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1. Introduction 

During last years there has been a deep interest in the analysis of differ-

ent communities and complex networks, specially their structure and key 

elements detection. Most classical measures do not take into account indi-

vidual properties of each element. Additionally, they do not completely take 

into account the intensities of interactions between elements, especially, 

long-range interactions. One more problem arises from the fact that not only 

one node but also a group of nodes can influence other nodes. Consequently, 

the results of the application of classical measures inadequately represent the 

actual state of a system. 

Existing measures are not accurate even for small networks. There exist 

several simple network structures where classical indices do not elucidate 

hidden elements influential in the network. This can be explained by the fact 

that these indices do not fully take into account individual properties of 

nodes, the intensity level of direct connections and long-range interactions 

between nodes of the networks. For instance, classical centrality measures 

do not pay attention to the possibility of chain reactions of a system (so-

called domino or contagion effect). The incessant changes in composition 

and structure of groups and nets magnify the complexity of the problem.  

The main objective of our research is to develop new efficient methods 

of key nodes detection which take into account these particular aspects of 

the problem under consideration. 

The paper is organized as follows. In Section 2 we provide a review of 

existing methods of key nodes detection in networks and demonstrate some 

of their shortages. In Section 3 we formally describe the new method and 

show how it works on a simple example. We also emphasize advantages and 

weaknesses of the proposed method.  
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2. Literature review 

There have been developed many indices to measure the centrality level 

of each node. Some of them are based on the number of links to other nodes. 

Other techniques consider how close each node is located to other nodes of 

the network in terms of the distance, or how many times it is on the shortest 

paths connecting any given node-pairs. There are also some indices based on 

ideas from cooperative game theory and voting theory. These indices are 

called centrality measures. 

Consider network-graph ! = {!,!,!}, where ! = {1,… , !} is the set of 

nodes, |!| = !, ! ⊆ !×! is the set of edges, and ! = {!!"} is the set of 

weights – real numbers prescribed to each edge !, ! ∈ !. Network-graph ! 

is directed if ∃!, ! ∈ !: !, ! ∈ !  &   !, ! ∉ !  and is undirected otherwise. 

The graph is called unweighted if ∀!!, !!, !!, !! ∈ !: !!, !! ∈ !  &   !!, !! ∈

! ⇒ !!!!!
= !!!!!

, i.e. every edge has the same weight. Below we consider 

only directed weighted graphs, i.e., the set of pairs !, ! ∈ ! is ordered. 

A network-graph !  can also be represented in the form of matrix 

! = !!"
!×!

, where !!" = 1 if !, ! ∈ ! and !!" = 0 otherwise, or in the 

form of matrix ! = !!"
!×!

, where !!" is a weight that indicates the in-

tensity of connection of node i to node j. The matrix A is called an adjacency 

matrix of the network-graph ! while the matrix ! is called a weighted adja-

cency matrix of the network-graph  !. In terms of influence, !!" = 1 means 

that node i influences node j; for weighted graphs, if !!" > 0 then node i 

influences node j with power !!", otherwise, node i does not influence node 

j (!!" = 0 or !!" = 0). Additionally, the nodes can also have individual at-

tributes (for instance, weights) that will be denoted by !
!

!, where i is a node 

number and k is the number of the attribute, ! ∈ !. 

Denote by !! = ! ∈ !:   !, ! ∈ !  a set of neighbors of node i which i is 

connected to, !! = ! ∈ !:   !, ! ∈ !  is a set of neighbors of node i that are 

connected to i, !! = !! + !! = ! ∈ !:   !, ! ∈ !  !"   !, ! ∈ !  is a set of all 

neighbors of node i in a network-graph !. 
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2.1. Degree centralities 

The simplest centrality measure is the degree centrality that is calculated 

for undirected network-graphs as the total number 𝐶
!

!"#
of i’s neighbors for 

each node i [Freeman, 1979]: 

𝐶
!

!"#
= 𝑁! . 

High values of the degree centrality identify nodes with the highest num-

ber of connections to other nodes, i.e. nodes for which it is easier to gain 

access to and/or influence over other nodes. A central node occupies a struc-

tural position (network location) that serves as a source or conduit for larger 

volumes of information exchange or other resource transactions with other 

nodes. 

