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Abstract. We propose a novel centrality measure based on the dynamical properties of a biased random
walk to provide a general framework for the centrality of vertex and edge in scale-free networks (SFNs).
The suggested centrality unifies various centralities such as betweenness centrality (BC), load centrality
(LC) and random walk centrality (RWC) when the degree, k, is relatively large. The relation between
our centrality and other centralities in SFNs is clearly shown by both analytic and numerical methods.
Regarding to the edge centrality, there have been few established studies in complex networks. Thus, we
also provide a systematic analysis for the edge BC (LC) in SFNs and show that the distribution of edge BC
satisfies a power-law. Furthermore we also show that the suggested centrality measures on real networks
work very well as on the SFNs.

PACS. 89.75.Hc Networks and genealogical trees – 05.40.Fb Random walks and Levy flights – 89.20.-a
Interdisciplinary applications of physics

Many of recent studies on complex networks have un-
covered the relationship between the underlying network
topologies and the dynamical processes observed in di-
verse field such as physics, biology, engineering, and
social sciences. These include the synchronization tran-
sition [1], epidemic spreading [2], and transmission of in-
formation [3]. One of the most significant findings is the
existence of some important vertices or edges to character-
ize the dynamical properties on the networks. These are
sometimes referred as dynamical “importance” or “cen-
trality” of vertices and edges [4]. For example, in diffusive
systems the vertices of large degree play a crucial role in
determining the dynamical properties [5,6], which are de-
cisive to resolve the traffic jam at a bottleneck [7]. Not
only the dynamical properties, but also many interesting
topological properties such as percolation transition [8]
can be characterized by the important elements of a net-
work. One of the substantial applications is the identifica-
tion of the essential components of biological networks in
developing a new drug [9–12]. Therefore, classifying the
important vertices and edges is essential for both prac-
tical applications and deep understanding of many topo-
logical and dynamical phenomena on complex networks.
However, the suggested definitions for the important el-
ements of a network are completely different from each
other depending on the physical properties under consid-
eration [4,13–25]. Thus, we propose a unified centrality in
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this study to define important vertices and edges based on
the dynamical properties of biased random walks (BRW).
It also provide a clue to understand how we use the dy-
namical phenomena to reveal the topological properties of
a underlying network.

There have been various studies on the centrality of
vertices. Freeman introduced betweenness centrality (BC)
based on the assumption that transmission of information
spreads along the shortest paths [13]. BC of the vertex
i is defined by the number of shortest paths that pass
through i. More specifically, let Lh,j be the total num-
ber of shortest paths from a vertex h to another vertex j
and Lh,i,j be the number of the shortest paths that pass
through the vertex i. Then BC of vertex i, bv(i), is given
by bv(i) = 2

N(N−1)

∑
h<j

Lh,i,j

Lh,j
, where N is the total num-

ber of vertices in the network. For practical measure of the
centrality in traffic flow, load centrality (LC) of vertices
was studied by measuring the load on each vertex [14]. If
the traffic flows along the shortest paths, then BC and LC
become equivalent. The distribution of BC or LC satisfies
the same power-law [14–16]

P (bv) ∼ bv
−δv , (1)

where the exponent δv is close to 2 [17]. Recently, Newman
proposed another centrality of a vertex by net flow of
random walker which does not flow along the shortest
paths [18]. This centrality is known to be particularly
useful for finding vertices of high centrality that do not
happen to lie on the shortest paths and shown to have
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a strong correlation with degree and BC [18]. Noh et al.
also studied the centrality based on the mean-first passage
time of random walk and showed that the random walk
centrality (RWC) of a vertex is related to the probabil-
ity of finding a walker at a vertex [22]. Flow betweenness
centrality (FBC) based on the maximum flow was stud-
ied [23]. FBC is defined as the amount of flow through a
vertex. Thus, centrality of a given network is closely re-
lated to the network transport property.

Compared to the studies on the vertex centrality, there
have been few studies on the edge centrality. The simplest
edge centrality is the strength [24] of each edge which es-
pecially plays an important role in social systems [25].
Moreover, the edge centrality can be used in classifying
the modular structure [26]. Despite such important roles
of edge centrality, there have been no organized or compre-
hensive theories on the edge centrality of the network. In
this study, we introduce a biased random walk centrality
(BRWC) of a vertex (or an edge) as the number of traver-
sals by the walker, nv (or ne). As we shall see, BRWC
gives the comprehensive physical picture which unifies the
various centralities for a vertex or an edge. Furthermore,
BRWC gives an organized analytical tool to understand
the statistical properties of the edge centrality.

