one chance to influence each actor.
When an actor achieves to influence another one, this actor becomes active, and the process
is repeated for this actor. The whole process ends when there is no active nodes with a new
chance to spread its influence. As an example, consider the following measure [37], that we
call Independent Cascade Rank (ICR):

|[E"(u, p)|
max{|F"(v,p)| [ v € V(G)}

ICR(u, p) =

where V' is the set of actors within the network, and F’(u, p) is the influence spread process
under the independent cascade model, starting from the activation of actor u. This measure
considers the same constant probability p to influence every actor. Therefore, each actor
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has a probability 1 — p to remain inactive from the influence of a neighbor, a probability
of (1 — p)” to remains inactive from the r actors pointing to it, and a total probability
1 — (1 —p)" to becomes active from at least one of the actors pointing to it. To calculate
this measure we use a public available addon for NetworkX.?

In the measures based on the independent cascade model, such as ICR, the activated
nodes depend on a diffusion probability, so that the same measure can return different
rankings for each execution.

2.3. Comparing centrality measures

In order to compare the results of two centrality measures, it is common to use statistic
correlation. The most used coefficients to correlate centrality measures are the Spearman’s
rank correlation coefficient (p) [42] and the Kendall Tau rank correlation coefficient (7) [43].
Let w and y be two lists of n users each, we have [46]:

_ 6> (T —wi) and T — Ne — Ng
n(n?—1) 0.5n(n — 1)

p=1

where x; and y; are the rankings of the users ¢ in the lists  and y, respectively. Furthermore,
n. is the number of concordant pairs (7,j) (i.e., such that either z; > z; and y; > y;, or
r; < xj and y; < y;) and ng is the number of discordant pairs, i.e., those that are not
concordant. The values of both p and 7 are in the [—1, 1] interval, where 1 means that both
measures are equal, 0 that they are completely independent, and —1 that one is the inverse
of the other.

The computation of the correlation coefficients has an associated p-value. As usual,
we consider the standard 0.05 cutoff as significance level, so that the null hypothesis is
rejected when the p-value is lower than 0.05. Briefly speaking, our correlation results will
be meaningful only when the p-value is lower than 0.05.

2.4. Centralization measures

For each centrality measure, the associated Freeman centralization measure requires to
know the maximum possible sum of differences in centrality for all the possible networks.
This can be easy for some centrality measures like degree, betweenness or closeness on
undirected networks [3], but can be very difficult for other measures.

In addition, we can state the average clustering coefficient (ACC) [30] as a centralization
measure, that corresponds to the average of the local clustering coefficients of all the vertices
in the network. This measure does not take into account the direction of the edges, but differs
whether the edges are weighted or not. It is defined by

1 n
ACC = E;Ci

Zhttps://github.com/hhchen1105/networkx_addon/tree/master/information_propagation
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where C; is the local clustering coefficient of actor i. For unweighted graphs, i.e., when all
the edges have a weight equal to 1, C; is the number of triangles 7'(7) in which 7 participates
normalized by the maximum possible number of such triangles:

o - 20

6(i)(6(i) — 1)

where §(i) is the degree of actor i. For weighted graphs, there are several variations [47],
but the NetworkX library uses this one:

NS S NEPSRPSRNTE
“ = Soem -1 ng:(G)(w”w’kw”k)

J#k
where 10y, is the weight of the edge (u, v), normalized by the maximum weight in the network,
denoted by max(w), i.e., Wy, = Wy,/ max(w). For both formulae, C; = 0 if 6(7) < 2.

3. The linear threshold model for influence spread

A social network can be represented as a graph, whose nodes are the actors of the network,
and the edges are interpersonal ties among the actors. Sometimes, edges have associated
weights representing the strength of each interpersonal tie. Less common are the labels on
nodes, which can be used to represent various network features. In this work, the labels
represent the resistance of the actors to be influenced, whereas the weights of the edges are
the power of influence exerted by one actor on another. A weighted, labeled social network
can be defined more formally as an influence graph [48]. In all what follows we consider the
linear threshold model for influence spread.

Definition 1. An influence graph is a tuple (G, w, f), where G = (V| E') is a digraph formed
by a set of actors V and a set of directed edges E; w : E — N is a weight function which
assigns a weight to every edge, and f : V — N is a labeling function that quantifies how
easily influenceable each actor is. An actor i € V exerts influence over another actor j € V'
if and only if (7, 7) € E.