For directed network-graphs four versions of degree centrality measure 

are possible 

• In-degree centrality – the number of in-coming edges to a node 

𝐶
!

!"!!"#
= 𝑁! . 

High values of in-degree centrality mean that a node is strongly affected 

by its neighbors. Alternatively, low values of in-degree centrality identify 

nodes that are not influenced by other nodes. 

• Out-degree centrality – the number of out-going edges from a node 

𝐶
!

!"#!!"#
= 𝑁! . 

High values of out-degree centrality represent the influence power of a 

node, i.e. the higher the value the more nodes are under its control. Con-

versely, low values of out-degree centrality mean that a node has a small 

effect on its neighbors.  

• Degree centrality – the total number of i’s neighbors 

𝐶
!

!"!#$  !"#
= 𝐶

!

!"!!"#
+ 𝐶

!

!"#!!"#
. 

This measure is obtained by ignoring directions of edges and high values 

of total degree centrality identify the most active nodes. 

• Degree difference centrality – the difference between the number of 

out-going edges from a node and the number of in-coming edges to a node 

𝐶
!

!"#  !"##
= 𝐶

!

!"#!!"#
− 𝐶

!

!!!!"#
. 

In power networks high values of degree difference show the relative in-

fluence of a node on its neighbors. 
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For weighted degree network-graphs it is also possible to calculate the 

degree centrality with respect to the weights of adjacent edges. Then four 

measures are introduced 

• Weighted in-degree centrality 

𝐶
!

!  !"!!"#
= 𝑤!"!∈!:   !,! ∈! = 𝑤!"

!

!!! . 

• Weighted out-degree centrality 

𝐶
!

!  !"#!!"#
= 𝑤!"!∈!:   !,! ∈! = 𝑤!"

!

!!! . 

• Weighted degree centrality 

𝐶
!

!"!#$  !  !"#
= 𝐶

!

!  !"!!"#
+ 𝐶

!

!  !"#!!"#
. 

• Degree difference centrality 

𝐶
!

!  !"#  !"##
= 𝐶

!

!  !"#!!"#
− 𝐶

!

!  !"!!"#
. 

The interpretation of weighted degree centralities is practically the same 

as for unweighted degree centralities but weighted measures are more repre-

sentative than unweighted ones due to the fact that weighted networks con-

sider the intensities of connections. 

Since the degree centrality measures do not consider the strength of adja-

cent nodes, i.e., information about the degree centrality of adjacent nodes, 

there have been developed several indices which take into account this fea-

ture. A generalization is what is known as an eigenvector centrality that con-

siders not only neighboring but also long-distance connections. Basically, 

this measure is applicable to symmetric relations. It assigns relative scores to 

all nodes in a network based on the concept that connections to high-scoring 

nodes contribute more to the score of the node in question than equal con-

nections to low-scoring nodes. If we talk about asymmetric relations as net-

works of influence it is more valuable to influence powerful nodes.  

The calculation of the centrality measure for each node is related to an 

eigenvalue problem with respect to weighted adjacency matrix W of a net-

work-graph: a vector of relative centrality 𝐶!"#!$ is an eigenvector of the 

adjacency matrix, i.e. 

𝑊 ∙ 𝐶
!"#!$

= 𝜆 ∙ 𝐶
!"#!$. 

Generally, all eigenvectors of the matrix W can be considered as a cen-

trality measure. However, an eigenvector that corresponds to a maximal ei-

genvalue is more preferable: by Perron-Frobenious theorem this vector (and 
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only this except its co-directional vectors) is positive and real for irreducible 

non-negative matrix W [Gantmacher, 2000], i.e., for a graph which is strong-

ly connected. 

This approach to centrality evaluation was proposed by P. Bonacich 

[Bonacich, 1972] and is sometimes known as Bonacich’s index. [Bonacich, 

1987] considers a generalization of this approach where a degree of nodes 

counted towards the centrality evaluation. As for an eigenvector centrality 

this measure is more representative for symmetric relation. For asymmetric 

graphs of influence the calculation is the same. Namely, a parametric family 

of centrality measures can be represented as 

 

𝐶
!

!"#$%&%!
𝛼,𝛽 = 𝛼 + 𝛽 ∙ 𝐶!

