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Abstract
Centrality measures are used in network science to evaluate the centrality of vertices or the
position they occupy in a network. There are a large number of centrality measures according
to some criterion. However, the generalizations of the most well-known centrality measures
for weighted networks, degree centrality, closeness centrality, and betweenness centrality
have solely assumed the edge weights to be constants. This paper proposes a methodology
to generalize degree, closeness and betweenness centralities taking into account the vari-
ability of edge weights in the form of closed intervals (Interval-Weighted Networks – IWN).
We apply our centrality measures approach to two real-world IWN. The first is a commuter
network in mainland Portugal, between the 23 NUTS 3 Regions. The second focuses on
annual merchandise trade between 28 European countries, from 2003 to 2015.

Keywords: Centrality measures, Interval-Weighted Networks, Networks, Flow networks,
Ford and Fulkerson algorithm

1 Introduction

The study of the centrality measures is one of the most important topics in network science (Bor-
gatti, 2005; Brandes, 2008; Lu et al., 2016; Barabasi, 2016; Brandes et al., 2016; Ghalmane
et al., 2019). One of the questions that naturally arise when analysing a network is: “Which are
the central vertices in the network?” (Newman, 2018). The answer to this question depends on
what we mean by important. Even though there is no general consensus on the exact definition
of “importance”, in a structural approach, which is the most common, the importance of a ver-
tex is usually related to the concept of being the most connected vertex or being positioned in
the center of the network (Freeman, 1977, 1979; Bonacich, 1987; Borgatti and Everett, 2006).
Essentially, a vertex positioned in the center of a network has advantages over other vertices,
as it is directly linked to many other vertices (has more edges) or acts as an intermediary in
communicating with other vertices, either at speed (it is closer) or in the flow control with which it
reaches the other vertices (it is between). Identifying these “vital” vertices allow us to control the
outbreak of epidemics, to conduct advertisements for e-commercial products, to predict popular
scientific publications, and so on (Lu et al., 2016). There are a large number of centrality mea-
sures that capture the varying importance of the vertices (vertex-level measures) in a network
according to some criterion, such as reachability, influence, embeddedness, control the flow of
information (Rodrigues, 2019). Some of these most well known measures are degree centrality
and closeness centrality (Sabidussi, 1966; Freeman, 1979), Betweeness centrality (Freeman,
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1977), and Eigenvector centrality (Bonacich, 1972) along with its variants (Bonacich, 1987) and
Page rank (Brin and Page, 1998). Other centrality measures are Katz centrality (Katz, 1953),
Information centrality (or S-Z centrality index) (Stephenson and Zelen, 1989), Betweeness cen-
trality based on flow networks (Freeman et al., 1991), Valente and Foreman (1998) integration
and radiality measures, Centrality based on game theory (Gómez et al., 2003), Betweeness
centrality based on random walks (Newman, 2005), among others.
Recently, Gómez et al. (2013) introduced a centrality measure based on bi-criteria network flow.
Martin et al. (2014) proposed a new centrality measure based on the leading eigenvector of the
Hashimoto or nonbacktracking matrix. Du et al. (2014) presented TOPIS as a new measure
of centrality. Lu et al. (2016) suggested a novel measure of node influence based on com-
prehensive use of the degree method, H-index and coreness metrics. Brandes et al. (2016)
propose a variant notion of distance that maintains the duality of closeness-as-independence
with betweenness also on valued relations. Qiao et al. (2017) introduced a novel entropy cen-
trality approach. Wu et al. (2019) introduced eigenvector multicentrality based in a tensor-based
framework. Ghalmane et al. (2019) extended all the standard centrality measures defined for
networks with no community structure to modular networks Modular centrality. Zhang et al.
(2020) derive a new centrality index resilience centrality. A comprehensive explanation of some
of these measures can be found in Lu et al. (2016) and the book by Newman (2018).

In this paper, we focus only on the most influential and well-known centrality measures, degree,
closeness and betweenness Freeman (1979). Initially these three measures were formalized for
binary (unweighted) networks. However, as Freeman (1979) refers, binary representations fail
to capture any of the important variability in strength, and naturally these measures were later
extended to weighted networks. Firstly, by allowing to capture the strength of an edge focusing
only on edge weights (Newman, 2001; Brandes, 2001; Barrat et al., 2004). Secondly by taking
into consideration both the weight and the number of edges including a tuning parameter, α (Op-
sahl et al., 2010)1. Moreover, as some centrality measures (closeness and betweenness) are
based on the shortest paths, they do not take into account the flow of the edge content along
non-shortest paths. Thus, Freeman et al. (1991) proposed a betweenness measure based on
Ford and Fulkerson’s (FF) model of network flows (Ford and Fulkerson, 1956, 1957, 1962),
thereby allowing to account for the flow of the edges of the entire network.

Nevertheless, none of the above methodologies allows accounting for the variability observed in
the original data. The main contribution of this paper is the development of three new measures
for degree, closeness and betweenness, taking into account the networks’ variability of edge
weights in the form of closed intervals. This way, a closed interval may be used to model the pre-
cise information of an objective entity that comprehends intrinsic variability (ontic view), i.e., an
intervalA is a value of a set-valued variableX, so we can writeX = A (Couso and Dubois, 2014;
Grzegorzewski and Śpiewak, 2017). We call such networks interval-weighted networks (IWN)
(see Figure 2), and consequently, we name these measures the interval-weighted degree (IWD),
interval-weighted flow betweenness (IWFB) and interval-weighted flow closeness (IWFC). Our
methodology is depicted in Figure 1. The dashed lines indicate the methods followed in this

1Opsahl et al. (2010) point out some caveats of these generalizations: first, the edge weight must have a ratio
scale, otherwise the mean weight has no real meaning; and secondly, it is difficult to determine the most appropriate
value of the tuning parameter α.
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paper in the generalization of the centrality measures for interval-weighted networks.

(Classical) 
Centrality 
Measures

for
Weighted 
Networks

Degree
Opsahl et al. (2010):

Considering both tie weight and no. of ties 
(tuning parameter α).

Closeness
Gómez et al. (2013):

Using Freeman’s et al. (1991) concept of 
network flow.

Betweenness Freeman et al. (1991):
Network flow.

Figure 1: Scheme of the generalizations made for interval-weighted networks (IWN) of the three (classical) measures of vertex
centrality, degree, closeness and betweenness. In dashed lines are indicated the approaches adopted when generalizing to IWN.

The remaining of the paper is organized as follows. We start by briefly introducing the basic
terms and concepts of interval arithmetic and interval order relations and we propose a new or-
der relation between intervals (Section 2). Then, in Section 3 we recall the centrality measures
for weighted networks. First, we present the degree for the general case and also taking into ac-
count both edge weights and the number of edges introducing a tuning parameter (α). Second,
we define the concept of flow networks for the case of an (undirected) interval-weighted network
and corresponding centrality measures, flow closeness and flow betweenness. In Section 4,
we generalize degree, flow betweenness and flow closeness to the case of interval-weighted
networks. In Section 5, we apply our generalizations of degree, flow betweenness and flow
closeness to the case of interval-weighted networks in two real-world applications. Finally, in
Section 6 we conclude and discuss the outcomes obtained with our methodology.

2 Interval Analysis

Let x, x ∈ R such that x 6 x. An interval number [x, x] is a closed bounded nonempty real
interval, given by [x, x] = {x ∈ R : x 6 x 6 x}, where x = min([x, x]) and x = max([x, x]) are
called, respectively, the lower and upper bounds (endpoints) of [x, x]. The set [R] of interval
numbers is a subset of the powerset of R such that [R] =

{
X ∈ ℘ (R) : (∃x ∈ R) (∃x ∈ R) (X =

[x, x])
}
. Since, corresponding to each pair of real constants x, x (x 6 x) there exists a closed

interval [x, x], the set of interval numbers is infinite. We say that X is degenerate if x = x. By
convention, a degenerate interval [x, x] is identified with the real number x (e.g., 1 = [1, 1]). For
any two intervals X = [x, x] and Y = [y, y], in terms of the intervals’ endpoints, the four classical
operations of real arithmetic can be extended to intervals as follows (Moore et al., 2009):

• Interval addition, X + Y = [x, x] + [y, y] = [x+ y, x+ y];

• Interval multiplication, X · Y = [x, x] · [y, y] =
[

min{xy, xy, xy, xy},max{xy, xy, xy, xy}
]
;

• Interval subtraction, X − Y = X + (−Y ) where −Y = [−y,−y] (reversal of endpoints)2.

2It should be noted that the subtraction of two equal intervals is not [0, 0] (except for degenerate intervals). This
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• Interval division for any X ∈ R and any Y ∈ [R]0̃, is defined by X ÷ Y = X · (Y −1), where
Y −1 = 1/Y = [1/y, 1/y], assuming that 0 6∈ Y .

Intervals can also be represented by their midpoint (or mean, or center) m and half-width (or
radius), rad. So, X = [x, x] = 〈m(X), rad(X)〉, where m(X) =

(x+ x)

2
and rad(X) =

(x− x)
2

.
The infimum between two intervals X = [x, x] and Y = [y, y] is defined to be inf(X,Y ) =
[inf(x, y), inf(x, y)]. Similarly, the supremum between two intervals X = [x, x] and Y = [y, y] is
defined to be sup(X,Y ) = [sup(x, y), sup(x, y)] (Dawood, 2011). An operation whose operands
are intervals ([x, x]), and whose result is a point interval (or a real number) is called a point in-
terval operation, such as the: infimum inf([x, x]) = min([x, x]) = x and supremum sup([x, x]) =
max([x, x]) = x. Finally, another important definition of a point interval operation is the Haus-
dorff distance (or metric) between two intervals (see, e.g., Billard and Diday, 2007): d(X,Y ) =
d([x, x], [y, y]) = max{|x− y|, |x− y|}.