Note that an undirected graph can be seen as a symmetric digraph, so this measure also
applies for that kind of graphs.

Given an influence graph (G, w, f) and an initial activation set X C V' consider the
following iterative activation process. Let F;(X) C V be the set of nodes activated at some
iteration ¢. Initially, at step ¢ = 0, only the nodes in X are activated, that is Fy(X) = X.
At the next t 4 1 iteration, a node ¢ € V will be activated if and only if

JEF(X)

The process stops when no additional activation occurs. In other words, a node i is activated
when the weights’ sum of the activated nodes connected to ¢ is greater or equal to its
resistance to be influenced.



X = {b} Fi(X) = {b,d} Fy(X) = {b,c,d}

— 1 b — 1
1/2J I/QJ
(a)—1—2 « cl4—t—2 ¢

Figure 1: Spread of influence (highlighted nodes) from the initial activation X = {b}.

b
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Definition 2. Let (G, w, f) be an influence graph, the spread of influence of X is
k
F(X)=|JF(X)=F(X)U...UF(X)
t=0

where £ = min{t € N | F;(X) = F;;1(X)} < n. The t-value of F;(X) denotes the current
spread level of X.

Note that for any initial activation set X, the influence spread F'(X) can be computed
in polynomial time [48].

Example 1. Figure 1 illustrates the spread of influence F'(X) in an influence graph from
the initial activation X = {b}. In the first step we obtain F;(X) = {b,d} and in the second
step (the last one), Fy(X) = {b, ¢, d}.

4. New measures of centrality and centralization

In this section we define the new influence measures based on the influence spread fol-
lowing the linear threshold model.

4.1. Linear threshold centrality

The linear threshold model, instead of the independent cascade model, does not depend
on any chance, but on the capacity of influence of each actor, and their resistance to being
influenced. We introduce a centrality measure to rank the users of the network as follows.

Definition 3. Let (G, w, f) be an influence graph, with G = (V, E), n = |V|, and i € V an
actor. The Linear Threshold Rank of i, denoted by LTR(%), is given by

| F'({7} U neighbors(7))|

n

where neighbors(i) = {j € V | (4,j) € EV (j,i) € E}.

LTR(7) =



In our definition, G is a directed graph, but the neighbors of an actor ¢ are the actors
that are connected to ¢ by an edge in any direction. This allow us to increase the initial
activation. Observe that, those actors with small out-degree would not be able to spread
their influence through the network, and thus the obtained measure would be similar to the
degree centrality. Hence, we take as the initial activation the set Fy(X) = {i}Uneighbors(7).
As F(X) can be computed in polynomial time, LTR(i) is polynomial time computable.
Furthermore, as the ICR measure, and instead of PageRank and Katz centrality, LTR always
converges.

Note that we could also consider other criteria regarding the neighbors of the actor i,
e.g., neighbors(i) = {j € V | (4,j) € E A (j,1) € E}, or neighbors(i) = {j € V | (i,7) € E},
or neighbors(i) = {j € V| (j,7) € E}. Those sets could also be filtered with respect to
the weights, in order to regulate the role of the central actor in the influence spread. For
instance, we could consider in the initial activation only those neighbors j for which w;;
meets a given lower bound. Under the latter consideration, the influence spread F'({i}) of
actor ¢ could be more correlated with the LTR measure. However, if the restrictions to
include neighbors is too high, the measure runs the risk of becoming similar to the degree
centrality, which is a local measure that only considers a tiny portion of the entire network.
We left such options as future work.

The LTR measure can be interpreted as how much an actor ¢ can spread his influence
within a network, investing resources outside the formal system to be able to convince his
immediate neighbors, regardless of the edges directions. From a positive point of view, this
resources investment can represent the capacity of the actor ¢ to manage his contacts in the
network. From a negative or questionable point of view, it could represent his ability to
bribe.

In some sense, this measure considers the existence of two different networks. A formal
network of known interpersonal ties, and an informal network, with relationships that actors
can use in the formal network. This is a very common reality, to which we are constantly
exposed. For example, on the Twitter network, thousands of users can interact in several
ways to spread an event. The news will be viralized through the network, depending on
the influence capacity of each actor interested in the news. Although the most influential
users will generate a greater impact on the network, each user is free to comment about
the event if she or he wishes. In this formal network, users can not directly interfere with
the decisions made by other users. However, the organizers of the event could use their
“external” network of contacts (friendships, media, etc.) to help them spread the event.
Thus, the initial activation set will commonly not be formed by only one actor, but by
several ones, related in a way not evident to the formal network.