!"#$%&%!(𝛼,𝛽) ∙𝑊!"

!

 

or in a matrix form 

𝐶
!"#$%&%!

𝛼,𝛽 = 𝛼 ∙ 𝐼 − 𝛽 ∙𝑊 !!
∙𝑊 ∙ 1, 

where I is an identity matrix and 1 is the unit vector. 

Apparently, parameter α affects only the variance of a centrality vector. 

Parameter 𝛽 represents the degree to which a centrality of one node is a 

function of centralities of adjacent nodes. If a centrality of one node is a po-

sitive function of its neighbors’ centralities then we select positive parame- 

ter β.  

The main innovation is that this approach also considers negative values 

of parameter 𝛽. This leads to the fact that centralities of neighbors are nega-

tively counted in node centrality, i.e. it is not beneficial to be connected with 

central nodes. Negative 𝛽 is usually required in bargaining networks where 

it is more profitable to be connected with weak players because powerful 

players have more potential trading partners, which reduces your bargaining 

power.  

In practice, an eigenvector centrality is not very feasible especially for 

large networks because it gives a lot of zero centralities if there are many 

sparse cohesive components in a graph. There have been introduced (or used 

previously entered) other measures to overcome this shortage. Katz centrali-
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ty is one of such measures introduced in [Katz, 1953]. This centrality is de-

fined as the solution of the two-parameter equation 

𝐶
!

!"#$(𝛼,𝛽) = 𝛼 ∙ 𝐶!
!"#$

𝛼,𝛽 ∙𝑊!" + 𝛽

!

 

or in a matrix form 

𝐶
!"#$

𝛼,𝛽 = 𝛽 ∙ 𝐼 − 𝛼 ∙𝑊 !!
∙ 1, 

where 1 is the unit vector.  

The introduction of parameter β, which corresponds to the initial value of 

centralities, precludes the possibility of solution with zero components. In 

practice, parameter 𝛼 is selected so that 𝛼 <
!

!!"#

, where 𝜆!"# is the largest 

eigenvalue of the matrix 𝑊. 

Katz centrality, in its turn, is not free from an essential fault: for a node 

with a high degree centrality value and a high Katz centrality value its 

neighboring nodes will also have high Katz centrality values even if their 

degree centrality values are not very high.  

Some modifications of Katz centrality are used to overcome this disad-

vantage. For example, the PageRank centrality was proposed where degrees 

of adjacent nodes are introduced 

𝐶
!

!"#$%"&'
= 𝛼 ∙

𝐶!
!"#$%"&'

𝐶
!

!  !"#!!"#

!

∙𝑊!" + 𝛽 

or in a matrix form 

𝐶
!"#$%"&'

= 𝛽 ∙ 𝐼 − 𝛼 ∙𝑊 ∙ 𝐶
!  !"#!!"# !! !!

∙ 1, 

where 𝐶!  !"#!!"# = 𝑑𝑖𝑎𝑔 𝐶
!

!  !"#!!"#
,… ,𝐶

!

!  !"#!!"#
 (if 𝐶

!

!  !"#!!"#
= 0 

then the corresponding summand is set to zero), 1 is the unit vector. This 

formula was taken as a basis in Google to rank search engine queries [Brin, 

Page, 1998]. 

 

2.2. Closeness centralities 

Besides the degree centralities, there are also methods that consider how 

close each node is located to other nodes of a network in terms of a distance. 

These measures indicate the level of closeness of each node and are called 

closeness centrality indices. 
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The standard closeness centrality measure for each node is equal to the 

value that is proportional to the harmonic mean of the length of the shortest 

paths between the i-th node and the rest of it in a network [Rochat, 2009] 

𝐶
!

!"
=

!

!!"
! . 

 

2.3. Betweenness centralities 

There are also indices that show how many times a node is on the short-

est paths connecting any given pair of nodes. These measures were proposed 

in [Freeman, 1977; Freeman et al., 1991; Newman, 2005] and are called the 

betweenness centrality measures. Versions for such centralities are 

• the number of shortest paths passing through a given node 

𝐶
!

