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1. Introduction

During last years there has been a deep interest in the analysis of differ-
ent communities and complex networks, specially their structure and key
elements detection. Most classical measures do not take into account indi-
vidual properties of each element. Additionally, they do not completely take
into account the intensities of interactions between elements, especially,
long-range interactions. One more problem arises from the fact that not only
one node but also a group of nodes can influence other nodes. Consequently,
the results of the application of classical measures inadequately represent the
actual state of a system.

Existing measures are not accurate even for small networks. There exist
several simple network structures where classical indices do not elucidate
hidden elements influential in the network. This can be explained by the fact
that these indices do not fully take into account individual properties of
nodes, the intensity level of direct connections and long-range interactions
between nodes of the networks. For instance, classical centrality measures
do not pay attention to the possibility of chain reactions of a system (so-
called domino or contagion effect). The incessant changes in composition
and structure of groups and nets magnify the complexity of the problem.

The main objective of our research is to develop new efficient methods
of key nodes detection which take into account these particular aspects of
the problem under consideration.

The paper is organized as follows. In Section 2 we provide a review of
existing methods of key nodes detection in networks and demonstrate some
of their shortages. In Section 3 we formally describe the new method and
show how it works on a simple example. We also emphasize advantages and
weaknesses of the proposed method.
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2. Literature review

There have been developed many indices to measure the centrality level
of each node. Some of them are based on the number of links to other nodes.
Other techniques consider how close each node is located to other nodes of
the network in terms of the distance, or how many times it is on the shortest
paths connecting any given node-pairs. There are also some indices based on
ideas from cooperative game theory and voting theory. These indices are
called centrality measures.

Consider network-graph G = {V,E, W}, where V = {1, ..., n} is the set of
nodes, |[V| = N, E € VXV is the set of edges, and W = {w;;} is the set of
weights — real numbers prescribed to each edge (i, j) € E. Network-graph G
is directed if 3i,j € V:(i,j) € E & (j,i) ¢ E and is undirected otherwise.
The graph is called unweighted if Vi, iy, j1,j2 € V: (i1, j1) € E & (i5,),) €
E = w;, j, = Ww,,j,, .. every edge has the same weight. Below we consider
only directed weighted graphs, i.e., the set of pairs (i, ) € E is ordered.

A network-graph G can also be represented in the form of matrix
A= [ai]-]NxN, where a;; = 1if (i, j) € E and a;; = 0 otherwise, or in the
form of matrix W = [Wij]NxN’ where w;; is a weight that indicates the in-
tensity of connection of node i to node j. The matrix A4 is called an adjacency
matrix of the network-graph G while the matrix W is called a weighted adja-
cency matrix of the network-graph G. In terms of influence, a;; = 1 means
that node i influences node j; for weighted graphs, if w;; > 0 then node i
influences node j with power w;;, otherwise, node i does not influence node
J (a;j = 0 or w;; = 0). Additionally, the nodes can also have individual at-
tributes (for instance, weights) that will be denoted by uf, where i is a node
number and k£ is the number of the attribute, k € K.

Denote by N; = {j € V: (i,j) € E} a set of neighbors of node i which i is
connected to, Ni ={j € V:(j,i) € E} is a set of neighbors of node i that are
connected to i, N; = ﬁi + Ni ={jeV:(i,j) € Eor (j,i) € E}is aset of all
neighbors of node i in a network-graph G.



2.1. Degree centralities

The simplest centrality measure is the degree centrality that is calculated
for undirected network-graphs as the total number Cideg of i’s neighbors for
each node i [Freeman, 1979]:

deg |N |

High values of the degree centrahty identify nodes with the highest num-
ber of connections to other nodes, i.e. nodes for which it is easier to gain
access to and/or influence over other nodes. A central node occupies a struc-
tural position (network location) that serves as a source or conduit for larger
volumes of information exchange or other resource transactions with other
nodes.

For directed network-graphs four versions of degree centrality measure
are possible

e In-degree centrality — the number of in-coming edges to a node

Cl‘l’l deg __ |N |
l

High values of in-degree centrality mean that a node is strongly affected
by its neighbors. Alternatively, low values of in-degree centrality identify
nodes that are not influenced by other nodes.

e Out-degree centrality — the number of out-going edges from a node

Cout deg __ |N |

i
High values of out-degree centrality represent the influence power of a

node, i.e. the higher the value the more nodes are under its control. Con-
versely, low values of out-degree centrality mean that a node has a small
effect on its neighbors.

e Degree centrality — the total number of i’s neighbors
totaldeg _ ,in—deg out—deg
C; =(; +C; .
This measure is obtained by ignoring directions of edges and high values
of total degree centrality identify the most active nodes.
e Degree difference centrality — the difference between the number of

out-going edges from a node and the number of in-coming edges to a node
Cideg diff — Ciout—deg _ Ciin—deg.
In power networks high values of degree difference show the relative in-
fluence of a node on its neighbors.



For weighted degree network-graphs it is also possible to calculate the
degree centrality with respect to the weights of adjacent edges. Then four
measures are introduced

e  Weighted in-degree centrality

win-deg __ _
C; = Yjev: (eE Wji = Lj=1 Wji-
e Weighted out-degree centrality
wout—-deg __ _
C; = Yjev: (i)er Wij = Lj=1 Wij-

e  Weighted degree centrality
Citotalwdeg — Clw in—-deg + Clw out—deg.

e Degree difference centrality
wdeg diff _ ,~wout—deg w in—-deg
C; =(; -C .

The interpretation of weighted degree centralities is practically the same
as for unweighted degree centralities but weighted measures are more repre-
sentative than unweighted ones due to the fact that weighted networks con-
sider the intensities of connections.

Since the degree centrality measures do not consider the strength of adja-
cent nodes, i.e., information about the degree centrality of adjacent nodes,
there have been developed several indices which take into account this fea-
ture. A generalization is what is known as an eigenvector centrality that con-
siders not only neighboring but also long-distance connections. Basically,
this measure is applicable to symmetric relations. It assigns relative scores to
all nodes in a network based on the concept that connections to high-scoring
nodes contribute more to the score of the node in question than equal con-
nections to low-scoring nodes. If we talk about asymmetric relations as net-
works of influence it is more valuable to influence powerful nodes.

The calculation of the centrality measure for each node is related to an
eigenvalue problem with respect to weighted adjacency matrix W of a net-
work-graph: a vector of relative centrality C¢9¢™ is an eigenvector of the
adjacency matrix, i.e.

w - Ceigen =1- Ceigen.