Note that the increase in the LTR measure does not depend so much on the degree of
the nodes in the initial activation, as on the amount of influence the actors are able to
exert together as a coalition. This distinguishes this influence measure from other classical
measures such as the degree centrality. In this measure, an actor with a little contribution in
the influence spread may have a good ranking due to his neighbors. This is common in the
spread of influence phenomenon, as well as in many centrality measures that consider the
behavior of the entire network. For example, measures based on eigenvector centrality, such
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First period Second period
Py Py Py Py Ps Ps Pr PR Py Piog Py | Py Py Pys Py Ps Ps P Py Py Py Pry
/01 1 1 0O0O0O0OO0OT1 O0O]0O0O0O0ODDO0OO0OO0OO0OO0OT1T 0
BR|6 0180 02 0 0 0 0 03 0 9 0 010000 0 O
P 6 100 0 8 12 0 11 0 0 O 25 0 0 4 6 05 0 0 O
P2 6 0 0 06 4 2 0 0 O 12 0 0 0 2 1 1 0 0 0
P2 0 6 00140 7 0 5 0]0O020O07T7TO030 2 0
P10 01 2 1 00 3 2 3 2 00 3 6 3 0096 11 7
P10 1 0002002 2 2 03 03 06 008 9 7
KB|0O 01001003 3 2 00 3 03 400 9 11 7
P10 0 0 0 O0OOOOT O 2 1 0000 O0OT1 2 20 6 4
Po|l O O 0 OO 1 O0T1 2 0 2 03 0005 06 9 0 9
P,0 0 O0OO0OT1O0O0OT1TT1 3 O0O[0O02O0 3 006 6 10 0
Received passes | 16 18 27 3 10 56 4 25 10 19 9 6 1319 9 13 41 3 32 38 50 34
q (75%) (12 14 20 2 8 42 3 19 8 14 7 | 5 10 14 7 10 31 2 24 29 38 26

Table 1: Passes during a football match.

as PageRank, where an actor can be quite influential only because of its direct connection
to other influential actors.

Example 2. Let Py, P, P3,..., P;; be the eleven players of a football team. P; is the
goalkeeper, P, and Pj3 are defenders, Py, P5, Ps, P; and Py are midfielders, and Py, Pjg and
Py, are strikers. Table 1 lists the passes during the first and the second period of a football
match. The first column indicates who kicks the ball, and the other columns indicate who
receives the ball (for instance, in the first period, player P kicks the ball 6 times to player
Py, 18 times to player P3 and 20 times to player P6). Note that we consider the quota ¢
of each player as the 75% of total received passes, i.e., a player is happy enough (with some
of their colleagues) when he/she has obtained the 75% of the total received passes: See the
last row.

From Table 1, we can compute the influence of each player according to the LTR measure.
Given a player i with its neighbors, i.e., Fy = {i} U {neighbors(i)}, Table 2 shows the new
influential players after each step Fi, F; and F3 during the first period and the second period
of the football match. On the one hand, during the first period of the football match the
propagation from players Pj, Ps, Py and Py (together with their neighbors) extends to all
of the other players. That is, the goalkeeper (player P;) and three midfielders (players Ps,
Ps and Pg) are more influential than the other players according our criteria. On the other
hand, during the second period there are more passes among attacking players (forwards)
than during the first period. Now players Ps, Pr, Py, Pio and P; (together with their
neighbors) influence to all the other players. That is, three midfielders (players Ps, Pr and
FP) and two strikers (players Py and Pp;) are more influential than the other players.

4.2. Linear threshold centralization

Using the linear threshold model, we define a novel centralization measure to determine
how centralized the entire network is. The k-core of a graph is the maximal subgraph such