Interval arithmetic pitfalls: Useful properties of ordinary real arithmetic fail to hold in classical
interval arithmetic. Some of the main disadvantages of the classical interval theory are (Dawood,
2011): (i) Interval dependency – subtraction and division are not the inverse operations of ad-
dition and multiplication, respectively; (ii) Distributive law does not hold – only a subdistributive
law is valid – ∀X,Y, Z ∈ [R] Z × (X + Y ) ⊆ Z ×X + Z × Y .

2.1 Interval order relation

Till date one main dilemma in using interval data for decision problems is perhaps the choice of
an appropriate interval order relation. Unlike real numbers that are ordered by a strict transitive
relation “<” (if a < b and b < c, then a < c for any a, b, and c ∈ R), the ranking of intervals
is not symmetric, and as consequence, in many situations, the definitions cannot differentiate
two intervals in general, even though they can be applied efficiently to solve the prescribed
models (Karmakar and Bhunia, 2014). As a consequence, theoretically, intervals can only be
partially ordered in [R]. According to Moore et al. (2009), two transitive order relations can
be defined for intervals: (i) X < Y ⇔ x < y, and (ii) X ⊆ Y ⇔ y 6 x and x 6 y (set
inclusion)3. Nevertheless, when a choice has to be made among alternatives, the comparison is
indeed needed. There are several different approaches in the literature for ordering intervals (Hu
and Wang, 2006; Sengupta and Pal, 2009; Guerra and Stefanini, 2012; Stefanini et al., 2019).
A detailed description and comparison between these and other ranking definitions is given
in (Karmakar and Bhunia, 2012).
Bearing in mind the above definitions, and according to Hossain’s methodology (Hossain, 2009),
we may define the following order relation:

Definition 2.1. Given two intervals X,Y ∈ R, X 6 Y , iff m(X) 6 m(Y ). Furthermore X < Y
iff X 6 Y and X 6= Y 4. In the case where the midpoints of X and Y coincide m(X) = m(Y ),
the intervals X and Y are said to be equivalent X ≈ Y . We propose the following order relation:

is because X − X = {x − y : x ∈ X, y ∈ Y }, rather than {x − x : x ∈ X} (Moore et al., 2009). For example,
[1, 2]− [1, 2] = [−1, 1].

3Set inclusion “⊆” is a partial order between intervals, which is reflexive, antisymmetric and transitive.
4This order relation also applies to the case when intervals are completely overlapping, but m(X) 6= m(Y ).
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X 6 Y is determined by choosing the interval that captures the “maximum variability” between
the two intervals, i.e., the interval with the highest radius. For example, if m(X) = m(Y ) the
decision for X 6 Y implies that rad(Y ) > rad(X).

To exemplify and illustrate the applicability of these definitions in a simple network, we built three
scenarios for ranking a pair of intervals. The results are shown in Table 1.

Table 1: Interval ordering for the order relation “6”, to choose the “greater interval”.

Interval relations

Order relation “6”

v1

v2

v3

[1
, 3
]

[4, 6]
v1

v2

v3

[1
, 4
]

[3, 6]
v1

v2

v3

[2
, 5
]

[1, 6]

1 3 4 6

X

Y

1 43 6

X

Y

1 62 5

X

Y

Type of interval Non-overlapping Partially overlapping Completely overlapping:
m(X) = m(Y )

X ∩ Y X ∩ Y = ∅ X ∩ Y 6= ∅ X ∩ Y 6= ∅ ∧X ⊆ Y

dH(X,Y ) max(|−3|, |−3|) = 3 max(|−2|, |−2|) = 2 max(|1|, |−1|) = 1

inf(X,Y ) min([1, 3], [4, 6]) = [1, 3] min([1, 4], [3, 6]) = [1, 4] min([2, 5], [1, 6]) = [1, 5]

sup(X,Y ) max([1, 3], [4, 6]) = [4, 6] max([1, 4], [3, 6]) = [3, 6] max([2, 5], [1, 6]) = [2, 6]

〈midpoint, half-width〉 X = 〈2, 1〉;Y = 〈5, 1〉 X = 〈2.5, 1.5〉;Y = 〈4.5, 1.5〉 X = 〈3.5, 1.5〉;Y = 〈3.5, 2.5〉

Decision = choose the greater interval choose Y choose Y choose Y

3 Centrality measures for weighted networks: degree; flow be-
tweenness and flow closeness

Degree centrality of a vertex i for weighted networks (or the vertex strength) is defined as
the sum of weights attached to edges connected to vertex i (Barrat et al., 2004)5. Usually it is
formalized as:

si = CWD (i) =

n∑

j=1

wij si > 0 (1)

where wij is the entry of the ith row and jth column of the weighted adjacency matrix W .
Opsahl et al. (2010) include a tuning parameter, α, to address the relative importance of the
number of edges compared to edge weights associated with a vertex i, this is formalized as:

CWα
D (i) = ki

(
si
ki

)α
= k

(1−α)
i sαi (2)

5For weighted social networks, Granovetter (1973) refers that the weight of an edge is generally a function of
duration, emotional intensity, intimacy, and exchange of services, while for non-social weighted networks, it usually
represents the capacity or capability of the edge (Hu and Hu, 2008).

5



where ki is the number of vertices that a focal vertex i is connected to.
Briefly, when 0 < α < 1, both vertex degree and strength will be taken into account, when α > 1,
the measure would positively value edge strength and negatively value the number of edges, for
α = 0, the measure is solely based on the number of edges, and for α = 1 the measure is based
only on edge weights (see Opsahl et al. 2010 for details).
Garas et al. (2012) exemplifies the situation described above, through economic or commercial
networks where weights generally play an important role (usually representing the flow of capital
or the flow of trade). In these cases, the focus is usually on the vertices with higher strength,
usually the most important. Thus, in such networks the presence of vertices with a high degree
and relatively small strength can influence the results obtained by methods that are based only
on the degree.

Flows in undirected weighted networks The reason why we opted for using Freeman’s
(Freeman et al., 1991) approach of flow networks to generalize both betweenness (Freeman,
1979; Opsahl et al., 2010) and closeness (Newman, 2001; Brandes, 2001; Opsahl et al., 2010)
to weighted networks, was mainly because, first Freeman et al. (1991) and later Newman (2005),
Brandes and Fleischer (2005) and Borgatti (2005), pointed out that closeness and betweenness
centrality measures based on the shortest paths do not take into account the flow of the edge
content (e.g., information) along non-shortest paths, assuming that the edge content only flows
along the shortest possible paths (Borgatti, 2005). Therefore, these measures are unlikely to
characterize human communication, disease proliferation, etc. (Barbosa et al., 2018). To contour
this, Freeman et al. (1991) proposed a betweenness measure based on Ford and Fulkerson’s
(FF) model of network flows (Ford and Fulkerson, 1956, 1957, 1962).

Note 3.1. Since both the flow networks and the Ford and Fulkerson algorithm (Ford and Fulk-
erson, 1962) have been defined for direct networks, it is first necessary to transform an undirect
network into a direct network; this is done as follows: for an undirected and connected network
G = (V,E), where V 6= ∅ is a finite set of vertices and E is a set of pairs of vertices called edges
E ⊆

{
(i, j) : i, j ∈ V

}
, the extension of Ford and Fulkerson algorithm (Ford and Fulkerson, 1962)

is done by considering two direct edges (i, j) and (j, i)
(
hereinafter {i, j}

)
, one in each direction,

for each edge in the original network. Considering the two direct edges between a given pair of
vertices, when an edge is used in a flow, the other edge cannot be used (Freeman et al., 1991;
Schroeder et al., 2004; Gómez et al., 2013).

Definition 3.1 (Undirected Flow Network). Given a connected undirected network G = (V,E),
and a pair of vertices s (source), and t (sink) ∈ V , let f(i, j) be the flow in the edge (i, j) ∈ E,
and let the maximum allowable flow on that edge be c(i, j), its capacity (c : E → R+). A flow in
G is a function f : V × V → R that satisfies the following properties:

• capacity constraint – the resources used by a flow on an edge cannot be greater than the
capacity of that edge: 0 6 f(i, j) 6 c ({i, j}) , ∀i, j ∈ V ;

• skew symmetry – the network flow from vertex i to j is the negative of the network flow in
the reverse direction: f(i, j) = −f(j, i), ∀i, j ∈ V (and thus, f(i, i) = −f(i, i) = 0);

• flow conservation – the sum of all flows that enter in a vertex (negative flows) plus the sum
of all flows that leave that vertex (positive flows) is null:

∑
j∈V f(i, j) = 0, ∀i ∈ V − {s, t}.

6



Thus, the value of a flow is the sum of all outgoing flow f(i, j) from the source s, defined as:
|f | = ∑j∈V f(s, j) =

∑
j∈V f(j, t).