Generally, all eigenvectors of the matrix W can be considered as a cen-
trality measure. However, an eigenvector that corresponds to a maximal ei-
genvalue is more preferable: by Perron-Frobenious theorem this vector (and



only this except its co-directional vectors) is positive and real for irreducible
non-negative matrix W [Gantmacher, 2000], i.e., for a graph which is strong-
ly connected.

This approach to centrality evaluation was proposed by P. Bonacich
[Bonacich, 1972] and is sometimes known as Bonacich’s index. [Bonacich,
1987] considers a generalization of this approach where a degree of nodes
counted towards the centrality evaluation. As for an eigenvector centrality
this measure is more representative for symmetric relation. For asymmetric
graphs of influence the calculation is the same. Namely, a parametric family
of centrality measures can be represented as

CiBonaCiCh(a,ﬁ) — Z(a, +B- CJBonacich(a‘B)) . Wl.].

j
or in a matrix form

CBonacich(a,,‘B) =q- (1 _ ,8 . W)—l W - 1’
where / is an identity matrix and 1 is the unit vector.

Apparently, parameter o affects only the variance of a centrality vector.
Parameter f represents the degree to which a centrality of one node is a
function of centralities of adjacent nodes. If a centrality of one node is a po-
sitive function of its neighbors’ centralities then we select positive parame-
ter f.

The main innovation is that this approach also considers negative values
of parameter 3. This leads to the fact that centralities of neighbors are nega-
tively counted in node centrality, i.e. it is not beneficial to be connected with
central nodes. Negative f is usually required in bargaining networks where
it is more profitable to be connected with weak players because powerful
players have more potential trading partners, which reduces your bargaining
power.

In practice, an eigenvector centrality is not very feasible especially for
large networks because it gives a lot of zero centralities if there are many
sparse cohesive components in a graph. There have been introduced (or used
previously entered) other measures to overcome this shortage. Katz centrali-



ty is one of such measures introduced in [Katz, 1953]. This centrality is de-
fined as the solution of the two-parameter equation

CiKatZ(a»B) =qa- Z CjKatz(a’,,B) . Wij +p
J

or in a matrix form
cra(ap)=p-U—a-W)™-1,
where 1 is the unit vector.
The introduction of parameter , which corresponds to the initial value of

centralities, precludes the possibility of solution with zero components. In
1

practice, parameter « is selected so that a < PR, where A,,,, 1s the largest

max

eigenvalue of the matrix W.

Katz centrality, in its turn, is not free from an essential fault: for a node
with a high degree centrality value and a high Katz centrality value its
neighboring nodes will also have high Katz centrality values even if their
degree centrality values are not very high.

Some modifications of Katz centrality are used to overcome this disad-
vantage. For example, the PageRank centrality was proposed where degrees

of adjacent nodes are introduced
PageRank
C: g

PageRank _ _ . J R
Ci =a Z CW out—deg Wl + ﬁ
i
or in a matrix form
CPageRank — B . [1 —a-W- (CW out—deg)—l]—l . 1,

— g w out—de w out—de, . w out—de,
where CY°¥=4¢9 = diag(C] 9 .,C 9) (if C; 9=90

then the corresponding summand is set to zero), 1 is the unit vector. This
formula was taken as a basis in Google to rank search engine queries [Brin,
Page, 1998].

2.2. Closeness centralities

Besides the degree centralities, there are also methods that consider how
close each node is located to other nodes of a network in terms of a distance.
These measures indicate the level of closeness of each node and are called
closeness centrality indices.



The standard closeness centrality measure for each node is equal to the
value that is proportional to the harmonic mean of the length of the shortest
paths between the i-th node and the rest of it in a network [Rochat, 2009]

1 1
cl=y,~.
14 ]dl]

2.3. Betweenness centralities

There are also indices that show how many times a node is on the short-
est paths connecting any given pair of nodes. These measures were proposed
in [Freeman, 1977; Freeman et al., 1991; Newman, 2005] and are called the
betweenness centrality measures. Versions for such centralities are

e the number of shortest paths passing through a given node

P = ¥ o (D),

where g (i) is the number of shortest paths that connect j and k£ and con-
tain i;

e  the relative number of the shortest paths passing through a given
node and connecting two nodes to the total number of shortest paths con-
necting these nodes

>

Cirelatwe btw _ ij U;l;f:)
where gjy, is the number of shortest paths that connect j and ;

e the sum (throughout all pairs of nodes) of maximum flows from the
first node of pair to the second one passing through a given node [Freeman
etal., 1991]:

Ciﬂow o = 2k My (0,
where m; (i) is a maximum flow from j to k that passes through i;
e the sum (throughout all pairs of nodes) of the mathematical expecta-

tions of the number of random walks connecting a pair of nodes and passing
through a given node [Newman, 2005].

2.4. Centralities from cooperative game theory

Many attempts of key nodes detection in networks came from coopera-
tive game theory. In that case, a network is interpreted as a set of interacting
individuals that contribute to a total productive value of a network and the



problem is how to share generated value among them. In [Myerson, 1977]
there was proposed a measure which is based on the power index and is a
version of the Shapley-Shubik index [Shapley, Shubik, 1954] for communi-
cation games. The Myerson value has an allocation rule in the context of
network games where the value of each individual depends on the value
generated by a network with and without that individual. More precisely, the
Myerson value is an average contribution of a node to all subgraphs of a
graph with respect to some predefined values of subgraphs, i.e.

€ (6,0) = Zsey T (0(S) = v(S\(E),

where S is a subgraph of graph G, v(S) is some predefined value of sub-
graph S and v(S\{i}) is a predefined value of subgraph S without node i.

2.5. Centralities from voting theory

Existing measures are not accurate even on small networks. There exist
several simple network structures where classical indices do not elucidate
hidden elements influential in the network. This can be explained by the fact
that these indices do not fully take into account individual properties of
nodes, the intensity level of direct connections and interactions between
nodes of the networks.

In [Aleskerov et al., 2014] a novel method for estimating the intensities
of nodes’ interactions was proposed. This method is based on the power in-
dex analysis that was worked out in [Aleskerov, 2006] to find the most piv-
otal agents in Russian Parliament (1999-2003) and adjusted for the network
theory. The index (originally called a key borrower index) is a Short-Range
Interaction Centrality (SRIC) that was employed to find the most pivotal
borrower in a loan market in order to take into account some specific charac-
teristics of financial interactions. An important feature of SRIC index is that
it does not take into account all edges in a graph which is logical for many
cases in networks. The choice of edges that are influential in a network de-
pends on additional parameter g; which varies with the node 7 and represents
some critical threshold value.