10



First period Second period

Fy = {i} U {neighbors(i) } F F, Fy = {t} U {neighbors(z)} F F,  F;
Py {Pr1,Py,P3,Py,P5,Pyo} {Ps,Pr,Ps}{ Py, P11 } {P1,P2,Ps, Py} - - -
Py {P1, Py, P, Py, P, Pr } {Ps} {Ps} {P1,Py,Ps,Py,Ps, P, Pro } - - -
Py {P1,Py,Ps,Ps,Ps, Py } {Ps} {Pr} {P1,Py,Ps,P5,Ps,P3, P11 }
Py {P1,Py, Py, P, Py, Ps } {Ps} - {P1,Py, Py, P, Pr, Py} {Ps} {P} -~
Ps {Py1,Ps,Ps,Ps,Ps,P1o,P11 } {Py,P;,Py} {P»} {Ps,Ps,Ps,Ps,Pr,P11} {P}  {P} {Ps}
Ps { Py, P3,P),Ps,Ps,Pr, Py, Py, Pro, P} {Pr} - { Py, P3,P),Ps,Ps,Pr, Py, Py, Pro, P} {P1} - -
Py { Py, Py, Ps, Py, Py, Pro, P11 } - - { Py, Py, Ps, Py, Py, Pro, P11 } {P3, Ps}{ P1,P5}
Py | {P3,P),Ps,Ps, Py, Py, Pro, P11} {P, P} {P1} {Ps,Py,Ps5,Ps,P3, Py, Pro,Pi1}  {P2,Pr} {P1}  —
Py {Ps,Py7,Ps,Py,Pro, P11} {Ps} - {Ps,Pr7,Ps,Py,Pro, P11} {P} - -
Py {Py,Ps,Ps,P;,Ps,Py,Pyo, P11 } {Ps} - {Ps,Ps,Ps,P;,Ps,Py,Pro,Pi1} {Po,Py} {P1}
Py {Ps,Ps,P7,Py,Py,Pro, P11 } {Pi} - {Ps,P5,Ps,P7,Ps, Py, Pro, P} {P2,Pa} {P1} —

Table 2: During the first (left) and the second (right) period of a football match, given a player with its
neighbors, it indicates the new influential players after each step.

that every vertex has degree at least k. The k-shell is the subgraph of nodes in the k-core
but not in the (k + 1)-core. The main core is the core with the largest degree.

Definition 4. Let (G,w, f) be an influence graph, with G = (V, E) and n = |V|. The
Linear Threshold Centralization of G, denoted by LTC(G), is given by

_IF(C(@)

LTC(G) "

where C'(G) = {i € V | i belongs to the main core of G}.

The justification for this measure is quite natural. As the actors outside the k-shell have
a degree smaller than the actors inside of it, the first ones are more able to be influenced by
the second ones.

Example 3. We have applied such measure to four networks. Figure 2 summarizes such
results emulating the usual k-shell decomposition visualization, i.e., the nodes are distributed
in such a way that a node has larger degree as is closer to the center. Notice that the graph
(a) is more concentrated in the center, so the initial activation is a large set that is more
able to spread its influence over the distant nodes. Hence, if the nodes in the center are
capable to spread its influence over the distant nodes, this would be a good example of a
graph with a high Linear Threshold Centralization. The graph (b) presents two large cores
instead of one. Although it has a high centralization, there are nodes of the surface that
could be accessible only from one of the two cores, and therefore our measure can return
lower values than in the first graph. Finally, as the main cores of both graphs (¢) and (d) are
lower, the initial activations may not be enough to spread their influence to the peripheral
nodes, resulting in lower values for the centralization measure.
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Figure 2: Four networks with different centralizations.

5. Experiments and results

In this section, we present the results of different influence measures on four different
networks:

e Higgs network: A large, directed network.
e arXiv network: A large, undirected network.
e Dining-table network: A small, directed network.

e Dolphins social network: A small, undirected network.

We consider four centrality measures, namely the PageRank, Katz centrality, ICR, and
our new Linear Threshold Rank (LTR). We also consider LTC and ACC as centralization
measures.

The first two network datasets are provided by the SNAP’s Stanford Large Network
Dataset Collection [38].3* The third one is available on Pajek datasets,® and the last one on
the UCI Network Data Repository.® The experiments were programmed in the programming
language Python 3. For the work with graphs we used the NetworkX library. All experiments
were run on a machine HP ProLiant DL380p server with two Xeon(R) E5-2650 CPU.

Every network is represented as an influence graph (G, w, f). For each actor i € V', we
set a label f(i) = [w/2] 4+ 1, where w = }_ ;@) Wy, 0 that an actor becomes active if
either it belongs to the initial activation, or the active nodes pointing to it sum more than
half of the total influence power pointing to it.