However, we are interested in finding the overall flow between pairs of vertices along all the
paths that connect them. To find out the maximum allowable flow (hereafter, max-flow) on a
flow network from any source i to any sink j, we will use the algorithm developed by Ford and
Fulkerson (1962)6. This algorithm uses flow-augmenting paths to increase existing flows in the
network, so that in each iteration the flow is greater. The basic idea behind the FF algorithm for
undirected networks, is as follows:

Definition 3.2 (Ford and Fulkerson algorithm). Given a connected network G = (V,E), where V
is a set of vertices and E is a set of edges between these vertices (E ⊆ {{i, j} : i, j ∈ V }) , for
a flow f between a pair of vertices (i, j), the forward residual capacity from i to j is denoted by
cf (i, j) = c ({i, j})− f(i, j), where c ({i, j}) is the forward capacity of (i, j) (the order of vertices
connected by an edge does not matter, as well as the associated capacity)7.

The residual network is basically an auxiliary network used by the algorithm, defined as: given
a network G = (V,E), let f be a flow in G, the residual network induced by f is a network
Gf = (V,Ef ), where Ef = {(i, j) ∈ V × V : cf (i, j) > 0}. The residual network is always
directed, either for directed or undirected networks. The residual capacity from j to i, in the
backward direction of the edge (i, j), is defined as cf (j, i) = c ({j, i}) + f(i, j). That is, the
residual capacity is the additional flow one can send on an edge, possibly by cancelling some
flow in opposite direction.

Let p be a path from s to t that is allowed to transverse edges in either the forward or backward
direction, the residual capacity cf (p) of a path p is the minimum residual capacity of its edges,
that is, cf (p) = min

(i,j)∈p
cf (i, j). If cf (p) > 0, then p is called an augmented path. A value of total

flow can be increased by adding the minimum capacity on each forward edge and subtracting it
from every backward edge in the augmented path.

By repeating this process of finding the augmented paths on a flow network, the total flow can
be increased to the maximum within capacity constraints.

The pseudo-code bellow (see Algorithm 1) describes the Ford & Fulkerson algorithm for undi-
rected networks (Schroeder et al., 2004).

6Ford and Fulkerson (1962) proved that the maximum flow (max-flow) from i to j is exactly equal to that minimum
cut (min–cut) capacity. The min–cut capacity from i to j is the smallest capacity of any of the i− j cut sets.

7The residual capacity is used by the algorithm to determine how much flow can pass through a pair of vertices,
and is used in the definition of the so called residual network.
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Algorithm 1 Pseudo-code: Ford and Fulkerson algorithm for undirected networks
Input: A connected undirected flow network G = (V,E)
Output: The maximum flow f on G

1: for each edge {i, j} ∈ E do
2: f [i, j]← 0

3: f [j, i]← 0

4: while there exists a path p from s to t with no cycles in the residual network Gf do
5: ∆← min{cf (i, j) : (i, j) ∈ p}
6: for each edge (i, j) in p do
7: f [i, j]← f [i, j] + ∆

8: f [j, i]← −f [i, j]

9: return f

Having defined a flow network (Definition 3.1) and the FF max-flow algorithm (Definition 3.2),
next we present the respective flow centrality measures.

Note 3.2. All the generalizations take into account only undirected and connected weighted
networks, G = (V,E), where V 6= ∅ is a finite set of vertices and E is a set of positive weighted
edges, where the weights measure the strength wij > 0, E ⊆

{
(i, j) : i, j ∈ V

}
. For unweighted

networks, we define wij = 1 if there is an edge between vertices i and j and zero otherwise.

Flow betweenness FB(i) – is defined as the degree to which the maximum flow between all
unordered pairs of vertices depends on an intermediary vertex i. Thus, the flow betweenness
FB(i) is defined as (Freeman et al., 1991):

FB(i) = CWFB(i) =

n∑

j=1
j 6=i

n∑

k=1
k 6=i,j

fjk(i), (3)

where fjk(i) is the maximum flow from j to k that passes through vertex i.

Flow closeness FC(i) – although Freeman et al. (1991) did not formally define flow closeness
as a centrality measure, we can partially extend this as the maximum flow between one vertex i
and the rest of the network, as:

FC(i) = CWFC(i) =

n∑

j=1

fij , (4)

where fij represents the maximum flow from vertex i to vertex j. It is important to highlight that
this measure has a poor ability to distinguish which are the vertex(ices) closest to every other
vertices when in presence of special situations, such as when the network has a star topology
(one central vertex – hub – and the remaining n − 1 vertices connected to it) in which all links
have the same strength (Gómez et al., 2013).
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4 Centrality Measures for Interval-Weighted Networks

In classical network flow theory, a capacity c(i, j) is associated with each edge between vertex
vertex i and j, denoting the maximum amount that can flow on the edge and a lower bound l(i, j)
representing the minimum amount that must flow on the edge (Ahuja et al., 1993). Nevertheless,
the maximum flow problem is restricted by flow bounds considering only the maximum flow ca-
pacity c(i, j) of an edge between each pair of vertices i and j, thus assuming that this capacity
is constant. However, in real-world applications, these capacities may vary within ranges rather
than being constants (Ahuja et al., 1993). To better model such variability on an edge, instead of
using constants, we represent flow capacities as intervals (Hu and Hu, 2008; Sengupta and Pal,
2009; Hossain and Gatev, 2010; Hossain, 2009; Bozhenyuk et al., 2017). An interval representa-
tion of these capacities allows taking into account the variability observed in the original network,
thereby minimizing the loss of information. In what follows, we extend the degree, flow between-
ness and flow closeness centrality measures to the general case of interval-weighted networks.
First, we introduce the Interval-Weighted Degree (IWD), extending Opsahl et al. (2010) concept
of a tuning parameter to give relevance to both edge weights and number of edges attached to a
vertex. Secondly, based on capacity flow networks, using FF max-flow algorithm (Ford and Fulk-
erson, 1962), we present the Interval-Weighted Flow Closeness (IWFC) and Interval-Weighted
Flow Betweenness (IWFB).

Conversion of an interval-weighted undirected network into its corresponding direct ver-
sion Before generalizing the centrality measures discussed in Section 3 to IWN, as mentioned
in Note 3.1, it is first necessary to transform an undirected interval-weighted network into a di-
rect one. Figure 2 shows an undirected interval-weighted network and its transformation into a
directed interval-weighted network (for the sake of simplicity, in future representations of IWN,
only one undirected interval-weighted edge will be represented, as shown in Figure 2.a).

v1

v2

v3 v4

[4,
6]

[1, 1]

[2, 4]

[1, 3]

(a)

v1

v2

v3 v4

[4,
6]

[4,
6]

[1, 1]

[1, 1]

[2
,4

][2
,4

]

[1, 3]

[1, 3]

(b)

Figure 2: (a) Undirected Interval–Weighted Network, and its corresponding (b) Directed Interval–Weighted Network (Schroeder
et al., 2004).

Flows in undirected interval-weighted networks The generalization to interval-weighted
networks (IWN) of Freeman’s betweenness and closeness centrality measures (Freeman et al.,
1991), according to the methodology based on “flow networks” discussed in Section 3, faced
two major drawbacks proper of interval arithmetic (Moore et al., 2009):

• firstly, because of the non-existence of inverse elements. The generalization of closeness
and betweenness to weighted networks done by Newman (2001) and Brandes (2001),
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respectively, inverted the edge weights to consider them as costs and then applied the Di-
jkstra’s (1959) shortest path algorithm (the least costly path connecting to vertices was
the shortest path between them). Thus, the identification and length of the shortest
paths is based on the sum of the inverted edge weights and is defined as: dW (i, j) =

min
(

1
wih

+ · · ·+ 1
wh′j

)
, where h and h′ are intermediary vertices on paths between ver-

tices i and j;

• secondly, to what is known as interval dependency problem. The use of flow capacities as
intervals raises some difficulties when calculating the shift of a flow on an augmented path,
since the real number arithmetic property of additive inverse (i.e., if b = c−a, then a+b = c)
is not valid for interval subtraction, e.g., [1, 5]+[1, 3] = [2, 8], but [2, 8]−[1, 3] = [−1, 7] 6= [1, 5]
(see section 2 for a detailed explanation about interval arithmetic).

Lexicographic order To circumvent the above mentioned difficulty, the lexicographic order
was used to prove that the maximum flow is obtained with the maximum flow values at each
edge, and the minimum flow with the minimum flow values at each edge (see Appendix A for
details).

4.1 Interval-Weighted Degree (IWD)

The extension of the degree to the case of an interval-weighted network is done first by consid-
ering only the vertices strength, i.e., the sum of the edge interval-weights (Barrat et al., 2004),
and secondly by taking into consideration both the number of edges and the edges strength by
introducing a tuning parameter α (Opsahl et al., 2010). The following definitions express these
concepts:

Definition 4.1. Using (1) and (2), the generalization of degree to an IWN is formalized as:

IWD(i) = sIWi = CIWD (i) =
n∑

j=1

[
wij , wij

]
, (5)

where
[
wij , wij

]
are the interval–weights (wij > wij > 0).

Definition 4.2. The generalization of Opsahl et al. (2010) approach, which consists in the in-
clusion of a tuning parameter, α, to address the relative importance of the number of edges
compared to edge interval-weights, is formalized as:

IWDα(i) = CIWα
D (i) = k

(1−α)
i




n∑

j=1

[
wij , wij

]


α

= k
(1−α)
i

(
sIWi

)α
. (6)

where ki is the number of vertices that a focal vertex i is connected to.