The SRIC index is calculated for each node individually in order to de-
termine the influence of other nodes to it. In that case, only direct neighbors
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are considered to estimate the direct and indirect influence to him/her. The
intensity of direct influence p]i- of node j to node i is calculated as

i_ Wi
Pi = Sewed
where wy; is a weight of an edge from node % to node i, while the intensity

of indirect influence p]i-y of node j to node i through node y is calculated as

s Jif wy > 0,wj, <wyandy # j,

_ Xk Wi
pl. = Wyi . .
7y Jif wyp > 0,wjy, > wy;andy # j,
k Wki

0, otherwise.

After the intensity of influence to node 7 of its adjacent nodes is calculat-
ed, a set of all possible critical groups of nodes for node i is constructed.
A group of nodes is critical if the total weight of edges from these nodes to
the node 7 is more than or equal to some pre-defined threshold g;. The criti-
cal group is interpreted as a group that may influence a particular node.

After a set of critical groups for node i is defined, we can identify a total
number of groups where each node j plays a pivotal role. A node j is pivotal
in a critical group if its exclusion from this critical group makes the group
non-critical. The value of the index for each node reflects the magnitude of
its pivotal role in the group. The higher the value, the more pivotal the node
is. The most pivotal node will be the one that becomes pivotal in more criti-
cal groups than any other node does.

The total intensity of influence of node j to node i is aggregated over the
intensities of all groups where the node j is pivotal with respect to the size of
the group. The influence of each node to node i is equal to the normalized
value of the final intensity measure.

After the total intensity of connection between node i and its adjacent
nodes is calculated, the index is aggregated over all nodes taking into ac-
count individual attributes of each node.

Unfortunately, the SRIC index also has some shortages. In the SRIC in-
dex only direct interactions of the first level are taken into account, which is
not correct in some cases when long-range interactions play a pivotal role or
where chain reactions are possible. Also, the SRIC index does not elucidate
nodes that have a weak direct influence to particular node i but are highly
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influential to its adjacent nodes (see Fig. 1). This is due to the fact that long-
range interactions are not taken into account.

Fig. 1. SRIC: node 4 does not influence node 1 (Vi € {1,2,3,4} q; = 40)

To demonstrate the shortages of existing measures consider the following
Numerical Example 1 (see Fig. 2). There are 8 nodes in network-graph G
and the weights of edges are given in Fig. 2.

y ——

'

Fig. 2. Numerical Example 1
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Let us evaluate classical centrality measures for Numerical Example 1
(Table 1).

Table 1. Classical centrality measures for Numerical Example 1

Centra-
lity cvin-deg | cwout-deg | cwdeg | owdeg-diff | cbtw cel (*) | cPageRank | ceig | gBonacich
Node
1 10 20,5 30,5 10,5 13 0,0160 0,128 0,725 | -1,217
2 10 5,5 15,5 4.5 1,5 0,0126 0,103 0,589 | -0,890
3 10 10,5 20,5 0,5 6 0,0187 0,146 0,653 | -0,835
4 10 5,5 15,5 4.5 1,5 0,0126 0,103 0,589 | -0,890
5 10 24 34 14 24 0,0227 0,248 1 -1,290
6 10 12 22 2 9 0,0155 0,107 0,802 | -1,253
7 10 1 11 -9 0 0,0093 0,072 0,370 | -0,708
8 10 1 11 -9 0 0,0097 0,094 0,359 | -0,708

(*) Closeness centrality: inverse average maximal outflow = low values
are more significant.

According to weighted out-degree, weighted degree, degree difference
and betweenness centrality measures (where high weights are better) nodes
1 and 5 are the most powerful in the network. Closeness centrality measure
(where small weights are better) considers nodes 7 and 8 as the most power-
ful. If we take into account the strength of the neighbors, then nodes 3 and 5
will be chosen by PageRank, nodes 5 and 6 by eigenvector and, finally,
nodes 7 and 8 by Bonacich centrality. Overall, we can conclude that nodes 1
and 5 are chosen by the most of centrality measures.

However, in most situations not all edges should be taken into account.
Suppose now threshold level g; is 70% for each node i, i.e. node i is influ-
enced by individual node or a group of them only if their total influence to i
is more than or is equal to 70% of the total influence to i. Such information
is not taken into account by classical centrality measures contrary to SRIC
index.

In Fig. 3 we demonstrate substantial influence in the network for our
Numerical Example 1.

13




7 10

Fig. 3. Substantial influence for Numerical Example 1 (q; = 70%)

It should be mentioned that nodes 7 and 8 have no real influence on other
nodes in the network. Such information is not taken into account by centrali-
ty measures, so the role of nodes 7 and 8 are overestimated.

The results of SRIC index are provided in Table 2.

Table 2. SRIC index for Numerical Example 1

Node 1 2 3 4 5 6 7 8

SRIC | 0,216 | 0,072 | 0,159 | 0,072 | 0,375 | 0,106 0 0

SRIC index also identifies nodes 1 and 5 as the most influential in this
network. The key improvement of SRIC index comparing to classical cen-
trality measures is that SRIC index ignores insignificant connections (with
respect to pre-defined thresholds g;) and considers short connections (of
length 1 and 2). Generally, neither classical centrality measures nor SRIC
index consider long connections as well as group influence and individual
attributes (as pre-defined thresholds), which leads to the fact that existing
methods may not detect hidden influential nodes. Hence, all these methods
underestimate the role of node 3 which in turn controls node 5 and also in-
fluences node 8. Due to the fact that node 3 significantly influences node 5,
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and node 5 is central in this graph we suppose that node 3 is more influential
than node 5 (node 3 in a wild card).

3. Long-Range Interactions Centrality (LRIC)

We propose a new method for assessing the nodes influence in the net-
work. Contrary to SRIC index, our methodology allows to consider interac-
tions between nodes not just on the first level, but also on some levels be-
yond.

There are two different ideas on how to take into account long-range in-
teractions between nodes of the network. The first one is a distance-based
approach where all different paths are considered for each node and some-
how aggregated into a single value. The second one is based on the idea of
simulations where we analyze the influence of individual nodes and their
combinations to a whole network. Both ideas have simple interpretations
and can be applied to different networks.

The formulation of a problem is as follows: consider network-graph
G(V,E), where V = {1,...,n}is a set of nodes, |V| =N, E ={(i,j), i,j €
V}is a set of weighted edges, and w;; is a weight of edge (i,/). The issue is
to define the most influential nodes in this graph.