Let us define the biased random walk. Initially, a
walker is placed at a randomly chosen vertex on a given
network. At each time step t, the walker at a vertex i
jumps to one of the linked neighbors j with the proba-
bility Pi→j = kα

j /
∑ki

j=1 kα
j . Here kj is the degree of the

vertex j and α determines the bias of walker. BRWC is
defined as the total number of traversals for a vertex nv

(or an edge ne), i.e. how often a vertex (or an edge) is
traversed by a walker. In the limit α → ∞, the walker
is trapped at the hub with the maximal degree and its
neighbors. Therefore, the hub or edges connected to the
hub becomes the central part in the network. On the other
hand, when α → −∞ the walker visits dangling ends more
frequently. When α = 0, Pi→j does not depend on k and
BRWC is simply proportional to the probability to find a
walker at a vertex. The probability has been shown to be
proportional to RWC [22]. This indicates that BRWC be-
comes RWC when α = 0. Hence we expect that BRWC
can determine the structural hierarchy of a network [27]
by changing α.

To find out the scaling properties of BRWC, we use
static scale-free network (SFN) model, whose degree dis-
tribution follows a power-law P (k) ∼ k−γ with tunable
γ [14]. The average degree of the network is fixed to be
〈k〉 = 4 and the number of vertices is N = 105. We numer-
ically find that the distribution of BRWC follows a power-
law P (nv) ∼ nv

−σv (see Fig. 1a). Here, the exponent σv

depends on α and γ. We find that BRWC scales exactly
the same way with BC for a specific α which depends on
γ. For such specific α, we confirm that σv = δv � 2.2 for
2 < γ ≤ 3 and σv(=δv) increases continuously for γ > 3.
For example, σv = δv � 2.2 when α = 2/3 for γ = 3.0 and
σv = δv � 3.2 when α = 0.5 for γ = 4.3 (Fig. 1a).

In order to find the relationship between BRWC and
BC of a vertex, we note the role of k. It is known that

Fig. 1. (Color online) (a) P (nv) (© and �) and P (bv) (�
and ∗) for a vertex on SFNs with γ = 3 (© and �) and 4.3
(� and ∗). We use α = 2/3, and 0.5 for SFNs with γ = 3.0,
and 4.3, respectively. Here S is the total number of steps of
BRW. The obtained exponents are σv = δv = 2.2(1) (dashed
and dotted lines) and 3.2(1) (solid and dashed-dotted lines).
(b) nv(k) against bv(k) for α = 0 (�), 2/3 (©), and 1 (�) on
SFN with γ = 3.0. The lines indicate βv = 0.7 (solid line), 1.0
(dashed line), and 1.3 (dashed-dotted line).

the probability of finding a BRW at vertices with degree
k is P∞(k) ∼ kα+1−γ [6]. Then BRWC of a vertex having
degree k, nv(k), is

nv(k) ∼ P∞(k)/P (k) ∼ kα+1 ∼ kνv , (2)

when the degree-degree correlation is absent. The BC of
a vertex having degree k, bv(k), is known to scale as

bv(k) ∼ kηv (3)

with ηv = (γ − 1)/(δv − 1) for 2 < γ ≤ 3 [14]. From equa-
tions (2) and (3), we find a power-law relation between
BRWC and BC;

nv(k) ∼ bv(k)βv , (4)

with
βv = νv/ηv =

(α + 1)(δv − 1)
(γ − 1)

. (5)

We numerically find that equation (5) holds for any γ
when k is relatively large. Figure 1b shows nv(k) against
bv(k) for α = 0, 2/3, and 1 on SFN when γ = 3.0. Since
δv = 2.2 for 2 < γ ≤ 3 [14], the analytic expectation gives
βv = 0.7, 1.0, and 1.3 for α = 0, 2/3, and 1, respectively,
when γ = 3. The obtained values of βv agree with the
analytic expectations for relatively large k (see the lines
in Fig. 1b). Equation (4) implies that BRWC and BC scale
exactly in the same way when βv = 1. Using equation (5)
and the known exponent δv = 2.2 [14–16], we can estimate
α which gives βv = 1 or the scaling of BRWC is exactly
the same as that of BC for 2 < γ ≤ 3 [28]. When α = 0
equation (2) recovers the simple RWC as nv(k) ∼ k [22].
Therefore, BRWC of a vertex unifies centralities suggested
so far including BC (LC) and RWC for relatively large k.
For small k regime the deviation is inevitable, because
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Fig. 2. (Color online) (a) Plots of P (ne) (© for γ = 3.0 and
� for γ = 4.3) and P (be) (� for γ = 3.0 and ∗ for γ = 4.3).
We use α = 2/3, and 0.75 for SFNs with γ = 3.0, and 4.3,
respectively. S is the total number of steps of BRW. (b) Plot
of be(kk′) against kk′ for γ = 2.75 (�), 3.0 (©), and 4.3 (�).
(c) ne(kk′) against be(kk′) for α = 0 (�), 2/3 (©), and 1 (�)
on SFN with γ = 3.0. The lines indicate βe = 0 (solid line),
1.0 (dashed line), and 1.5 (dashed-dotted line).