The following is an example of our approach to degree in an IWN.
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Example 4.1 (Interval-Weighted Degree – IWD). Given an interval-weighted network (Figure 3),
the IWD for the different α benchmark values is shown in Table 2.

v1

v2

v3 v4

[4,
6]

[1, 1]

[2, 4]

[1, 3]

Figure 3: Interval–Weighted Network

Analysing Table 2, we conclude that when the degree outcome is solely based on the number
of edges (α = 0), the edge weights are ignored (i.e., the degree is the same as if the network
were binary), then vertex v3 is the most central. The same occurs when we consider a tuning
parameter between 0 and 1 (e.g. α = 0.5), which means that the degree would positively value
both the number of edges and the edge weights, with weights varying in [3.46, 4.90].
However, when the degree is based only on edge weights (α = 1), vertex v2 becomes the most
central one with the degree varying in [6, 10]. The same outcome is obtained if the tuning pa-
rameter is above one (e.g. α = 1.5), which positively values edge strength and negatively values
the number of edges [10.39, 22.36].

Table 2: Interval–Weighted Degree values for the IWN in Figure 3, for the benchmark values α = 0, 0.5, 1, 1.5.

Tuning parameter (α)
α = 0 α = 0.5 α = 1 α = 1.5

Vertex
Interval
degree

Interval
rank

Interval
degree

Interval
rank

Interval
degree

Interval
rank

Interval
degree

Interval
rank

v1 [2, 2] 2nd [3.16, 3.74] 3rd [5, 7] 3rd [7.91, 13.10] 2nd

v2 [2, 2] 2nd [3.46, 4.47] 2nd [6,10] 1st [10.39,22.36] 1st

v3 [3,3] 1st [3.46,4.90] 1st [4, 8] 2nd [4.62, 13.06] 3rd

v4 [1, 1] 4th [1.00, 1.73] 4th [1, 3] 4th [1.00, 5.20] 4th

4.2 Interval-Weighted Flow Centrality Measures

Definition 4.3 (Interval-Weighted Flow Betweenness (IWFB)). Using (3), the generalization of
flow betweenness (FB) to an IWN is formalized as:

IWFB(i) = CIWFB (i) =




n∑

j=1
j 6=i

n∑

k=1
k 6=i,j

f
jk

(i),

n∑

j=1
j 6=i

n∑

k=1
k 6=i,j

f jk(i)


 , (7)

where f
jk

(i) and f jk(i) are the minimum and the maximum flow, for the lower and upper bounds
of the weighted intervals, from j to k that pass through vertex i, respectively.
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Definition 4.4 (Interval-Weighted Flow Closeness (IWFC)). Using (4), the generalization of flow
closeness (FC) to an IWN is formalized as:

IWFC(i) = CIWFC (i) =




n∑

j=1

f
ij
,
n∑

j=1

f ij


 , (8)

where f
ij

and f ij are the minimum and the maximum flow for the lower and upper bounds of the
weighted intervals between vertices i and j, respectively.

Below is an example of the values obtained for the two centrality measures on an interval-
weighted flow network.

Example 4.2 (Interval-Weighted Flow Centrality Measures, Betweenness (IWFB) and Closeness
(IWFC)). Given the interval-weighted network used in Example 4.1, Figure 3, the values of the
IWFB and IWFC are shown in Table 3.

Table 3: Interval-Weighted Flow Centrality measures for the IWN in Figure 3.

Ford & Fulkerson max-flowa max-flow (all pairs)b Flow Betweenness Flow Closeness

Vertex v1 v2 v3 v4 max-flow
max-flow

rank
IWFBc IWFB rank IWFCd IWFB rank

v1 [0, 0] [5, 7] [3, 5] [1, 3] [5, 11] 3rd [1, 1] 3rd [9,15] 1st

v2 [5, 7] [0, 0] [3, 5] [1, 3] [5, 11] 3rd [2, 6] 2nd [9,15] 1st

v3 [3, 5] [3, 5] [0, 0] [1, 3] [7, 13] 2nd [3,7] 1st [7, 13] 3rd

v4 [1, 3] [1, 3] [1, 3] [0, 0] [11, 17] 1st [0, 0] 4th [3, 9] 4th

a Ford & Fulkerson’s max-flow between vertices.
b max-flow between all pairs of vertices, where the vertex vi is neither a source or a sink.
c Interval-Weighted Flow Betweenness centrality.
d Interval-Weighted Flow Closeness centrality.

Regarding to betweenness, Table 3 shows that vertex v3 has the higher betweenness centrality
varying in IWFB = [3, 7]. This means that, of the total maximum flow between all pairs of
vertices, where the vertex v3 is neither a source or a sink [7, 13], a flow between 3 and 7 must
pass through vertex v3.

On the contrary, relatively to closeness, Table 3 shows that vertices v1 and v2 have the highest
closeness centrality, varying between 9 and 15.

Below in Figure 4 is depicted an example that illustrates how to obtain the max-flow [7, 13] and
the interval weighted flow betweenness (IWFB) [3, 7] values for vertex v3, when v3 is neither a
source nor a sink, as in Table 3.

12



13

Definition 1.4. The generalization of Opsahl et al. (2010) approach, which consists in the

inclusion of a tuning parameter, ↵, to address the relative importance of the number of

edges compared to edge interval–weights, is formalized as:

IWD↵(i) = CIW↵
D (i) = k(1�↵)

i

 
nX

j=1

⇥
wij, wij

⇤
!↵

= k(1�↵)
i

�
sIW

i

�↵
. (1.12)

The following is an example of our approach to degree in a IWN.

Example 1.1 (Interval–Weighted Degree – IWD). Given an interval–weighted network (Fig-

ure 1.3), the IWD for the different ↵ benchmark values is shown in Table 1.1.
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Analysing Table 1.1, we conclude that when the degree outcome is solely based on

the number of edges (↵ = 0), the edge weights are ignored (i.e., the degree is the same

as if the network were binary), then vertex v3 is the most central. The same occurs when

we consider a tuning parameter between 0 and 1 (↵ = 0.5), which means that the degree

would positively value both the number of edges and the edge weights, with weights varying

between [3.46, 4.90]. However, when the degree is based only on edge weights (↵ = 1),

vertex v2 becomes the most central one with the degree varying between [6, 10]. The same
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Table 1.1: Max-flow when vertex

v3 is neither a source nor a sink – Interval

Lower bound.

Source Sink max–flow
max–flow that

pass thru v3

v1 v2 5 1

v1 v4 1 1

v2 v4 1 1

Lower bound Total 7 3

Table 1.2: Max-flow when vertex

v3 is neither a source nor a sink – Interval

Upper bound.

Source Sink max–flow
max–flow that

pass thru v3

v1 v2 7 1

v1 v4 3 3

v2 v4 3 3

Upper bound Total 13 7

Analysing Table 1.3, we conclude that when the degree outcome is solely based on

the number of edges (↵ = 0), the edge weights are ignored (i.e., the degree is the same
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Upper bound.

Source Sink max–flow
max–flow that

pass thru v3

v1 v2 7 1

v1 v4 3 3

v2 v4 3 3

Upper bound Total 13 7

Analysing Table 1.3, we conclude that when the degree outcome is solely based on

the number of edges (↵ = 0), the edge weights are ignored (i.e., the degree is the same

Figure 4: In the center is the interval-weighted network, on the left and right side are shown the weighted networks and the tables
with the max-flow values for vertex v3, when v3 is neither a source nor a sink for the intervals lower and upper bounds, respectively.

Next, applications to two real-world interval-weighted networks further illustrates the proposed
approaches.

5 Applications

In recent years, centrality measures have often been used in complex networks representing
territorial units as tools to identify the central units (De Montis et al., 2007, 2011; Cheng et al.,
2015). We present the application of our centrality measures approach to two real-world interval-
weighted networks. The first network represents the movements of daily commuters in mainland
Portugal8 (by all means of transportation) between the 23 NUTS 3 Regions9 (henceforth, the
“Interval-Weighted Commuters Network (IWCN)”) (source: INE – Statistics Portugal, Census
2011). The second application focuses on annual Merchandise trade (detailed products, ex-
ports in thousands of US dollars) between 28 European countries from 2003 to 2015 (hence-
forth, the “Interval-Weighted Trade Network (IWTN)”), analysing the commercial communities
that emanate between these countries for the thirteen year period considered (henceforth, the
“Interval–Weighted Trade Network (IWTN)”) (UNCTAD, 2016).

8https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_base_dados&bdpagenumber=2&contexto=bd&

bdtemas=1115&bdsubtemas=111514&bdfreetext=pendulares&xlang=pt.
9NUTS–Nomenclature of Territorial Units for Statistics (Eurostat, 2016).
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5.1 Network of Portuguese commuters

According to various authors, the flows of daily commuters can be conceived as a network
(De Montis et al., 2007; Patuelli et al., 2007; De Montis et al., 2011, 2013; De Leo et al., 2013;
Cheng et al., 2015; Xu et al., 2016; Barbosa et al., 2018; Zeng et al., 2018; Spadon et al.,
2019). Hence, each vertex of the Interval-Weighted Commuters Network (IWCN) corresponds
to a given NUTS 3 (which in turn represents the aggregation of commuter flows between the
municipalities that constitute it) and the edges represent intervals ranging between the minimum
flow larger than 50 commuters and the maximum flow of commuters between the corresponding
NUTS 3. As represented in Figure 5a, the interval of commuters flow from NUTS i→ j may be
different from the one of j → i. Therefore, the elements oIij of the symmetric interval-weighted
adjacency matrix, OI , denote the maximum variability of the bi-directional flows ij and ji be-
tween the NUTS i and j (Figure5b): oIij =

[
min{o′ij , o′′ji},max{o′ij , o′′ji}

]
=
[
oij , oij

]
. The option

for this representation of flows is related to the fact that we do not want to study the orienta-
tion of these daily commuter fluxes, but just quantify the reciprocal attractiveness of the NUTS
3 pairs (De Montis et al., 2013). This kind of aggregation when the data are recorded at the
same point in time and the statistical units to be analysed are not those for which the data was
originally recorded, but constitute specific groups of those (level higher than the one at which
the data was originally collected), is called contemporary aggregation (Brito, 2014).