!"#
= 𝜎!"(𝑖)!" , 

where 𝜎!"(𝑖) is the number of shortest paths that connect j and k and con- 

tain i; 

• the relative number of the shortest paths passing through a given 

node and connecting two nodes to the total number of shortest paths con-

necting these nodes 

𝐶
!

!"#$%&'"  !"#
=

!!" !

!!"
!" , 

where 𝜎!" is the number of shortest paths that connect j and k; 

• the sum (throughout all pairs of nodes) of maximum flows from the 

first node of pair to the second one passing through a given node [Freeman 

et al., 1991]: 

𝐶
!

!"#$  !"#
= 𝑚!!(𝑖)!" , 

where 𝑚!"(𝑖) is a maximum flow from j to k that passes through i; 

• the sum (throughout all pairs of nodes) of the mathematical expecta-

tions of the number of random walks connecting a pair of nodes and passing 

through a given node [Newman, 2005]. 

 

2.4. Centralities from cooperative game theory 

Many attempts of key nodes detection in networks came from coopera-

tive game theory. In that case, a network is interpreted as a set of interacting 

individuals that contribute to a total productive value of a network and the 
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problem is how to share generated value among them. In [Myerson, 1977] 

there was proposed a measure which is based on the power index and is a 

version of the Shapley-Shubik index [Shapley, Shubik, 1954] for communi-

cation games. The Myerson value has an allocation rule in the context of 

network games where the value of each individual depends on the value 

generated by a network with and without that individual. More precisely, the 

Myerson value is an average contribution of a node to all subgraphs of a 

graph with respect to some predefined values of subgraphs, i.e. 

𝐶
!

!"
𝐺, 𝑣 =

! !! ! ! ! ! !

! !
𝑣 𝑆 − 𝑣(𝑆\{𝑖})!∈! , 

where S is a subgraph of graph G, 𝑣(𝑆) is some predefined value of sub-

graph S and 𝑣(𝑆\{𝑖}) is a predefined value of subgraph S without node i. 

 

2.5. Centralities from voting theory 

Existing measures are not accurate even on small networks. There exist 

several simple network structures where classical indices do not elucidate 

hidden elements influential in the network. This can be explained by the fact 

that these indices do not fully take into account individual properties of 

nodes, the intensity level of direct connections and interactions between 

nodes of the networks. 

In [Aleskerov et al., 2014] a novel method for estimating the intensities 

of nodes’ interactions was proposed. This method is based on the power in-

dex analysis that was worked out in [Aleskerov, 2006] to find the most piv-

otal agents in Russian Parliament (1999–2003) and adjusted for the network 

theory. The index (originally called a key borrower index) is a Short-Range 

Interaction Centrality (SRIC) that was employed to find the most pivotal 

borrower in a loan market in order to take into account some specific charac-

teristics of financial interactions. An important feature of SRIC index is that 

it does not take into account all edges in a graph which is logical for many 

cases in networks. The choice of edges that are influential in a network de-

pends on additional parameter 𝑞! which varies with the node i and represents 

some critical threshold value. 

The SRIC index is calculated for each node individually in order to de-

termine the influence of other nodes to it. In that case, only direct neighbors 
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are considered to estimate the direct and indirect influence to him/her. The 

intensity of direct influence 𝑝!
!  of node j to node 𝑖 is calculated as 

𝑝!
!
=

!!"

!!"!

, 

where 𝑤!" is a weight of an edge from node k to node i, while the intensity 

of indirect influence 𝑝!"
!  of node 𝑗 to node 𝑖 through node 𝑦 is calculated as 

𝑝!"
!
=

𝑤!"

𝑤!"!

, 𝑖𝑓  𝑤!" > 0,𝑤!" < 𝑤!"   and  𝑦 ≠ 𝑗,

𝑤!"

𝑤!"!

, 𝑖𝑓  𝑤!" > 0,𝑤!" > 𝑤!"   and  𝑦 ≠ 𝑗,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                        

 

After the intensity of influence to node i of its adjacent nodes is calculat-

ed, a set of all possible critical groups of nodes for node i is constructed.  

A group of nodes is critical if the total weight of edges from these nodes to 

the node i is more than or equal to some pre-defined threshold 𝑞!. The criti-

cal group is interpreted as a group that may influence a particular node. 