Let us consider the following graph where N = 10 (Fig. 4).

We propose two approaches to find central nodes in a network. This con-
cept is motivated by the fact that indirect connections can play a significant
role in different situations; however, classical centrality measures do not
consider long interactions. For that reason we develop indices that take into
account distant nodes. Generally, highly distant nodes do not influence other
nodes of a graph; hence, we introduce a parameter s that defines the lengths
of connections we take into account. Accordingly, if long interactions do not
influence indirect nodes then parameter s is equal to 1, and contrary, if all
levels of indirect connections matter, then parameter s is unlimited.

Primarily, we introduce some basic definitions.

Let Ni be a set of directly connected nodes of node i (incoming neigh-

bors), i.e. ﬁi ={j € VIw;; # 0}. Let every node has an individual attri-
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bute — predefined threshold g;, i.e. the threshold level when a node becomes
affected.
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N
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Fig. 4. Numerical Example 2

Z4\

Definition 1. A group of neighbors of node i 2(i) € N; is critical if
Yiea Wji = G-

Definition 2. Node k € 0(i) is pivotal if ¥, jep i\ k) Wji < q;. Then 2, (i)
is a set of pivotal nodes in group 2(i), i.e.

2, = {k € QDI T jeningg Wi < @i}-

Generally, every node can have a vector of different attributes depending
on the problem statement. These attributes can be estimated by their im-
portance and aggregated to some single value which is its personal threshold
q;. For a meaningful comparison of aggregated attributes and weights on
nodes these values should be of the same origin. If we do not have individu-
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al attributes in a network then we can use information from a graph itself.
For example, q; can be a fraction of total in-degree influence on node i.

Additionally, critical groups’ formation may have some probability, i.e. it
is not necessary that some nodes truly want to or can cooperate with each
other (depending on the problem statement). This means that some probabil-
ities are attributed to each critical group and they are taken into considera-
tion in the further analysis.

For our Numerical Example 2 the sets of direct neighbors Ni and critical
groups when q; = 50% of total influence for each node are shown in
Table 3. Here we assume that critical groups are formed with probability 1.

Table 3. Neighbors and critical groups for Numerical Example 2

Node, i N, Critical groups, Q(i), ¢ = 50%
g { {
| (2.3,4,6) 12,3}, {2, 4}, {3,4}, {4, 6}, {2, 3,4}, {2, 3, 6}, {3, 4, 6},
{2,3,4,6}
2 {5,6,8} {5, 6}, {5, 8}, {6, 8}, {5, 6, 8}
{4, 5}, {4, 10}, {5, 9}, {5, 10}, {9, 10}, {4, 5,9}, {4, 5, 10},
4 1
’ 5.5, 10} {5,9,10}, {4, 5,9, 10}
{5, 7}, {5, 9}, {5, 10}, {7, 9}, {7, 10}, {9, 10}, {5, 7, 9},
4 1
57,510} {5,7,10}, {7,9,10}, {5, 7,9, 10}
5 u 0
6 4,7} {7h, 14,7}
7 {1,2,3} 23, {1,2}, {2, 3}, {1,2,3}
8 {1,4,7} {73, {1, 73, {4, 73, {1,477}
9 {7} {7TH AL T}
10 {1,7} {7H AL T}

Pivotal members for node 1 when q; = 50% is provided in Table 4.

Table 4. Critical groups and pivotal member for node 1

Critical groups, Q(1) Pivotal members, (,,(1)
{2,3} {2,3}
{2, 4} {2,4}
{3, 4} {3, 4}

17



Critical groups, Q(1) Pivotal members, (1)
{4, 6} {4, 6}
{2,3,4} [0)}
{2,3, 6} {2, 3}
{3, 4, 6} {4
{2,3,4,6} [0}

3.1. s-long-range interaction index based on paths (s-LRIC index)

The first approach of the key nodes detection by s-LRIC index is based
on paths.

Now we construct intensity matrix C = [c;;] with respect to weights w;;,
thresholds q; and critical groups 2(j) as

Wij

' ,ifie.()p(j)gﬁj’
min W
Cij = Q(j)QleiEQp(j)ZIEQ(]) 1j "

0,i & 2,() € N,

where 0(j) < I(V] is a critical group of direct neighbors for node j,
02,(j) € 2(j) is a group of pivotal members for 2(j).

We consider a critical group with the minimal sum of weights (in denom-
inator) to indicate the maximal possible direct influence of node i on node ;.
Obviously, if w;; = q; then the direct influence of node i on node j is maxi-
mal and is equal to 1. Conversely, if node 7 does not have a direct connection
to node j or it does not belong to any critical group then its direct influence
is equal to 0. In other cases, if 0 < w;; < g; but node i is pivotal for node j
then its direct influence is equal to ¢;;, 0 < ¢;; < 1.

Let us construct matrix C = [¢;;] for Numerical Example 2 according to
formula (1). There are 8 critical groups for node 1 (see Table 4) and, for ex-
ample, node 3 is pivotal in 2(1) = {{2, 3},{3,4},{2,3, 6}}; but we consider
a critical group with the minimal sum of weights which is {2, 3}; hence,
Was 300

= — = 0.6. Similarly, we define direct influences for other
Wy1+W3q 500
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Thus, we evaluated the direct influence of the first level on each node in
a network. To define the total influence between nodes we need to redesign
our graph by the replacement of weights w;; on edges with values of direct
influences ¢;;. A new graph of direct influences looks like
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Fig. 5. A graph representing matrix C for Numerical Example 2

According to formula (1) node 1 does not influence other nodes with re-
spect to q; = 50% of total influence.

Generally, the construction of matrix C is highly related to [Aleskerov et
al., 2014] because it requires to consider separately each node j for which we
ignore all outgoing edges while other nodes of the graph are assumed as po-
tentially influential on ;.

To evaluate indirect influences of nodes we need to introduce a concept
of a path between a pair of nodes.
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Definition 3. A path between nodes i and j is a sequence of edges such

that the end of one edge is the beginning of the next edge, i.c. Pkij =

{G, 1), UL, vy U lnger), oo, (g ly), (L—q,j)} is k-th path be-
tween nodes i and j where [, is an intermediate node. The number of edges
in the sequence is the length of a path (see Fig. 6).

Cit, CuL, ] Ciyly ] Cl,j
2 3

Fig. 6. A path in a graph

To analyze the indirect influence of node i on node j we consider all sim-
ple paths between them, i.e. paths such that there are no nodes that occur on
the path at least twice. For instance, for our Numerical Example 2 there are
4 paths between nodes 7 and 3: {(7, 10), (10, 3)}, {(7, 4), (4, 3)}, {(7,9), (9,
3}, {(7,9),9,4), (4, 3);.