Undirected interval-weighted 
edge

(a) (b)

Undirected interval-weighted 
edge

(c) (d)
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grouped by NUTS 3, provided by the the “XV – Portuguese Population and Housing Cen-

suses (2011)” (INE, 2012). These daily inter–municipal movements are differentiated by

direction of travel, thus movements between NUTS 3 i ! j are different from j ! i. We

have considered these movements among mainland Portuguese municipalities grouped

as NUTS 3, as flows of people, and particularly, we have considered the external flows

that measures the movements from any municipality i to the municipality j and vice-versa,

taking into account the complete flow of individuals (workers and students) that commute

throughout the set of mainland Portuguese municipalities by all means of transportation,

grouped by NUTS 3.

Hence, each vertex of the Commuters Interval–Weighted Network (CIWN) corresponds

to a given NUT 3 (which in turn represents the aggregation of commuter flows between

the municipalities that constitute it) and the edges represent intervals varying between

the minimum flow larger than 50 commuters and maximum flow of commuters among the

corresponding NUTS 3. As represented in Figure 1.1a, the interval–weighted of commuters

flow from NUT i ! j may be different from the one of j ! i. Therefore, to construct the

symmetric interval–weighted adjacency matrix, W I , its elements wI
ij denote the maximum

variability of the bi–directional flows ij and ji between the NUTS i and j (Figure1.1b):
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Figure 1.1: Sketch of the conversion of directed interval–weighted edges into an undirected interval–weighted edge. (a)

Bidirectional interval flows i ! j and j ! i between NUTS 3 i and j, (b) Undirected interval flows between NUTS 3 i and j.

The adjacency matrix elements are zero, wI
ij = [0, 0], when there is no commuter flow

greater than 50 daily movements between NUTS 3 i and j. By definition, we assume that

there are no commuter flows within each NUTS 3, i.e., the network has no loops at initial

vertices, which implies that the diagonal of the interval–weighted adjacency matrix consists

of degenerate intervals with the value zero, wI
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Figure 1.1: Sketch of the conversion of directed interval–weighted edges into an undirected interval–weighted edge. (a)

Bidirectional interval flows i ! j and j ! i between NUTS 3 i and j, (b) Undirected interval flows between NUTS 3 i and j.
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Figure 5: Conversion of directed interval-weighted edges into an undirected interval-weighted edge. (a) Bidirectional interval flows
i → j and j → i between NUTS 3 i and j, (b) Undirected interval flow between NUTS 3 i and j, (c) and (d) are an example
extracted from the real data.

The adjacency matrix elements are null, oIij = [0, 0], when there is no commuter flow greater
than 50 daily movements between NUTS 3 i and j. By definition, we assume that there are no
commuter flows within each NUTS 3, i.e., the network has no loops at initial vertices, which im-
plies that the diagonal of the interval-weighted adjacency matrix consists of degenerate intervals
with the value zero, oIii = [0, 0].
Figure 6 shows the geographical distribution of NUTS 3 in mainland Portugal (Figure 6a), and the
corresponding network of commuting movements between these NUTS 3, weighted by intervals
denoting the maximum variability (Figure6b)10. This network has 23 vertices and 80 edges and

10For the sake of visualization, we chose not to represent the intervals on the network edges, such as it is depicted
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is therefore considered a small network with low density (considering the intervals midpoints:
graph density = 0.316, diameter = 3, average degree = 6.96). For ease of reading, hereinafter
we will only refer to Portugal instead of “mainland Portugal”.

(a) (b)

Figure 6: (a) Geographic representation of Portuguese NUTS 3, and (b) Topologic representation of the Portuguese NUTS 3
interval-weighted commuters network (IWCN).

5.1.1 Results – interval-weighted commuters network (IWCN)

In this section, applying the new centrality measures that incorporate the tuning parameter α
of Opsahl’s et.al. (2010) for degree and the flow capacities of Freeman et.al. (1991) for be-
tweenness and closeness, we aim at identifying which are the critical (most central) vertices in
the interval-weighted network described above, i.e., which are the most central NUTS 3 in the
country.

Interval-Weighted Degree Centrality (IWD) Table 4 ranks in descending order the 23 NUTS
3 according to the degree centrality interval score for different values of the tuning parameter α.
Highlighted in gray are the cases where there was a shift in the interval rank classification with
the change of the α value. To simplify our analysis, we will focus only on the two main regions,
AML (Lisbon Metropolitan Area) and AMP (Porto Metropolitan Area). As expected, AML and
AMP are the most central NUTS 3, irrespective of α. A closer look however reveals that when
the degree outcome is solely based on the number of edges, α = 0 (the edge weights are ig-
nored and the degree is the same as if the network were binary), AML is the most central NUTS
3 and AMP comes in second place. The same occurs when we consider a tuning parameter
such that 0 < α < 1 (α = 0.5) (the degree would positively value both the number of edges and
the edge weights), with weights varying approximately in [159, 436].
However, when the degree is based only on edge weights (α = 1), AMP becomes the most
central NUTS 3 with the degree varying in [939, 12997]11. Thus, we may conclude that AML is

in Figure 5d.
11As defined in Section 3, (2), this measure is the product of the number of vertices that a focal vertex is connected

to, by the average weight of these vertices adjusted by a tuning parameter α. Thus, for this particular interval, we
conclude that the average weight of the NUTS 3 attached to AMP varies within

[
939
20
, 12997

20

]
= [46.95, 649.85].
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Table 4: Degree centrality for the Interval-Weighted Commuters network (NUTS 3 ranked in descending order of interval
rank for α = 1).

Tuning parameter (α)
α = 0 α = 0.5 α = 1 α = 1.5

NUTS 3a
Degree
interval

Interval
rank

Degree
interval

Interval
rank

Degree
interval

Interval
rank

Degree
interval

Interval
rank

AMP [13, 13] 2 [110.49, 411.05] 2 [939, 12997] 1 [7980.44, 410953.80] 1

AML [20, 20] 1 [159.19, 436.30] 1 [1267, 9518] 2 [10084.40, 207636.43] 2

AVE [9, 9] 5 [69.46, 253.83] 3 [536, 7159] 3 [4136.43, 201909.75] 3

CAV [9, 9] 5 [69.91, 249.27] 4 [543, 6904] 4 [4217.73, 191218.51] 4

OES [6, 6] 11 [46.15, 178.43] 8 [355, 5306] 5 [2730.66, 157788.46] 5

TES [7, 7] 7 [51.91, 189.04] 6 [385, 5105] 6 [2855.24, 137862.01] 6

RLE [7, 7] 7 [51.98, 176.85] 7 [386, 4468] 7 [2866.37, 112880.97] 7

RCO [12, 12] 3 [92.04, 210.09] 5 [706, 3678] 8 [5415.22, 64391.27] 11

RAV [7, 7] 7 [52.18, 162.49] 9 [389, 3772] 9 [2899.85, 87560.56] 9

MTJ [7, 7] 7 [54.03, 154.11] 10 [417, 3393] 10 [3218.51, 74701.06] 10

LTJ [5, 5] 13 [36.54, 132.00] 12 [267, 3485] 11 [1951.11, 92006.64] 8

AMI [5, 5] 13 [37.22, 115.20] 13 [277, 2654] 12 [2061.74, 61145.76] 12

DOU [10, 10] 4 [76.22, 124.74] 11 [581, 1556] 13 [4428.58, 19409.50] 13

VDL [6, 6] 11 [52.31, 87.02] 14 [456, 1262] 14 [3975.32, 18302.63] 14

BSE [5, 5] 13 [36.26, 79.56] 15 [263, 1266] 15 [1907.43, 20144.92] 15

BBA [4, 4] 19 [36.72, 59.06] 18 [337, 872] 16 [3093.25, 12874.93] 16

ATA [5, 5] 13 [44.05, 58.40] 16 [388, 682] 17 [3417.93, 7965.11] 18

ACE [5, 5] 13 [37.42, 62.13] 17 [280, 772] 18 [2095.33, 9592.70] 17

TTM [5, 5] 13 [39.69, 46.85] 19 [315, 439] 19 [2500.23, 4113.50] 21

ALG [4, 4] 19 [31.81, 43.27] 20 [253, 468] 20 [2012.11, 5062.19] 20

AAL [3, 3] 21 [23.75, 39.72] 21 [188, 526] 21 [1488.25, 6964.95] 19

ALI [3, 3] 21 [23.17, 34.07] 22 [179, 387] 22 [1382.67, 4395.48] 22

BAL [3, 3] 21 [24.80, 29.55] 23 [205, 291] 23 [1694.61, 2866.02] 23
a NUTS 3: ACE-Alentejo Central, ALI-Alentejo Litoral, ALG-Algarve, AAL-Alto Alentejo, AMI-Alto Minho, ATA-Alto Tâmega, AML-Área Metropolitana de Lisboa,
AMP-Área Metropolitana do Porto, AVE-Ave, BAL-Baixo Alentejo, BBA-Beira Baixa, BSE-Beiras e Serra da Estrela, CAV-Cávado, DOU-Douro, LTJ-Lezı́ria do Tejo,
MTJ-Médio Tejo, OES-Oeste, RAV-Região de Aveiro, RCO-Região de Coimbra, RLE-Região de Leiria, TES-Tâmega e Sousa, TTM-Terras de Trás-os-Montes,
VDL-Viseu Dão Lafões.