After a set of critical groups for node i is defined, we can identify a total 

number of groups where each node 𝑗 plays a pivotal role. A node 𝑗 is pivotal 

in a critical group if its exclusion from this critical group makes the group 

non-critical. The value of the index for each node reflects the magnitude of 

its pivotal role in the group. The higher the value, the more pivotal the node 

is. The most pivotal node will be the one that becomes pivotal in more criti-

cal groups than any other node does. 

The total intensity of influence of node 𝑗 to node 𝑖 is aggregated over the 

intensities of all groups where the node 𝑗 is pivotal with respect to the size of 

the group. The influence of each node to node 𝑖 is equal to the normalized 

value of the final intensity measure. 

After the total intensity of connection between node 𝑖 and its adjacent 

nodes is calculated, the index is aggregated over all nodes taking into ac-

count individual attributes of each node. 

Unfortunately, the SRIC index also has some shortages. In the SRIC in-

dex only direct interactions of the first level are taken into account, which is 

not correct in some cases when long-range interactions play a pivotal role or 

where chain reactions are possible. Also, the SRIC index does not elucidate 

nodes that have a weak direct influence to particular node 𝑖 but are highly 
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influential to its adjacent nodes (see Fig. 1). This is due to the fact that long-

range interactions are not taken into account. 

 
Fig. 1. SRIC: node 4 does not influence node 1 (∀𝑖 ∈ 1,2,3,4   𝑞! = 40) 

 

To demonstrate the shortages of existing measures consider the following 

Numerical Example 1 (see Fig. 2). There are 8 nodes in network-graph 𝐺 

and the weights of edges are given in Fig. 2. 

 

 

Fig. 2. Numerical Example 1 

 



	
  

	
  

13	
  

Let us evaluate classical centrality measures for Numerical Example 1 

(Table 1). 

 

Table 1. Classical centrality measures for Numerical Example 1 

Centra- 

lity 

 

Node 

𝑪
𝒘  𝒊𝒏!𝒅𝒆𝒈 𝑪𝒘  𝒐𝒖𝒕!𝒅𝒆𝒈 𝑪

𝒘  𝒅𝒆𝒈 𝑪
𝒘  𝒅𝒆𝒈!𝒅𝒊𝒇𝒇 𝑪

𝒃𝒕𝒘 𝑪
𝒄𝒍 (*) 𝑪

𝑷𝒂𝒈𝒆𝑹𝒂𝒏𝒌 𝑪
𝒆𝒊𝒈 𝑪

𝑩𝒐𝒏𝒂𝒄𝒊𝒄𝒉 

1 10 20,5 30,5 10,5 13 0,0160 0,128 0,725 –1,217 

2 10 5,5 15,5 –4,5 1,5 0,0126 0,103 0,589 –0,890 

3 10 10,5 20,5 0,5 6 0,0187 0,146 0,653 –0,835 

4 10 5,5 15,5 –4,5 1,5 0,0126 0,103 0,589 –0,890 

5 10 24 34 14 24 0,0227 0,248 1 –1,290 

6 10 12 22 2 9 0,0155 0,107 0,802 –1,253 

7 10 1 11 –9 0 0,0093 0,072 0,370 –0,708 

8 10 1 11 –9 0 0,0097 0,094 0,359 –0,708 

(*) Closeness centrality: inverse average maximal outflow ⇒ low values 

are more significant. 

According to weighted out-degree, weighted degree, degree difference 

and betweenness centrality measures (where high weights are better) nodes 

1 and 5 are the most powerful in the network. Closeness centrality measure 

(where small weights are better) considers nodes 7 and 8 as the most power-

ful. If we take into account the strength of the neighbors, then nodes 3 and 5 

will be chosen by PageRank, nodes 5 and 6 by eigenvector and, finally, 

nodes 7 and 8 by Bonacich centrality. Overall, we can conclude that nodes 1 

and 5 are chosen by the most of centrality measures. 

However, in most situations not all edges should be taken into account. 

Suppose now threshold level 𝑞! is 70% for each node i, i.e. node i is influ-

enced by individual node or a group of them only if their total influence to i 

is more than or is equal to 70% of the total influence to i. Such information 

is not taken into account by classical centrality measures contrary to SRIC 

index.  