Here we can limit the maximal length of paths with some parameter s be-
cause very long paths usually are not representative in terms of indirect in-
fluence.

Denote by PY = {P, ..., P/} a set of all simple paths between i and j,
where m is the total number of simple paths, and n(k) = |Pkij | < s is equal

to the k-th path’s length. Then the influence of i on j via k-th path Pkij is de-
fined as

gy —
f(Pk ) = Cilllc XClll(lécX ...Xclﬁ(k)_lj (2)
or
Gy _
f(Pk ) = min (Ciz’f'cl’fl§' ""Cl’ﬁ(k)—ﬂ') (3)

where i, l{‘, l§, . lﬁ(k)_l, Jj is an ordered sequence of nodes in the &-th path.
According to the formula (2) the influence of node i on node j through
the k-th path Pkij is calculated as the aggregate value of direct influences be-
tween nodes which lie in this path. The formula (3) can be interpreted as the
k-th path capacity of the influence (we cannot influence through the k-th
path more than the minimal value of the influence is allowed on this path).
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After we considered the influence of node 7 on node j through all paths of
length less than or equal to s (formula (2) or (3)) we need to aggregate the
total influence of node i on node j. We propose three ways of the aggrega-
tion of the possible influence; the aggregated results form new matrix
C* = [}

1. The total influence via the sum of possible influences

i)y =mind > f(B7), 1 4)
k:|Plij |55
2. The total influence via maximum possible influence
cij(s) = max f(B) (5)
k:|P,ij|SS
3. The total influence via the threshold aggregation
The model of the threshold aggregation was proposed in [Aleskerov et
al., 2007]. Each node in a graph with n nodes is evaluated by n grades that
may have m different values. Then for each node k& we calculate values
v1(k), ... vy, (k) where v;(k) is the number of i-th grades that node k re-
ceived, i=1,...,m. According to the threshold rule node x V-dominates node y
if v(x) <v,(¥) or 3d < m:Vh < d v, (x) = v, (y) and v, (x) < vy(y).
In other words, firstly we compare the number of the worst grades; if they
are equal then we compare the number of the second worst grades, etc. If
some node is not V-dominated by other nodes then this node is considered as
the best one.
Considering the threshold rule as one of possible ways on how the indi-
rect influence can be evaluated, we propose the following aggregation pro-

cedure
cij(s) = f(B7) (6)
where
z = argmin v(Pkij) (7
k:n(k)ss
and
v(Pkij) = Zﬁlvl(Pkij) *(s+ 1™+ s —n(k) ®)
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Formula (6) — (8) are identical to the threshold rule [Aleskerov et al.
2010].

Hence, we construct a matrix C*(s) = [¢;;(s)] where c;;(s) is a total in-
fluence of node i on node j with respect to paths of length less than s. Note
that if there are no paths between nodes 7 and j then Vs ¢;;(s) = 0.

As a result, we propose two methods of path power estimation and three
methods of the aggregation of possible influence. Hence, we can assume that
there are 6 ways of the estimation of long-range interactions in a graph.
However, not all combinations of (2) — (3) and (4) — (6) are reasonable.
Thus, we propose the following combinations (see Table 5):

e (2)-(4): an influence of i on j goes through all paths with respect to
all layers in these paths;

e (2) = (5): an influence of i on j goes through a maximal path with
respect to all layers in this path;

e (2) —(6): an influence of i on j goes through the best paths accord-
ing to the threshold rule with respect to all layers in these paths;

e (3) = (5): an influence of i on j goes through a maximal path with
respect to one minimal layer in this path;

e (3) —(6): an influence of i on j goes through the best paths accord-
ing to the threshold rule with respect to one minimal layer in this path.

The combination (3) — (4) is not very reasonable because, firstly, for eve-
ry path we evaluate the capacity of the influences which can confine on one
edge for different paths; then we sum up these influences, which means that
we may consider the same influence several times.

Table 5. Possible combinations of methods for indirect influence

Paths aggregation
imal path
Sl.lm of paths M:‘numa pat Threshold rule
influences influence
Multiplication
= ;5 of direct SumPaths MaxPath MultT
5 Z | influence
= — -
£ Mln]mal direct _ MaxMin MaxT
influence
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For our Numerical Example 2 we evaluate the indirect influence of node
7 on node 1 through all existing paths in the graph (see Table 6).

Table 6. The indirect influence of node 7 on node 1 via paths

w | e[
1 7254%73 0,375 0,5
2 725423251 0,12 0.4
3 75651 0,25 0,25
4 7562522 0,024 0,06
5 7582522 0,376 04
6 7592321 0,24 0.4
7 75928425 0,375 0.5
8 7i>1o°—'6>30—>'61 0,36 0,6
9 751054251 0,375 0,5

If we do not limit the length of a path with parameter s then there are 9

ways of the influence of node 7 on node 1; otherwise, if we limit the length
of a path with, for example, s = 2, then we will consider the influence of 7
on 1 only through 2 paths (1% and 3" ones).

To compare different paths by the threshold rule the following grades of
direct influence are proposed.

Grades:

0. 0=<¢;<02
1. 02<¢;<0.5;
2. 05=<¢;<07
3. 07<¢;=<L

Now we can define the path between node 7 and node 1 according to the
threshold rule. Note that for the threshold rule the values on the edges are
equal to the grades which were proposed above. The results are provided in

Table 7.
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Table 7. Paths aggregation by the threshold rule, s=3, m=4

D, & Path Path Paths influence,
(grades on edges) V(PZ‘)
1 7254251 75431 21%
2 72542351 7545351 96
3 7i>6f1 7iei>1 69
4 756252201 7365251 324
5 7i3ﬂ2%1 7—3>83>2—1>1 72
6 7i>9%30—>'61 7—3>9i>3i1 84
7 7592451 7395431 24
8 751025321 73105351 36
9 751054251 73105431 24

" is the path chosen by the threshold rule.

Thus, there are 9 possible ways how node 7 influences node 1. Let us
now aggregate this information into a single value by different methods. The
overall results are provided in Table 8.