connected with more NUTS 3, but AMP despite having fewer connections, tends to have con-
nections that involve more commuters. The same outcome is obtained if the tuning parameter is
above one (α = 1.5), which positively values edge strength and negatively values the number of
edges [7980, 410954].
For the remaining NUTS 3 marked in gray there are also shifts in the degree interval rank clas-
sification with the change of the α parameter, which means that this measure, in fact, considers
both the number of edges and the edges strength as well as being sensitive to the average edge
weight of a vertex. In particular, Oeste (OES) clearly climbs in the ranking for α > 1, showing that
although not connected to many regions, its connections involve a large number of commuters;
the opposite is observed for the Douro region (DOU).
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Interval-Weighted Flow Centrality measures: Betweenness (IWFB) and Closeness (IWFC)
In Table 5 are shown the flow centrality measures for the 23 NUTS 3, ranked in descending order
according to the flow betweenness centrality interval score. Regarding the Interval-Weighted
Flow Betweenness (IWFB), the five most central NUTS 3 with the highest max-flow between all
pairs of NUTS 3, that depends on them are: AML (Lisbon Metropolitan Area) [15609, 101172]12,
followed by AMP (Porto Metropolitan Area) [7348, 95972], RCO (Coimbra Region) [5306, 55549],
RAV (Aveiro Region) [2329, 39281] and RLE (Leiria Region) [2805, 35233]. These are the areas
of the most important cities (Lisbon and Porto), and then 3 regions in the center of the country,
through which important commuter flows must pass.
Nevertheless, regarding the Interval-Weighted Flow Closeness (IWFC) centrality measure, the
five most central NUTS 3 with the highest max-flow between them and the remaining NUTS 3
in the IWFC ranking (Table 5) are: AMP (Porto Metropolitan Area) [8645, 55083] ranks 1st, AVE
(Ave Region) [8020, 55083], CAV (Cávado Region) [8048, 54530], TES (Tâmega e Sousa Region)
[7154, 51528] and AML (Lisbon Metropolitan Area) [8645, 49521]. We find again the areas of
Lisbon and Porto, as expected, plus three areas in the North of the country, known for being
densely populated, therefore responsible for a greater flow of commuters between these regions.
It is noteworthy that AMP (Porto Metropolitan Area) becomes the most central region in the IWFC
while in the IWFB it ranks 2nd, AVE region ranks 2nd in the IWFC while in the IWFB it ranks 10th,
CAV region ranks 3nd in the IWFC while in the IWFB it ranks 6th, TES region ranks 4th in the
IWFC while in the IWFB it ranks 14th, whereas AML becomes 5th in the IWFC while in the IWFB
it ranks 1st.
These differences between the IWFB and the IWFC centrality measures rankings are to be ex-
pected because the former measures the regions intermediary ability to communicate with other
regions, high for AMP and AML, RCO, RAV, RLE, and the latter identifies the “communication
power” of one region and the rest of the interval-weighted network, which is high for AMP, AML,
AVE, CAV and TES.

5.2 Network of Trade transactions between 28 European countries

The construction of the ‘Interval-Weighted Trade Network (IWTN)” of annual merchandise trade
was done by aggregating the observations from the data corresponding to the values from i→ j
and from j → i, between the 28 selected countries from 2003 to 2015 (UNCTAD, 2016)13, a
temporal aggregation (Brito, 2014). Therefore, each vertex of the IWTN corresponds to one of
the 28 European countries and the edges represent intervals varying between the minimum and
maximum exports (in thousands of US dollars) among those countries14.

12This results means that of the total max-flow between all pairs of NUTS 3 [68404, 323339], where AML is neither
a source or a sink, [15609, 101172] must pass through AML.

13According to various authors, the flows of annual merchandise trade can be conceived as a network (Barigozzi
et al., 2011; Traag, 2014; Barbosa et al., 2018).

14Analogously to the procedure adopted for the IWCN in Section 5.1 (see Figures 5a and 5b),
where the elements oIij of the symmetric interval-weighted adjacency matrix, OI , denote the max-
imum variability of the bi-directional flows ij and ji between the countries i and j (Figure5b):
oIij =

[
min{o′ij , o

′′
ji},max{o′ij , o′′ji}

]
=

[
oij , oij

]
.
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Table 5: Flow centrality measures for the Interval-Weighted Commuters network (NUTS 3 ranked in descending order
of interval rank for IWFB).

max-flow (all pairs)b Flow Betweenness Flow Closeness
NUTS 3a max-flow max-flow rank IWFBc IWFB rank IWFCd IWFC rank

AML [68404, 323339] 19 [15609, 101172] 1 [8645, 49521] 5
AMP [68404, 317777] 23 [7348, 95972] 2 [8645, 55083] 1
RCO [68637, 325757] 16 [5306, 55549] 3 [8412, 47103] 8
RAV [69859, 325331] 15 [2329, 39281] 4 [7190, 47529] 9
RLE [69885, 324177] 17 [2805, 35233] 5 [7164, 48683] 7
CAV [69001, 318330] 21 [3481, 27263] 6 [8048, 54530] 3
MTJ [69663, 327879] 14 [4345, 23542] 7 [7386, 44981] 10
DOU [68887, 347347] 11 [4711, 22248] 8 [8162, 25513] 13
VDL [69429, 350875] 10 [1932, 19480] 9 [7620, 21985] 14
AVE [69029, 317777] 22 [3671, 14260] 10 [8020, 55083] 2
BSE [71490, 352435] 9 [1357, 15864] 11 [5559, 20425] 15
ACE [71217, 357715] 7 [4286, 9969] 12 [5832, 15145] 17
OES [70225, 323339] 18 [2207, 10424] 13 [6824, 49521] 6
TES [69895, 321332] 20 [1783, 9860] 14 [7154, 51528] 4
LTJ [71422, 327051] 13 [2656, 8175] 15 [5627, 45809] 11
BBA [70441, 356215] 8 [1582, 8196] 16 [6608, 16645] 16
ALG [71670, 362851] 4 [2822, 6668] 17 [5379, 10009] 20
ATA [69867, 359155] 6 [1886, 6097] 18 [7182, 13705] 18
AAL [72922, 361807] 3 [1607, 6235] 19 [4127, 11053] 21
AMI [71262, 335269] 12 [1190, 5380] 20 [5787, 37591] 12
ALI [73111, 364442] 2 [2419, 3782] 21 [3938, 8418] 22
TTM [70727, 363402] 5 [2045, 3950] 22 [6322, 9458] 19
BAL [72582, 366458] 1 [2256, 3542] 23 [4467, 6402] 23

a NUTS 3: ACE-Alentejo Central, ALI-Alentejo Litoral, ALG-Algarve, AAL-Alto Alentejo, AMI-Alto Minho, ATA-Alto Tâmega, AML-Área Metropolitana de Lisboa,
AMP-Área Metropolitana do Porto, AVE-Ave, BAL-Baixo Alentejo, BBA-Beira Baixa, BSE-Beiras e Serra da Estrela, CAV-Cávado, DOU-Douro, LTJ-Lezı́ria do
Tejo, MTJ-Médio Tejo, OES-Oeste, RAV-Região de Aveiro, RCO-Região de Coimbra, RLE-Região de Leiria, TES-Tâmega e Sousa, TTM-Terras de Trás-os-
Montes, VDL-Viseu Dão Lafões.
b max-flow between all pairs of vertices, where the vertex vi is neither a source or a sink; c Interval–Weighted Flow Betweenness centrality; d Interval–Weighted
Flow Betweenness centrality.

Figure 7 shows the geographical distribution of the European countries belonging to the “Trade
network” (Figure7a, and the corresponding network (Figure7b)15. This is a complete network (all
vertices are connected between each other) which has 28 vertices and 378 edges and is there-
fore considered a small network in size but with high density (graph density = 1.0, diameter = 1,
average degree = 27).

5.2.1 Results – interval-weighted trade network (IWTN)

Interval-Weighted Degree Centrality (IWD) Table 6 below shows the degree centrality in-
terval score for different values of the tuning parameter α, ranking in descending order the 28
countries according to the degree centrality accounting only for the weight of the edges α = 116.
Since this is a complete network, the number of edges attached to each one of the 28 coun-
tries analysed is the same (27 in this case), causing that shifting the tuning parameter α for
the benchmark values 0.5, 1, and 1.5, does not cause significant changes in degree rankings.
As it might be expected, the major European economies appear as the most central ones: DE
(Germany), FR (France), UK (United Kingdom), NL (Netherlands), BE (Belgium), IT (Italy) and
ES (Spain).

15For the sake of visualization, we chose not to represent the intervals on the network edges, such as it is depicted
in Figure 5d.

16Highlighted in gray are the cases where there was a shift in the interval rank classification with the change of the
value of α.
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(a) (b)

Figure 7: (a) Geographic representation of the European countries belonging to the “Trade network”, and (b) Topologic representa-
tion of the weighted “Trade network” (weighted by the intervals midpoint).
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Table 6: Degree centrality for the Interval-Weighted Trade network (Countries ranked in descending order of interval rank for α = 1).