5.1. Higgs network

The first dataset contains all the tweets related with the Higgs boson experiment that
were re-tweeted between 1st and 7th July 2012. The collection was initially used to study

3http://snap.stanford.edu/data/higgs—twitter.html
‘http://snap.stanford.edu/data/ca-GrQc.html
Shttp://vlado.fmf.uni-1j.si/pub/networks/data/esna/dining.htm
Shttps://networkdata.ics.uci.edu/data.php?id=6
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maxt #actors maxt F#actors maxt F#actors maxt #actors

0 42129 3 51118 6 211 9 8
1 63189 4 11516 7 171 10 4
2 73260 5 14861 8 22 12 2

Table 3: Number of actors that, starting by the initial activation X formed by he/she together with their
neighbors as Definition 3, reach a maximum spread level ¢, i.e., such that F;(X) = F,,(X).

the information spreading processes on Twitter [49]. This dataset allows to generate an
influence graph with n = |V| = 256,491 actors and |E| = 328,132 directed edges. A
directed edge (i,j) € E represents an actor i retweeting an actor j, so we say that i exerts
a certain influence over j. The weight of the edge, w;;, represents how many times actor j
retweeted actor 7.

By definition, both the ICR and the LTR measures always converge. To compute the
ICR measure we use a probability p = 0.1. To compute the PageRank we used the damping
factor o = 0.85 set by default, and the algorithm converged before the 100 iterations set also
by default. To compute the Katz centrality we also used the values a = 0.1 and g = 1.0 set
by default. However, instead of the PageRank, with the standard values of tolerance and
even one million of iterations, the Katz algorithm diverged. Therefore, to allow convergence
using a feasible amount of time and memory resources, we decided to reduce the tolerance,
from the standard six significant digits to only two.

Before comparing the results of the different influence measures, let us focus on the
LTR measure. Table 3 shows how many actors reached a number of spread levels equal to
0, 1, 2, and so on. Note that almost the 90% of the actors do not reach the fourth spread
level. However, the curve formed by these two variables does not have a strictly monotonous
decrease. In fact, the most common actors are those who reach exactly two spread levels,
and there is no actors who reach exactly eleven spread levels. Moreover, the maximum
spread level of the actors correlates well with the LTR measure (p = 0.89 and 7 = 0.77).
This means that for this network, the nodes with many neighbors are scarce, because if not,
these nodes could have a high TR score just by reaching low spread levels.

Now, we can continue with a more comparative analysis. Given a complex network, it is
important that the centrality measures rank the actors adequately. On one hand, this means
that the measures generate distinguishable classes of actors with different values. On the
other hand, the differences in their values should be large enough so that they do not lend
themselves to confusion. Taking this into account, the results of the four influence measures
are illustrated in Figure 3a, where the abscissa axis represents the different nodes numbered
from 0 to n — 1, and the ordinate axis represents the values obtained by each measure.

At first sight, Figure 3a shows that the values with less variation are those of PageRank.
Indeed, the PageRank presents the lowest standard deviation, but also the largest number
of different values. Table 4 shows the standard deviation and the number of different values
for the measures. There we include another three traditional centrality measures (closeness,
betweenness, and degree) [3], which are based on the topology of the network, in order to
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Figure 3: Results for the different centrality measures considered in the Higgs and the arXiv networks. The
abscissa axis represents the different nodes numbered from 0 to nl, and the ordinate axis represents the
values obtained by each measure.

broaden the perspective of analysis. Note that the ICR and the LTR measures present the
highest standard deviation. However, the ICR measure returns only 30 different values,
while the LTR measure has the second largest number of different values, after PageRank.
Note that PageRank presents the largest number of different values, but also the lowest
standard deviation. This means that this measure qualifies the actors with very similar
values, so that if we would use fewer decimals for our calculations, their rankings would
become equivalent. The degree measure, as expected, provides the worst results after ICR.

In addition, we have correlated the four influence measures by using both the Spearman
and the Kendall coefficient correlations. Table 5a summarizes the results. All the correla-
tions are low and significant, i.e., with a p-value lower than 0.05. The higher correlation
was obtained by the Spearman coefficient between the LTR and the Katz measure, and it
is only around 0.5. This means that each measure provides a different influence criteria,
as expected. Furthermore, there are several negative correlations. However, the values are
closer to 0 than -1. Thus we cannot say that these measures tend to rank the actors in the
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network Higgs arXiv Dining-table Dolphins

measure o #dift o #diff | o #diff | o #dift
LTR 0.009133 7000 | 0.005950 169 | 0.293 13 | 0.259 34
ICR 0.035022 30 | 0.282791 22| 0.276 6 | 0.257 10
Katz 0.000572 7741 0.001613 4111 | 0.000 0.047 60
PageRank 0.000001 33956 | 0.000132 3469 | 0.038 25| 0.008 60
closeness 0.003662 4331 | 0.056596 2850 | 0.140 19 | 0.052 43
betweenness | 0.000003 5015 | 0.001975 1564 | 0.036 21 | 0.051 54
degree 0.000152 3751 0.001511 65 | 0.066 6 | 0.048 12