P (k) does not satisfies the power-law for small k. There-
fore, γ dependent relations are not valid for small k, for
example equation (5).

Before discussing BRWC of an edge, we study the
edge BC, be, which is defined and calculated in refer-
ences [23,25]. The distribution of be, P (be), in mobile
phone call network (MPCN) is investigated [25]. Since
P (k) does not follow a power-law in MPCN, the measured
P (be) deviates from a power-law. In contrast to MPCN,
we find that P (be) in SFN follows a power-law

P (be) ∼ be
−δe . (6)

Similar to the case of vertex BC, we find that δe � 3.0 for
2 < γ ≤ 3 and δe increases continuously for γ > 3. For
example, we obtain that δe � 3.0 for γ = 3 and δe � 4.3
for γ = 4.3 from the data in Figure 2a. We also find that
be(kk′) of an edge, whose ends have degrees k and k′,
scales as

be(kk′) ∼ (kk′)ηe , (7)

where ηe � 0.66 when 2 < γ ≤ 3 and ηe increases continu-
ously when γ > 3, for example, we obtain ηe � 0.77 when
γ = 4.3 (see Fig. 2b). This relation is again valid for rel-
atively large kk′. Next, we discuss the scaling properties
of BRWC for an edge, ne, which provides a generalized
framework for the study on edge centralities in complex
networks. The data in Figure 2a shows that the distribu-
tion of ne in SFN follows a power-law

P (ne) ∼ ne
−σe , (8)

where σe depends on α and γ. We also find that BRWC
of an edge scales exactly the same way with edge BC for
a specific α, which varies with γ when γ > 3. However, in

contrast to the case of vertex BRWC, such a specific value
of α does not depend on γ when 2 < γ ≤ 3 (as shown
in Fig. 2b) we obtain α � 2/3 for 2 < γ ≤ 3). For such
specific α, we confirm that σe = δe � 3.0 for 2 < γ ≤ 3 and
σe(=δe) increases continuously for γ > 3. For example, we
obtain that σe = δe � 3.0 when α = 2/3 for γ = 3 and
σe = δe � 4.3 when α = 0.75 for γ = 4.3 (Fig. 2a).

In order to find the relationship between ne and be, we
also note the power-law relation (7). If the degree-degree
correlation is absent, then BRWC of an edge whose ends
have degrees k and k′, ne(kk′), can be expressed as

ne(kk′) ∼ 1
k

P∞(k)
P (k)

1
k′

P∞(k′)
P (k′)

∼ (kk′)α ∼ (kk′)νe (9)

with νe = α. From equations (7) and (9), we find

ne(kk′) ∼ be(kk′)βe , (10)

with
βe = νe/ηe = α/ηe. (11)

Equations (10) and (11) are verified by the numerical
simulations. Figure 2c shows ne(kk′) against be(kk′) for
α = 0, 2/3, and 1 when γ = 3.0. The analytic expectation
gives βe = 0, 1.0, and 1.5 for α = 0, 2/3, and 1, respec-
tively, when γ = 3. The obtained values of βe agree with
the analytic expectations for relatively large kk′ (see the
lines in Fig. 2c). Similar to the vertex centrality, equa-
tion (10) implies that BRWC and BC of an edge scale
in the same way when βe = 1. Using equation (11) and
δe � 0.66, we can estimate α which gives βe = 1 for
2 < γ ≤ 3. When α = 0, the probability to find a walker
at each vertex becomes the same (or ne(kk′) ∼ const.) for
any edge. Therefore, BRWC of an edge gives a generalized
framework for the study on edge centralities in complex
networks when kk′ is large.

As an application to a real network, we numerically
measure BRWC in protein-protein interaction network
(PIN) [10,29]. The used PIN has 1867 vertices and P (k)
satisfies the power-law, P (k) ∼ k−γ , with γ � 2.4. The av-
erage degree is 〈k〉 ≈ 2.4. From the measurement of P (bv),
we obtain δv � 2.2 for large k which is consistent with the
previous studies (Fig. 3a) [15]. To compare the obtained
results of P (nv) with P (bv) in PIN, we measure P (nv)
for various α. We find that σv = δv(�2.2) at α � 0.5
(see Fig. 3a). This value of α deviates from the value of α
calculated from equation (5) with δv(�2.2) and γ(�2.4).
Figure 3b shows nv(k) against bv(k) for various α(=0, 0.5,
and 0.75). From the best fit of equation (4) to the data,
we obtain βv = 0.8, 1.0, and 1.2. As shown in Figure 3a,
we find that σv � 2.2 for α = 0.5 and the relation σv = δv

is satisfied within the estimated errors. The inset of Fig-
ure 3b shows nv(k) of a vertex of degree k. From the best
fit of equation (2) to the data, we obtain νv = 1.0, 1.3, and
1.45 for α = 0, 0.5, and 0.75, respectively. These values
of νv slight deviate from analytic derivation, α + 1 = νv