Tuning parameter (α)
α = 0 α = 0.5 α = 1 α = 1.5

Countriesa
Degree
interval

Interval
rank

Degree
interval

Interval
rank

Degree
interval

Interval
rank

Degree
interval

Interval
rank

DE [27, 27] 1 [102326.85, 175664.12] 1 [387806824.1, 1142884585] 1 [1.469743e+ 12, 7.435697e+ 12] 1

FR [27, 27] 1 [78465.04, 124536.28] 2 [228028235.1, 574417976] 2 [6.626757e+ 11, 2.649477e+ 12] 2

UK [27, 27] 1 [68417.45, 121986.45] 3 [173368436.3, 551136848] 3 [4.393121e+ 11, 2.490046e+ 12] 3

NL [27, 27] 1 [64452.68, 122444.18] 4 [153857308.5, 555280599] 4 [3.672783e+ 11, 2.518181e+ 12] 4

BE [27, 27] 1 [62336.59, 109086.05] 5 [143920368.4, 440732048] 5 [3.322779e+ 11, 1.780656e+ 12] 5

IT [27, 27] 1 [65458.24, 105143.01] 6 [158695591.1, 409446369] 6 [3.847383e+ 11, 1.594460e+ 12] 6

ES [27, 27] 1 [53541.28, 89445.76] 7 [106172922.1, 296316422] 7 [2.105420e+ 11, 9.816388e+ 11] 7

CH [27, 27] 1 [40808.66, 82191.47] 8 [61679515.7, 250201410] 8 [9.322439e+ 10, 7.616453e+ 11] 8

AT [27, 27] 1 [40815.39, 68822.90] 9 [61699855.2, 175429336] 9 [9.327051e+ 10, 4.471688e+ 11] 10

PL [27, 27] 1 [33190.64, 71855.75] 10 [40800682.2, 191231455] 10 [5.015558e+ 10, 5.089289e+ 11] 9

SE [27, 27] 1 [39661.81, 64544.17] 11 [58261436.6, 154294441] 11 [8.558347e+ 10, 3.688447e+ 11] 11

NO [27, 27] 1 [25755.63, 67581.50] 13 [24568609.2, 169157757] 12 [2.343630e+ 10, 4.234050e+ 11] 12

CZ [27, 27] 1 [32407.79, 64297.41] 12 [38898697.0, 153116925] 13 [4.668966e+ 10, 3.646304e+ 11] 13

IE [27, 27] 1 [29851.83, 53765.41] 15 [33004874.4, 107063662] 14 [3.649096e+ 10, 2.131971e+ 11] 14

DK [27, 27] 1 [32359.85, 52121.61] 14 [38783706.3, 100617119] 15 [4.648278e+ 10, 1.942343e+ 11] 15

HU [27, 27] 1 [29042.88, 49959.48] 16 [31240334.1, 92442580] 16 [3.360405e+ 10, 1.710512e+ 11] 16

SK [27, 27] 1 [20855.16, 46253.34] 19 [16108809.1, 79235966] 17 [1.244266e+ 10, 1.357381e+ 11] 17

PT [27, 27] 1 [25589.03, 43750.86] 18 [24251801.6, 70893996] 18 [2.298445e+ 10, 1.148768e+ 11] 18

FI [27, 27] 1 [26188.34, 43348.28] 17 [25401081.1, 69595323] 19 [2.463749e+ 10, 1.117347e+ 11] 19

EL [27, 27] 1 [13783.88, 39116.17] 20 [7036862.9, 56669429] 20 [3.592417e+ 09, 8.209966e+ 10] 20

LU [27, 27] 1 [15505.02, 30508.99] 21 [8903912.7, 34474010] 21 [5.113161e+ 09, 3.895434e+ 10] 21

SI [27, 27] 1 [15318.91, 28393.76] 22 [8691444.8, 29859460] 22 [4.931239e+ 09, 3.140082e+ 10] 22

LT [27, 27] 1 [9470.52, 25318.00] 24 [3321876.1, 23740782] 23 [1.165181e+ 09, 2.226182e+ 10] 23

HR [27, 27] 1 [10479.74, 24328.75] 23 [4067588.9, 21921777] 24 [1.578788e+ 09, 1.975294e+ 10] 24

LV [27, 27] 1 [6983.80, 20195.38] 25 [1806423.4, 15105675] 25 [4.672480e+ 08, 1.129870e+ 10] 25

CY [27, 27] 1 [2968.57, 17697.96] 26 [326386.2, 11600664] 26 [3.588524e+ 07, 7.604005e+ 09] 26

IS [27, 27] 1 [5444.54, 14558.85] 27 [1097891.1, 7850370] 27 [2.213895e+ 08, 4.233049e+ 09] 28

MT [27, 27] 1 [3984.12, 14765.58] 28 [587897.3, 8074900] 28 [8.675016e+ 07, 4.415947e+ 09] 27
a Countries: AT-Austria, BE-Belgium, HR-Croatia, CY-Cyprus, CZ-Czech Republic, DK-Denmark, FI-Finland, FR, France, DE-Germany, EL-Greece, HU-Hungary, IS-Iceland, IE-Ireland, IT-Italy, LV-Latvia, LT,
Lithuania, LU-Luxembourg, MT-Malta, NL-Netherlands, NO-Norway, PL-Poland, PT-Portugal, SK-Slovakia, SI-Slovenia, ES-Spain, SE-Sweden, CH-Switzerland, UK-United Kingdom.
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Interval-Weighted Flow Centrality measures: Betweenness (IWFB) and Closeness (IWFC)
Table 7 shows the flow centrality measures for the 28 European countries analysed, ranked
in descending order according to the flow betweenness centrality interval score. Regarding
the Interval-Weighted Flow Betweenness (IWFB), DE (Germany) is the most central European
country, i.e., the country through which most flows must pass, followed by UK (United Kingdom),
FR (France). NL (Netherlands), IT (Italy), BE (Belgium) and ES (Spain).
Nevertheless, regarding the Interval-Weighted Flow Closeness (IWFC) centrality measure, FR
(France) becomes the most central European country, i.e., the country that centralizes most
annual merchandise trade in the considered years (Table 5).
It is noteworthy that SE (Sweden) ranks 11th in the IWFC while in the IWFB it ranks 8th, putting
in evidence its intermediation role. On the contrary, CH (Switzerland) ranks 8th in the IWFC
whereas in the IWFB it ranks 10th.
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Table 7: Flow centrality measures for the Interval–Weighted Trade network (Countries ranked in descending order of interval rank for IWFB).

max–flow (all pairs)b Flow Betweenness Flow Closeness
Countriesa max–flow max–flow rank IWFBc IWFB rank IWFCd IWFC rank

DE [7413003807, 26769887480] 27 [2185413096, 6566281708] 1 [1453915546, 4649907299] 1

UK [7468330607, 26797312358] 26 [838121364, 2978511281] 2 [1398588745, 4622482420] 3

FR [7413003807, 26769887480] 27 [881547435, 2328131952] 3 [1453915546, 4649907299] 1

NL [7510857142, 26789024857] 25 [557453333, 2159124156] 4 [1356062210, 4630769922] 4

IT [7496342294, 27253669475] 23 [633270908, 2072687573] 5 [1370577058, 4166125304] 6

BE [7550604902, 27128526758] 24 [453239198, 1752227012] 6 [1316314450, 4291268020] 5

ES [7739342134, 27819319211] 22 [401228536, 1484669303] 7 [1127577219, 3600475569] 7

SE [8033667545, 28840293295] 18 [383023300, 1051732575] 8 [833251808, 2579501489] 11

PL [8190814334, 28508798969] 19 [157392715, 1013176935] 9 [676105018, 2910995812] 10

CH [8006322912, 28096009281] 21 [179713794, 894364013] 10 [860596441, 3323785497] 8

AT [8006180535, 28635215917] 20 [243111799, 784248460] 11 [860738817, 2784578860] 9

CZ [8209834186, 28853245967] 17 [163521022, 799346141] 12 [657085166, 2566548813] 12

NO [8397620711, 28691660132] 16 [143183388, 799696175] 13 [469298641, 2728134649] 13

DK [8211099084, 29489690179] 14 [206979675, 633196218] 14 [655820269, 1930104598] 15

HU [8303384091, 29604133730] 13 [119391634, 522797634] 15 [563535262, 1815661052] 16

SK [8541120505, 29802232940] 10 [87072347, 546677594] 16 [325798847, 1617561842] 19

FI [8385133632, 29957781899] 11 [134826401, 453203323] 17 [481785719, 1462012881] 18

IE [8280445067, 29405885128] 15 [98708914, 465212077] 18 [586474286, 2013909657] 14

PT [8402689632, 29935704453] 12 [92016005, 328147696] 19 [464229719, 1484090322] 17

EL [8707937169, 30190447994] 9 [27673872, 296713444] 20 [158982184, 1229346789] 20

SI [8674845530, 30704451956] 7 [43474161, 211867658] 21 [192073822, 715342828] 22

LT [8786697603, 30832944183] 6 [21970780, 204033734] 22 [80221748, 586850590] 23

HR [8770291922, 30872962304] 5 [24009255, 184513589] 23 [96627429, 546832480] 24

LV [8821553016, 31029732634] 4 [14592275, 160007089] 24 [45366336, 390062134] 25

LU [8670808641, 30612160946] 8 [23517667, 135821723] 25 [196110712, 807633828] 21

CY [8858106924, 31113852903] 3 [2678597, 98121070] 26 [8812427, 305941870] 26

IS [8838557792, 31207834800] 2 [5273107, 54270679] 27 [28361561, 211959990] 27

MT [8851307637, 31201997000] 1 [1342859, 50523695] 28 [15611716, 217797770] 28
a Countries: AT-Austria, BE-Belgium, HR-Croatia, CY-Cyprus, CZ-Czech Republic, DK-Denmark, FI-Finland, FR, France, DE-Germany, EL-Greece, HU-Hungary, IS-Iceland, IE-Ireland, IT-Italy, LV-Latvia, LT,
Lithuania, LU-Luxembourg, MT-Malta, NL-Netherlands, NO-Norway, PL-Poland, PT-Portugal, SK-Slovakia, SI-Slovenia, ES-Spain, SE-Sweden, CH-Switzerland, UK-United Kingdom.
b max–flow between between all pairs of vertices, where the vertex vi is neither a source or a sink; c Interval–Weighted Flow Betweenness centrality; d Interval–Weighted Flow Closeness centrality.