Table 4: Standard deviation and number of different values for centrality measures on the different networks.

opposite way, rather this is an indication that they are not correlated.

Regarding execution time, both PageRank and Katz centrality returned all the results
in 7.6145 and 7.7375 seconds, respectively. The PageRank was computed with a tolerance
of six significant digits, and the Katz centrality with a tolerance of just two significant
digits. For a tolerance of three significant digits, the Katz measure always diverged, or it
was computing by weeks without providing any output. The execution time of both the
LTR and the ICR measures were in the order of hours, running with 16 parallel processes.
Despite of the differences in time, we remark that both measures always converge and return
exact values. Execution time could be reduced by using more parallelism.

Finally, regarding the centralization measures, the main core returns a subgraph with 57
nodes, with a largest degree equal to 12. The influence spread of C (G), which has 57 nodes,
is shown in Table 6. As |Fi5(C(@))] = |F(C(G))| = 67986 and n = 256491, we conclude
that the Linear Threshold Centralization of the network is LTC(G) = 67986,/256491 = 0.265.
Moreover, the network’s ACC is 0.0156. Since both values are closer to 0 than 1, we can
say that this network is fairly decentralized.

5.2. arXiwv network

The second dataset contains scientific collaborations between authors papers submitted
to arXiv's General Relativity and Quantum Cosmology category.” The collection was ini-
tially used to study graph evolution [50]. This influence graph has n = 5242 actors and
14,496 undirected edges, so that for each edge (i,j) € E(G), w;; = 1. An edge (i,7)
represents that author ¢ co-authored a paper with author j.

For this network we also computed the ICR measure with a probability p = 0.1. Here
the PageRank also converges with the parameters by default. We try to use the power
method for Katz calculation, but failed to converge using the default parameters, so we use
the multiplication of matrices approach setting the o parameter to 0.01. Note that we can

"https://arxiv.org/archive/gr-qc
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p\T LTR ICR  Katz PageRank p\T LTR ICR Katz PageRank
LTR 1 -0.175  0.380 -0.335 LTR 1 0317 -6016 8-:006
ICR -0.214 1 -0.239 -0.229 ICR 0.456 1 0606 0044
Katz 0.502 -0.271 1 0.289 Katz -0:044 060068 1 0009
PageRank [-0.299 -0.279  0.388 1 PageRank | 8609 6020 6643 1
(a) (b)

p\T LTR ICR Katz PageRank p\ T LTR ICR Katz PageRank
LTR 1 0436 637 -0.499 LTR 1 617 0.784 0.688
ICR 0.543 1 6257 -0-259 ICR 0224 1 6459 0.210
Katz 0429 6297 1 0044 Katz 0.929 06222 1 0.735
PageRank |-0.655 -6:348 0-046 1 PageRank | 0.853 0.258 0.910 1

(c) (d)

Table 5: Correlation coefficients for the measures applied to the (a) Higgs, (b) arXiv, (¢) Dining-table, and
(d) Dolphins network. Lower triangular is for Spearman coefficient (p) and upper triangular is for Kendall
coefficient (7). Values with a p-value greater than 0.05 are strikethrough.

t F(C(G)  t KCG) b R(EG) o KCG)
0 26828 4 67325 8 67701 12 67983
1 58064 5 67382 9 67931 13 67986
2 65637 6 67403 10 67966 14 67986
3 67086 7 67408 11 67973 - -

Table 6: Spread of influence from the initial activation formed by the nodes in the main core, i.e., C (G).

not use this approach for the Higgs network due to the high memory consumption. The
results of the centrality measures are illustrated in Figure 3b. In this case, the correlations
obtained between the measures are even lower than in the previous case, although most of
the results are not significant due to p-values greater than 0.05. From Table 5b we can only
conclude that LTR and ICR have a small positive correlation. The highest correlation was
obtained with Spearman coefficient between LTR and ICR, reaching a value 0.456. Hence,
for this network the measures also provide different influence criteria.