Table 8. The total influence of node to node 1 by different methods

Method Considered paths IDs Influence
SumPaths 1-9 1
MaxPath 5 0,376
MaxMin 8 0,6
MultT 1 0,375
MaxT 1 0,5

Similarly, we can estimate the influence of any other elements and con-
struct the matrix C* according to different methods. The results are provided
in Tables 9-13.
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Table 9. Matrix C* for Numerical Example 2, SumPaths

1 2 3 4 5 6 7 8 9 10
1 0 0 0 0 0 0 0 0 0 0
2 1 0 1 1 0 1 1 1 1 1
3 0,6 0 0 0 0 0 0 0 0 0
4 0,99 0 0,4 0 0 0 0 0 0 0
5 1 0,942 1 1 0 | 0,942 | 0,942 | 0,942 | 0,942 | 0,942
6 0,381 | 0,058 | 0,093 | 0,087 0 0 0,058 | 0,058 | 0,058 | 0,058
7 1 1 1 1 0 1 0 1 1 1
8 1 0,942 1 1 0 0,942 | 0,942 0 0,942 | 0,942
9 0,735 0 0,6 0,5 0 0 0 0 0 0
10 0,855 0 0,8 0,5 0 0 0 0 0 0

Table 10. Matrix C* for Numerical Example 2, MaxPath

1 2 3 4 5 6 7 8 9 10
1 0 0 0 0 0 0 0 0 0 0
2 0,4 0 0,6 0,5 0 1 1 1 1 1
3 0,6 0 0 0 0 0 0 0 0 0
4 0,75 0 0,4 0 0 0 0 0 0 0
5 0,377 | 0,942 0,6 0,5 0 0,942 | 0,942 | 0,942 | 0,942 | 0,942
6 0,25 0,058 | 0,035 | 0,029 0 0 0,058 | 0,058 | 0,058 | 0,058
7 0,377 | 0,942 0,6 0,5 0 1 0 1 1 1
8 0,377 | 0,942 | 0,565 | 0,471 0 0,942 | 0,942 0 0,942 | 0,942
9 0,375 0 0,4 0,5 0 0 0 0 0 0
10 0,375 0 0,6 0,5 0 0 0 0 0 0
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Table 11. Matrix C* for Numerical Example 2, MaxMin

1 2 3 4 5 6 7 8 9 10
1 0 0 0 0 0 0 0 0 0 0
2 0,6 0 0,6 0,5 0 1 1 1 1 1
3 0,6 0 0 0 0 0 0 0 0 0
4 1 075 0 0,4 0 0 0 0 0 0 0
S 06 | 0942 | 06 | 05 0 | 0942 | 0942 | 0942 | 0942 | 0,942
6 | 025 | 0058 | 0058 | 0058 | 0 0 | 0058 | 0,058 | 0,058 | 0,058
7 06 | 0942 | 06 0,5 0 1 0 1 1 1
8 06 | 0942 | 06 | 05 0 | 0942|0942 | 0 | 0942 | 0942
9 0,5 0 04 | 05 0 0 0 0 0 0
10 0,6 0 0,6 0,5 0 0 0 0 0 0
Table 12. Matrix C* for Numerical Example 2, MultT

1 2 3 4 5 6 7 8 9 10
1 0 0 0 0 0 0 0 0 0 0
2 0375 o0 0,6 0,5 0 1 1 1 1 1
3 0,6 0 0 0 0 0 0 0 0 0
4 1 075 0 0,4 0 0 0 0 0 0 0
5 0375|0942 | 06 | 05 0 | 0942 | 0942 | 0942 | 0942 | 0,942
6 | 025 | 0058 | 0035 | 0029 | 0 0 | 0058 | 0,058 | 0,058 | 0,058
7 0375 | 0942 | 06 | 05 0 1 0 1 1 1
8 | 0353 | 0942 | 0565 | 0471 | 0 | 0942 | 0942 | 0 | 0942 | 0942
9 0375 | o0 04 | 05 0 0 0 0 0 0
101 0375 | o0 0,6 0,5 0 0 0 0 0 0
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Table 13. Matrix C* for Numerical Example 2, MaxT

1 2 3 4 5 6 7 8 9 10
1 0 0 0 0 0 0 0 0 0 0

2 0,5 0 0,6 0,5 0 1 1 1 1 1

3 0,6 0 0 0 0 0 0 0 0 0

4 0,75 0 0.4 0 0 0 0 0 0 0

5 05 | 0942 | 06 0,5 0 | 0942 | 0,942 | 0,942 | 0942 | 0,942
6 0,25 | 0,058 | 0,058 | 0,058 0 0 0,058 | 0,058 | 0,058 | 0,058
7 05 | 0942 | 06 0,5 0 1 0 1 1 1

8 05 | 0942 | 06 0,5 0 | 0942 | 0,942 0 0,942 | 0,942
9 0,5 0 0.4 0,5 0 0 0 0 0 0
10 0,5 0 0,6 0,5 0 0 0 0 0 0

After we constructed the matrix of node-to-node influence C*(s) we can
estimate the influence of a node within the whole graph. The aggregation of
a matrix to a single vector of the influence é(s) depends on the problem
statement. Generally, we can use some pre-defined attributes of nodes or any
other factors. For a network of influence we can, for example, estimate a
relative independence of a node on other nodes, i.e. a weight of a node is
higher if a smaller number of nodes influences this node with respect to the
total influence through a graph.

For Numerical Example 2 we can use the following aggregation ap-
proach: a weight of node i is its relative influence on other nodes with re-
spect to the whole graph influence, i.e.

P _ZjWij
ut = TeT e
The higher the influence of a node on other nodes the higher its weight
is. Then the vector of influence ¢(s) is
é(s)=C*"u,
where u = (u?, ...,u!%).
For Numeric Example 2 vector u is calculated in Table 14.
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Table 14. Individual weights of nodes

Node, i 1 2 3 4 5 6 7 8 9 10

Weight, u' 0,17 | 0,079 | 0,054 | 0,145 | 0,115 | 0,017 | 0,254 | 0,054 | 0,05 | 0,061

In Table 15 we compare results that are obtained by proposed approaches
(5 versions).

Table 15. Aggregated values for Numerical Example 2

Node LRIC

SumPaths MaxPath MaxMin MultT MaxT
1 0 0 0 0 0
2 0,806 0,610 0,644 0,606 0,627
3 0,102 0,102 0,102 0,102 0,102
4 0,190 0,149 0,149 0,149 0,149
5 0,855 0,655 0,693 0,654 0,676
6 0,112 0,078 0,083 0,078 0,083
7 0,631 0,426 0,464 0,425 0,447
8 0,804 0,598 0,642 0,594 0,625
9 0,230 0,158 0,179 0,158 0,179
10 0,261 0,169 0,207 0,169 0,190

We can see that all versions of the LRIC index detect nodes 2, 5, 8 as the
most influential.