(Eq. (2)). We expect that the discrepancies between the
analytic results and measurements come from the detailed
structure of the underlaying network such as degree-degree
correlation.
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Fig. 3. (Color online) (a) Plots of P (nv) and P (bv) in PIN. S is
the total number of steps of BRW. We use α = 0.5. The dashed
line and solid line represent the power-law P (nv) ∼ nv

−2.2 and
P (bv) ∼ bv

−2.2, respectively. (b) Plot of nv(k) against bv(k)
with α = 0 (�), 0.5 (©), and 0.75 (�). The lines indicate
βv = 0.8 (solid line), 1.0 (dashed line), and 1.2 (dashed-dotted
line). The inset shows the plot of nv(k) against k. (c) Plot of
P (ne) and P (be) against ne and be. We use α = 0.75. The
obtained exponents are σe = δe � 3.7 (dashed and solid lines).
(d) Plot of ne(kk′) against be(kk′) with α = 0 (�), 0.5 (©), and
0.75 (�). The lines indicate βe = 0 (solid line), 0.65 (dashed
line), and 1.0 (dashed-dotted line). In the inset we verified the
relation ne(kk′) ∼ (kk′)νe .

In Figure 3c, we display the P (ne) and P (be) in PIN
and find that both P (be) and P (ne) satisfy the power-
law P (ne) ∼ ne

−σe and P (be) ∼ be
−δe , respectively, for

large ne and be. From the data in Figure 3c, we obtain
σe = δe � 3.7 for α � 0.75. This value of α deviates from
the estimated α using equation (11). Using the scaling re-
lation (7), we obtain ηe = 0.7(1) (which is not shown). Fig-
ure 3d shows ne(kk′) against be(kk′) with α = 0, 0.5, and
0.75. From the data, we obtain βe = 0, 0.65, and 1.0. As
shown in Figure 3c, we find that σe � 3.7 when α = 0.75
and the relation σv = δv is satisfied within the estimated
errors. As shown in the inset of Figure 3d, ne(kk′) satisfies
equation (9), even though νe slight deviates from equa-
tion (11) due to the detailed structure of the underlying
network.

We also find that the five largest vertices of BRWC
in PIN for α ≥ 0 include the high ranked essential pro-
teins such as YIL061C [9]. Among the five largest ver-
tices, three proteins which are responsible for important
biological functions such as pre-autophagosomal structure
organization (YLR423C) and ATPase (YDL100C) [30]
are included even though they are non-essential proteins
in knock out experiment. This result indicates that the
BRWC can find not only the topologically important ver-
tex or edge related to the knock out experiment, but
also the dynamically important vertex or edge. We also

Fig. 4. (Color online) (a) Plots of P (nv) and P (bv) in IAS.
We use α = 0.5. The dashed line and solid line represent the
power-law P (nv) ∼ nv

−2.3 and P (bv) ∼ bv
−2.3, respectively.

(b) Plot of nv(k) against bv(k) with α = 0 (�), 0.5 (©), and
0.75 (�). The lines indicate βv = 0.85 (solid line), 1.0 (dashed
line), and 1.2 (dashed-dotted line). The inset shows the plot
of nv(k) against k. (c) Plot of P (ne) and P (be). The obtained
exponents are σe = δe � 2.3 (dashed and solid lines) with
α = 0.75. (d) Plot of ne(kk′) against be(kk′) when α = 0 (�),
0.5 (©), and 0.75 (�). The lines indicate βe = 0 (solid line),
0.65 (dashed line), and 1.0 (dashed-dotted line). In the inset
we show that the relation ne(kk′) ∼ (kk′)νe is valid in IAS.

measure the BRWC in the Internet autonomous systems
(IAS) and find the similar results with PIN (Fig. 4).

In summary, we propose a novel centrality measure
based on BRW. The relation between BRWC and other
centralities is shown by analytic and numerical methods
for relatively large k. We also show that the distribution of
BC (or LC) for an edge satisfies a power-law in SFNs for
the first time. We expect that the results provide funda-
mental theoretical bases to understand various dynamical
phenomena such as jamming transition and information
transmission on SFNs.
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