The standard deviation and the number of different values are shown in Table 4. The
PageRank and the Katz centrality provide the largest number of different values. However,
as in the previous case, both measures have the smallest standard deviations among the
considered influence measures. This means that with these measures we obtain different
rankings, but also similar values. Again, ICR is the measure with the highest standard
deviation but, at the same time, the one that rank worse the different actors. In contrast,
LTR behaves as a more balanced measure, with a high standard deviation compared to the
others, and returning almost eight times more values than LTR. Interestingly, in this case
of undirected graph, the closeness returns good results, although they are not related to
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influence criteria.

Regarding execution time, PageRank goes back to have a good performance, taking just
4.25 seconds of computation with the power method. In this case, the Katz centrality was
computed without the power method, so it returned its ideal results in 679 seconds, i.e., a
little more than 11 minutes. As in the previous network, here the ICR measure took longer
than the previous ones. It took 8.31 seconds on average per node, with a maximum of 27.39
seconds. Since it was computed in a parallel process with 16 threads, it took 2723.90 seconds
in total, i.e., around 45 minutes. Remarkably, the LTR measure had a better performance
even than the Katz centrality, taking only 23.83 seconds in total, i.e., just 0.0727 seconds
on average per node.

Finally, regarding the centralization measures, the ACC is 0.530, which means that the
average clustering coefficient is much larger than the obtained in the Higgs network. Under
this approach, we could say that the arXiv network is more centralized than the previous
one. However, our new centralization measure provides a different conclusion. In this case,
the main core returns a subgraph with 44 nodes, that correspond to the 0.8% of the nodes
in the network. This is much more than the 0.022% obtained in the Higgs network. Even
more, here the largest degree is 43, rather than 12, as in the previous study case. However,
the influence spread of the main core takes 7 steps and it is just |F(C(G))| = 722, in such
a way that the Linear Threshold Centralization is LTC(G) = 722/5242 = 0.138. This value
is lower than the Higgs network value. This means that the Higgs network has a main core
smaller than the one of the arXiv network, but better connected. Notice also that ACC and
LTC provide different centralization criteria.

5.3. Dining-table partners and Dolphins social network

The last two case studies are small networks, so they can be analyzed together.

The Dining-table partners network [39, 40] is a directed influence graph with 26 vertices
and 52 arcs. The vertices represent girls living in one cottage at a New York State Training
School. Each girl was asked about who prefers as dining-table partner in first and second
place. Therefore, each edge (i, ) represents girl i preferring girl j as dining-table partner.
Every node has an out-degree equals 2: edges with weight 1 denote the first option of the
girl, and edges with weight 2 denote her second option. This network can be easily modified
as an influence graph [8]. We just replace each arc (i,7) by (j,4), assuming an influence
from girl j to girl 2. Further, a girl has more influence over another one if that other has
chosen her in the first place rather than in the second place. Hence, the weights equals 1
are replaced in the corresponding inverted arc by 2, and the weights equals 2 are replaced
by 1. Thus, now every node has an in-degree equals 2.

The Dolphin Social Network is an undirected network of frequent associations between
62 dolphins in a community living off Doubtful Sound, New Zealand [41]. In this case, all
the edges have a weight equal to 1.

In both cases, the PageRank and Katz centrality converge for the parameters by default.
As before, the ICR measure was computed with a probability p = 0.1. The results were
obtained for each measure in less than one second. The results are illustrated in Figure 4.
The standard deviation and the number of different values are shown in Table 4. For the
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Figure 4: Results for the different centrality measures considered in the Dining-table and the Dolphins
networks. The abscissa axis represents the different nodes numbered from 0 to nl, and the ordinate axis
represents the values obtained by each measure.

first network, the Katz centrality is by far the most useless. Indeed, it returns only four
different values, and it has a standard deviation of 7.216450e-17, which is almost zero. On
the other hand, the pattern is repeated with respect to large networks: The LTR and ICR
measures have the highest standard deviations, and of both, LTR always returns the largest
number of different values.