3.2. s-long-range interactions index based on simulations

The second approach of key node detection by s-LRIC index is based on
simulations. The idea of this method is as follows: suppose that we unite
some group of nodes and influence other nodes by this group; some influ-
enced nodes join the first group with respect to their thresholds; the expand-
ed group again influences the rest of nodes and some of them join this ex-
panded group. We continue this procedure step by step until all nodes join
the first group or there are no more nodes that are affected by final expanded
group. Additionally, we can limit the number of steps with some parameter s
and we can stop the procedure when we reach this limit. On the next stage,
we unite another group of nodes and follow their effect of the influence on
other nodes. When we study all groups that can be chosen on the first step,
for each node we summarize the information about nodes that joined the
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first group afterwards due to the fact that this node was in the first group.
Thus, we get node-to-node influences and this information can be aggregat-
ed into a single vector.

Formally, we have the network-graph G(V,E), where V = {1, ...,n} is a
set of nodes, |[V| = N, E = {(i,j), i,j € V}is a set of weighted edges, and
w;; is a weight of edge (i, j). Let us illustrate the approach using Numerical
Example 2.

Firstly, we construct matrix C = [¢;;] with respect to weights w;; and
predefined thresholds g; (a level of absolute influence)

¢ij = min {ﬁ’ 1} 9
l

Matrix C indicates the share of the influence of node j on node i with re-
spect to threshold q;. For Numerical Example 2 consider thresholds
q; = 50% of the total influence on node i. A graph of relative influences for
Numerical Example 2 is provided on Fig. 7.

Here we introduce a concept of minimal direct critical groups of node i.

Definition 4. A group of neighbors of node i 2¢(i) € Ni is a minimal di-
rect critical group if ¥} ;eqay ¢ji = 1and Vk € 2%(0) X jepdang Gi < 1. i.e.
according to Definition 2 all members are pivotal.

In Table 16 nodes’ neighbors and minimal direct critical groups are rep-
resented for Numerical Example 2.

Now we activate some group of nodes to follow its effect on the graph. It
is unreasonable to choose a group that does not contain any minimal direct
critical group, because such groups are not influential. For instance, for Nu-
merical Example 2 it is useless to choose nodes 1, 3 and 10 because they do
not influence other nodes enough (with respect to thresholds). Contrary, if
we choose nodes 2 and 7, then they influence nodes 6, 8, 9, 10 (because of
node 7); expanded group {2, 6, 7, 8, 9, 10} influences node 4 (because of
critical groups {7, 9}, {7, 10} or {9, 10}). A new expanded group {2, 4, 6,
7, 8, 9, 10} influences node 1 (because of the critical groups {2, 4} or {4,
6}) and node 3 (because of the critical group {4, 10}). Final expanded group
{1,2,3,4,6,7,8,9, 10} does not influences the rest node 5 and we stop at
this stage. Hence, nodes 2 and 7 explicitly affect all nodes except node 5.
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However, if we limit the number of steps with parameter s and assume s = 2
then nodes 2 and 7 will not influence nodes 1 and 3 either.
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Fig. 7. Influence intensities for Numerical Example 2
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Table 16. Minimal direct critical groups for Numerical Example 2

Node, i Neighbors, Ni Minimal direct critical groups, 24 (i)
1 {2,3,4,6} {2,3}, {2,4}, {3,4}, {4, 6}
2 {5, 6,8} {5, 6}, {5, 8}, {6, 8}
3 {4,5,9,10} {4,5}, {4, 10}, {5, 9}, {5, 10}
{5, 7}, {5, 9}, {5, 10}, {7, 9}, {7, 10},
4 (5,7,9, 10} 0. 10}
5 [4) [4)
6 {4, 7} {7}
7 {1,2,3} {2}
8 {1,4,7} {7}
9 {1, 7} {7}
10 {1, 7} {7}
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Let K be some group of nodes that are chosen on the first step, and K/
be a final expanded group that is obtained from K. When we consider all
possible K (in the worst case we need to consider 2 — 2 groups of nodes)
we can form resulting matrix of node-to-node influence C*(s) = [ci*j(s)]
where
:j ekf1iek, i€t

e [Ty 7 e [ T

(10)

In other words, the influence of node i on node j is the number of times
node ; hits into final broaden group when node i is chosen on the first step
and node i is contained in minimal direct critical group of node j divided by
the number of times node i is chosen on the first step but not together with
node j. Apparently, if i € 2%(j) then c; +(s) = 0.

Note that if we consider all possible groups on the first step then each
node is met there in a half of the instances, and any pair of nodes is met in a
quarter of the instances. Hence, denominator in formula (10) is equal to

N N
27-2 272 — 2N—1 _ 2N—2 _ 2—1

2 4
The interpretation of the matrix C*(s) is straightforward. If value ¢

T
ij
close to 1 then node i tremendously influences node j. On the contrary, if

value c;; is close to 0 then node i poorly influences node j. Again, we can
aggregate node-to-node influences to a single vector as was described above.
The results of simulation approach for Numerical Example 2 are present-

ed in Table 17.

Table 17. Simulations results for Numerical Example 2

Node, i 1 2 3 4 5 6 7 8 9 10

LRIC
(Simul)

0 0,239 | 0,01 | 0,047 | 0,06 | 0,119 | 0,187 | 0,124 | 0,053 | 0,062

Simulations detect nodes 2, 5 and 7 as the most influential in the graph.
We can see that this approach detects pivotal node 7 that is chosen by most
of the classical measures and two implicit influential nodes 2 and 5 that are
chosen by all versions of LRIC index.
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One of the key advantages of this approach is that it accurately takes into
account all chain reactions of a graph, so-called domino or contagion effect.

On the other hand, as this method is highly memory consuming (in the
worst case we need to consider all combinations) this brings up the question
of the limitation of considered combinations, i.e. which node’s combinations
should be chosen on the first stage and which ones can be ignored. Usually,
in most real-life situations the formation of nodes groups has some probabil-
ity; this means that depending on the problem statement it is not always
practical to consider combinations with a low probability to emerge.

If there are no natural limitations on the number of combinations then it
is reasonable to introduce some general limitations, for example, we can
limit the size of K with some predefined parameter n,, i.e. |Kl°| < ngy; or
we can set limits on the number of combinations and chain reactions with
parameter s, etc.

Let us compare our results with classical centrality measures and SRIC
index. In Table 18 classical centrality measures and SRIC index are calcu-
lated for Numerical Example 2.