22



6 Concluding remarks

In recent years, the term “Big Data” emerged, and new approaches arise to deal with large
amounts of information, including the possibility to aggregate data to provide more manageably-
sized datasets. These new approaches may consist of considering aggregated (e.g. interval)
data, keeping the information on the intrinsic variability in order to capture the original dispersion
of the data. However, the definitions of basic statistical notions do not apply automatically in
this aggregated data, and well-established properties are no longer straightforward. Further-
more, when we use such aggregated data on complex structures, such as network data, the
situation may become harder do handle. Therefore, to apply statistical and multivariate data
analysis techniques to interval data in network structures requires proper consideration and of-
ten the design of new approaches and appropriate techniques. In this paper we provide a novel
contribution to network science in that we use aggregate interval data to describe the weights
of networks’ edges, giving rise to the concept of Interval-Weighted Networks (IWN). We start
by generalizing the three classical centrality measures, degree, closeness and betweenness, for
the general case of IWN, with a triple motivation: firstly, we try to establish a benchmark for these
measures when using intervals defined by the minimum and maximum observed weights on the
edges of the IWN; secondly, extend the degree centrality based on Opsahl et al. (2010) concept
of a tuning parameter to give relevance either to tie weights or number of ties alternatively; and
thirdly, generalize closeness and betweenness based on network flows, where with each edge
is assigned a flow which maximizes the total flow between a pair of vertices and using Ford and
Fulkerson’s max-flow method (Ford and Fulkerson, 1956; Freeman et al., 1991).

The experiments carried out on an artificial network and on two real-world networks (IWCN and
IWTN) have shown that, for the Interval-Weighted Degree (IWD), as expected, the variation of the
tuning parameter α to give relevance either to tie weights or number of ties alternatively (Opsahl
et al., 2010) affects the ranking centrality of the vertices. In the IWCN it changes the topological
importance of some NUTS 3 as an attraction point (center). In the IWTN, as the number of
connections is the same for all vertices (the 28 European countries), i.e., is a complete network,
the change is residual.

Similarly, it has been found that the use of intervals has made it possible to capture a variation in
the flow betweenness (IWFB) and flow closeness (IWFC), in terms of all paths connecting pairs
of vertices, and not based only on geodesic paths.

The joint use of the two measures allowed putting in evidence the regions/countries that play an
important intermediation role, distinguishing them from the regions/countries that register a high
flow with the rest of the network.
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Appendix A: Lexicographic Order

Given an interval-weighted network (a triplet, see Figure 8a), consider that each of the edge in-
tervals is described by the lower (L) and upper limit (U) and the respective quartiles (Q1, Q2, Q3)
(assuming a uniform distribution), as shown in Figure 8b, and in the table of the Figure 8c (table).

v1

v2

v3

[2,
8]

[1, 5]

[0, 10]

(a)

L Q1 Q2 Q3 U

(b)

Intervals
w12 = [2, 8] w13 = [1, 5] w23 = [0, 10]

L 2 1 0
Q1 3.5 2 2.5
Q2 5 3 5
Q3 6.5 4 7.5
U 8 5 10

L, U – interval lower and upper bounds.
Q1, Q2, Q3 – 1st , 2nd and 3rd quartiles.

(c)

Figure 8: Example of the values used for each interval of the IWN.

Table 8 below shows the outcome of the max-flow calculations for each of the 53 = 125 possible
combinations, following the lexicographic order, for these three intervals. We observe that the
value of the “Max Flow” always increases when the value considered for at least one of the
values increases. Therefore, at each edge, the minimum and maximum flows are obtained with
the corresponding minimum and maximum values.
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Table 8: Lexicographic order of three intervals each with five values.

w12 w13 w23 w12 w13 w23 w12 w13 w23 w12 w13 w23 w12 w13 w23

[2, 8] [1, 5] [0, 10] [2, 8] [1, 5] [0, 10] [2, 8] [1, 5] [0, 10] [2, 8] [1, 5] [0, 10] [2, 8] [1, 5] [0, 10]
1 2 1 0 3,0 26 3.5 1 0 4.5 51 5 1 0 6,0 76 6.5 1 0 7.5 101 8 1 0 9,0
2 2 1 2.5 5.5 27 3.5 1 2.5 7,0 52 5 1 2.5 8.5 77 6.5 1 2.5 10,0 102 8 1 2.5 11.5
3 2 1 5 8,0 28 3.5 1 5 9.5 53 5 1 5 11,0 78 6.5 1 5 12.5 103 8 1 5 14,0
4 2 1 7.5 10.5 29 3.5 1 7.5 12,0 54 5 1 7.5 13.5 79 6.5 1 7.5 15,0 104 8 1 7.5 16.5
5 2 1 10 13,0 30 3.5 1 10 14.5 55 5 1 10 16,0 80 6.5 1 10 17.5 105 8 1 10 19,0
6 2 2 0 4,0 31 3.5 2 0 5.5 56 5 2 0 7,0 81 6.5 2 0 8.5 106 8 2 0 10,0
7 2 2 2.5 6.5 32 3.5 2 2.5 8,0 57 5 2 2.5 9.5 82 6.5 2 2.5 11,0 107 8 2 2.5 12.5
8 2 2 5 9,0 33 3.5 2 5 10.5 58 5 2 5 12,0 83 6.5 2 5 13.5 108 8 2 5 15,0
9 2 2 7.5 11.5 34 3.5 2 7.5 13,0 59 5 2 7.5 14.5 84 6.5 2 7.5 16,0 109 8 2 7.5 17.5

10 2 2 10 14,0 35 3.5 2 10 15.5 60 5 2 10 17,0 85 6.5 2 10 18.5 110 8 2 10 20,0
11 2 3 0 5,0 36 3.5 3 0 6.5 61 5 3 0 8,0 86 6.5 3 0 9.5 111 8 3 0 11,0
12 2 3 2.5 7.5 37 3.5 3 2.5 9,0 62 5 3 2.5 10.5 87 6.5 3 2.5 12,0 112 8 3 2.5 13.5
13 2 3 5 10,0 38 3.5 3 5 11.5 63 5 3 5 13,0 88 6.5 3 5 14.5 113 8 3 5 16,0
14 2 3 7.5 12.5 39 3.5 3 7.5 14,0 64 5 3 7.5 15.5 89 6.5 3 7.5 17,0 114 8 3 7.5 18.5
15 2 3 10 15,0 40 3.5 3 10 16.5 65 5 3 10 18,0 90 6.5 3 10 19.5 115 8 3 10 21,0
16 2 4 0 6,0 41 3.5 4 0 7.5 66 5 4 0 9,0 91 6.5 4 0 10.5 116 8 4 0 12,0
17 2 4 2.5 8.5 42 3.5 4 2.5 10,0 67 5 4 2.5 11.5 92 6.5 4 2.5 13,0 117 8 4 2.5 14.5
18 2 4 5 11,0 43 3.5 4 5 12.5 68 5 4 5 14,0 93 6.5 4 5 15.5 118 8 4 5 17,0
19 2 4 7.5 13.5 44 3.5 4 7.5 15,0 69 5 4 7.5 16.5 94 6.5 4 7.5 18,0 119 8 4 7.5 19.5
20 2 4 10 16,0 45 3.5 4 10 17.5 70 5 4 10 19,0 95 6.5 4 10 20.5 120 8 4 10 22,0
21 2 5 0 7,0 46 3.5 5 0 8.5 71 5 5 0 10,0 96 6.5 5 0 11.5 121 8 5 0 13,0
22 2 5 2.5 9.5 47 3.5 5 2.5 11,0 72 5 5 2.5 12.5 97 6.5 5 2.5 14,0 122 8 5 2.5 15.5
23 2 5 5 12,0 48 3.5 5 5 13.5 73 5 5 5 15,0 98 6.5 5 5 16.5 123 8 5 5 18,0
24 2 5 7.5 14.5 49 3.5 5 7.5 16,0 74 5 5 7.5 17.5 99 6.5 5 7.5 19,0 124 8 5 7.5 20.5
25 2 5 10 17,0 50 3.5 5 10 18.5 75 5 5 10 20,0 100 6.5 5 10 21.5 125 8 5 10 23,0

Max 
Flow

Max 
Flow

Max 
Flow

Max 
Flow

Max 
Flow

w12, w13 and w23 – are interval–weighted values of the edges in a connected interval–weighted network with three vertices (triplet).

Max Flow – is the Ford & Fulkerson’s maximum flow for each of the 125 weighted networks generated in the lexicographic order.
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