The correlation results are shown in Table 5¢ and Table 5d, respectively. For the Dining-
table network, the correlations are still low, although we remark an inverse correlation
of -0.655 for the Spearman coefficient between LTR and PageRank. On the other hand,
the Dolphins social network is the only study case that presents high correlation results.
Considering only the significant results, we can note a high correlation between LTR and
Katz centrality, between LTR and PageRank, and between PageRank and Katz centrality.
Moreover, the Spearman coefficient presents higher correlation results than the ones given by
the Kendall coefficient. This means that for this small, undirected network, LTR, PageRank
and Katz centrality tend to be similar.

Finally, regarding the centralization measures, the ACC measure is 0.118 for the Dinning-
table network, and 0.259 for the dolphins network. However, the LTC measure is 1 for both
networks, because the main core is big enough (20 and 36 nodes, respectively) to spread its
influence to all the remaining actors, just by considering its neighbors.

6. Conclusions and future work

In this paper we have focused on comparing a centrality measure derived in a natural way
from the linear threshold model with generic centrality measures. Given a social network
represented as an influence graph, we introduce the Linear Threshold Rank (LTR), a new
centrality measure based on the linear threshold model, which is defined for each actor as
the number of nodes that can be spread when he/she forms an initial activation with his/her
neighbors.

We compare this measure with three different centrality measures based on influence
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criteria (the Katz centrality, the PageRank, and the Independent Cascade Rank), in four real
case studies: two large networks (one directed and one undirected) and two small networks
(one directed and one undirected). The larger network has 255,491 actors and 328,132
relationships among them. For the large networks, and even for the small, directed one,
we show that the correlation among these measures is low, which means that they provide
different influence criteria and can be used to obtain different results. In general, Table 5
shows that the absolute value of the correlation results tends to be higher for the Spearman
coefficient than for the Kendall coefficient. Moreover, the new LTR measure, together with
the Independent Cascade Rank (ICR), present the highest standard deviations. For these
two measures, LTR returns a larger number of different values. This proves that the new
LTR measure is a useful measure for ranking actors in a distinguishable way.

Besides the centrality measure, in this paper we also introduce a centralization measure
called Linear Threshold Centralization (LTC), that corresponds to the number of actors
that can be influenced by the ones that belong to the main core of the network. We proved
that this measure is useful for networks with a large number of actors. The measure was
also compared with the known average clustering coefficient (ACC). We conclude that both
measures provide different centralization criteria, and can be used to provide different in-
formation about the network. For future work, it would be interesting trying to define the
Freeman centralization for some centrality measures based on the influence criteria, in order
to have additional centralization measures to be compared with LTC.

Regarding execution time, we checked experimentally that both the LTR and the ICR
measures, although polynomial, do not seem to be suitable for computations in real time.
However, it seems that ICR measure may have a better performance that the PageRank and
the Katz centrality if they are computed without the power method. Furthermore, despite
centrality measures like Katz and PageRank, LTR and ICR always converge, and can be
easily paralleled in order to decrease its execution times.

As the other measures use the tolerance as the maximum level of influence (k-value in
Definition 2) the maximum level of the LTR measure could be bounded upperly, in order to
obtain a significant performance improvements. In this line, it is also interesting to define
other new measures and to study their behavior. For instance, we could define the k-th
Linear Threshold Rank as

_ | Fi. ({7} U neighbors(i))|

LTRy(7)
n

for any 0 < k < n. Note that LTR, (i) = LTR(Z), where n is the number of players. It leaves
open other new interested measures based on linear threshold model to be studied.

There are several lines for future research. The first one is to compare the LTR with
other rankings based in the same mechanism of spread of influence. As we mention before
the definition of neighborhood of a vertex used to define the initial activation set should
be contrasted with other options. Besides of edge directions, we could consider neighbors
at a certain distance. Other direction is to relax the tolerance on the level of influence. A
throughout study will shed light on which of the two parameters has a highest impact in
centrality.
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A second line of research concerns the study of the suitability of LTR with respect to
the maximum influence spread problem. In this context LTR and other measures as the
proposed before should be compared with independent cascade based rankings to see which
one provides the best estimator for the spread of influence. In such context we plan to use
the above measures together with the proposed in [27, 28, 29] to perform a study on the
impact of the first £ ranked nodes as measure of centrality. Those results should also be
compared to the LTC measure proposed in this paper.

Finally, we want to mention the difficulty in finding networks with edge weights and
node labels. Therefore it would be of interest to find procedures that allow the labeling of
the networks suitably for a process of influence spread. In this sense methods like the ones
proposed in [51, 52, 53, 54] might be adapted to the influence context.
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