Table 18. Classical centrality measures and SRIC index for Numerical

Example 2
Cent-
ality cv in-deg cv out—deg cv deg cv deg-diff Cbtw Ccl (*) CPageRzmk Ceiy Cchucith SRIC
Node
1 1000 1530 | 2530 530 11 | 0,00069 | 0,176 | 0,826 | 1,034 | 0
2 1000 710 1710 | 290 18 | 0,00124 | 0,105 | 0,565 | 1,034 | 0,315
3 1000 490 149 | 510 1 |0,00040 | 0,109 | 0494 | 1,034 | 0,041
4 1000 1305 | 2305 305 11 | 0,00060 | 0,100 | 0,717 | 1,034 | 0,123
5 0 1035 1035 1035 0 [000103| 0015 | 0303 | 1,330 | 0102
6 1000 155 1155 845 0 |0,00025| 0077 | 0494 | 0,887 | 0009
7 1000 2290 | 3290 1290 22 | 0,00117 | 0,144 1 “1,182 | 0,264
8 1000 485 1485 515 9 1000099 | 0084 | 0586 | -0,443 | 0043
9 1000 450 1450 | -550 1,5 | 0,00030 | 0,090 | 0601 | 0,887 | 0042
10 1000 550 1550 | 450 | 6,5 | 0,00031 | 0,090 | 0,626 | —0,887 | 0,059

(*) Closeness centrality: inverse average maximal outflow = low values
are more significant.
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We can see that classical centrality measures detect nodes 1, 4, 7 as the
most influential while SRIC index detects nodes 2, 4, 7. None of these indi-
ces (except Bonacich) indicate node 8 as the influential one, however it af-
fects node 2 very strong which in its turn influences nodes 1 and 7. Moreo-
ver, node 5, which is not considered by classical measures and SRIC index,
influences nodes 2, 3 and 4, which are very influential too. Additionally,
node 1 does not play a significant role in the graph because its outgoing in-
tensities are relatively small. Hence, classical centrality measures are not
very appropriate for the influence estimation; SRIC index can be applied to
small graphs with short paths between nodes (due to the fact that SRIC in-
dex consider only one layer between nodes). LRIC index can identify hidden
nodes that are very important in terms of the influence.

In order to compare rankings, we used a correlation analysis. Since the
position in the ranking is a rank variable, to assess the consistency of differ-
ent orderings other than traditional Pearson coefficient rank correlation coef-
ficients should be used. In our work it is applied the idea of Kendall metrics
[Kendall, 1970], that counts the number of pairwise disagreements between
two ranking lists. We have used Goodman and Kruskal y rank coefficient as
well, which shows the similarity of the orderings of the data when ranked by
each of the quantities [Goodman, Kruskal, 1954]. This coefficient looks as

Ng—Np

Y= o where Ns is the number of pairs of cases ranked in the same or-
N D

der on both variables (number of concordant pairs) and N, is the number of
pairs of cases ranked in reversed order on both variables (number of re-
versed pairs).

The results are provided below (see Tables 22-23).

4. Computational complexity of centrality measures

We will discuss here a computational complexity of classical and pro-
posed centrality measures. An important issue of classical centrality
measures is the scope of information they aggregate: the more information
about nodes they consider, the more difficult it is to calculate them for large
networks.
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Since in-degree, out-degree and degree centralities calculate the number
of edges for each node, the computational complexity of these measures is
linear. In order to calculate the closeness and betweenness centralitities, the
shortest paths between all node-pairs should be considered (total number is
[V]-(IV] — 1)). The fastest known single-source shortest-path algorithm is
the Dijkstra's algorithm proposed in [Dijkstra, 1959] that has a worst case
performance equal to O(|E| + |V]|-log |V|). Thus, closeness and between-
ness centralities are more difficult to calculate for large networks since they
require a polynomial time. As for the eigenvector centrality and its counter-
parts, these measures have a polynomial computational complexity since
they require to compute the eigenvector of adjacency matrix 4. However,
many approximate algorithms with a low computational complexity that
implement the main idea of these centrality measures were proposed and
integrated in standard software packages.

As for the Myerson value, this measure requires to consider all subgraphs
(the total number is 2/V! — 1) which is impossible to do for a large number
of nodes. There have been developed some approximate algorithms to calcu-
late the Shapley value (which provides a basis for the Myerson value); in
[Fatima et al., 2008] there is an extended benchmark study of some approx-
imation methods.

As to proposed models, SRIC and LRIC consider all possible pivotal
groups for each node the total number of which in the worst case is
2IVI=1 — 1. Distant interactions require the enumeration of all simple paths
in a graph, which can reach more than |V |/ operating cycles. However, some
simplifications can be introduced, as the limitation of the size of groups and
path length. Simulations require the consideration of all subgroups of nodes;
however, it is not rational to enumerate all of them, because not all sub-
groups are influential.

The calculation of classical centrality measures was performed in R 3.2.2
software package with the use of embedded functions (“igraph” package).
The calculation of proposed measures was produced with the help of
MATLAB R2015.
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5. Conclusion

Network analysis plays a significant role in many problem areas. When
we study different relationships between elements we often need to identify
the most powerful participants, or in terms of graph theory, we need to de-
tect key nodes.

We explored two approaches of the influence measure in a network-
graph. The key advantage of this approach with comparison to existing
methods is that we consider long-distance connections as well as special
attributes of nodes (in the form of thresholds) and group influence on nodes.
This allows us to detect hidden key nodes: while classical measures detect
explicit powerful nodes our methods also detect nodes that influence other
nodes in groups or by long-range interactions.

Another important aspect is that our approach also allow us to estimate
the intensity of influence of nodes: due to the fact that on one of the stages
of the calculation we get node-to-node influences we can not only estimate
the level of influence on other nodes for each node but also the level of in-
fluence of all nodes on each node. In other words, the methods admit many
ways of aggregation which lead to different interpretations of nodes power.

The first approach is based on the analysis of all simple paths between all
pairs of nodes in a graph; such methodology allows us to control all chan-
nels of influence. As a result, we obtain 5 versions of long-range interaction
index (LRIC index). The second approach is based on the idea of simula-
tions: we sequentially consider different influential groups and track the
changes in a graph. This allows us to consider all possible scenarios of
nodes cooperation.

As our methods are complex for the calculation we suggest some natural
limitations as the length of considered paths, the size of groups, etc.

We demonstrate the consistency of our approaches on some numerical
examples which confirm that existing measures do not detect hidden nodes
but LRIC indices and simulations are able to identify them.

The developed new centrality measures can be successfully applied to
many real life processes.
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