In Fig. 3 we demonstrate substantial influence in the network for our 

Numerical Example 1. 
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Fig. 3. Substantial influence for Numerical Example 1 (𝑞! = 70%) 

 

It should be mentioned that nodes 7 and 8 have no real influence on other 

nodes in the network. Such information is not taken into account by centrali-

ty measures, so the role of nodes 7 and 8 are overestimated. 

The results of SRIC index are provided in Table 2. 

 

Table 2. SRIC index for Numerical Example 1	
  

Node 1 2 3 4 5 6 7 8 

SRIC 0,216 0,072 0,159 0,072 0,375 0,106 0 0 

 

SRIC index also identifies nodes 1 and 5 as the most influential in this 

network. The key improvement of SRIC index comparing to classical cen-

trality measures is that SRIC index ignores insignificant connections (with 

respect to pre-defined thresholds 𝑞!) and considers short connections (of 

length 1 and 2). Generally, neither classical centrality measures nor SRIC 

index consider long connections as well as group influence and individual 

attributes (as pre-defined thresholds), which leads to the fact that existing 

methods may not detect hidden influential nodes. Hence, all these methods 

underestimate the role of node 3 which in turn controls node 5 and also in-

fluences node 8. Due to the fact that node 3 significantly influences node 5, 
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and node 5 is central in this graph we suppose that node 3 is more influential 

than node 5 (node 3 in a wild card). 

 

3. Long-Range Interactions Centrality (LRIC) 

We propose a new method for assessing the nodes influence in the net-

work. Contrary to SRIC index, our methodology allows to consider interac-

tions between nodes not just on the first level, but also on some levels be-

yond.  

There are two different ideas on how to take into account long-range in-

teractions between nodes of the network. The first one is a distance-based 

approach where all different paths are considered for each node and some-

how aggregated into a single value. The second one is based on the idea of 

simulations where we analyze the influence of individual nodes and their 

combinations to a whole network. Both ideas have simple interpretations 

and can be applied to different networks.  

The formulation of a problem is as follows: consider network-graph 

𝐺 𝑉,𝐸 , where 𝑉 = {1,… , 𝑛} is a set of nodes, |𝑉| = 𝑁, 𝐸 = 𝑖, 𝑗 ,      𝑖, 𝑗 ∈

𝑉  is a set of weighted edges, and 𝑤!" is a weight of edge 𝑖, 𝑗 .  The issue is 

to define the most influential nodes in this graph. 

Let us consider the following graph where N = 10 (Fig. 4). 

We propose two approaches to find central nodes in a network. This con-

cept is motivated by the fact that indirect connections can play a significant 

role in different situations; however, classical centrality measures do not 

consider long interactions. For that reason we develop indices that take into 

account distant nodes. Generally, highly distant nodes do not influence other 

nodes of a graph; hence, we introduce a parameter s that defines the lengths 

of connections we take into account. Accordingly, if long interactions do not 

influence indirect nodes then parameter s is equal to 1, and contrary, if all 

levels of indirect connections matter, then parameter s is unlimited. 

Primarily, we introduce some basic definitions.  

Let 𝑁! be a set of directly connected nodes of node i (incoming neigh-

bors), i.e. 𝑁! = 𝑗 ∈ 𝑉 𝑤!" ≠ 0}.  Let every node has an individual attri- 
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bute – predefined threshold 𝑞!, i.e. the threshold level when a node becomes 

affected.  

 

 
Fig. 4. Numerical Example 2 

 

Definition 1. A group of neighbors of node i 𝛺 𝑖 ⊆ 𝑁!  is critical if 

𝑤!"!∈! ! ≥ 𝑞!. 

Definition 2. Node 𝑘 ∈ 𝛺 𝑖  is pivotal if 𝑤!"!∈! ! \{!} < 𝑞!. Then 𝛺! 𝑖  

is a set of pivotal nodes in group 𝛺 𝑖 , i.e. 

𝛺! 𝑖 = 𝑘 ∈ 𝛺 𝑖 | 𝑤!"!∈! ! \{!} < 𝑞! . 

Generally, every node can have a vector of different attributes depending 

on the problem statement. These attributes can be estimated by their im-

portance and aggregated to some single value which is its personal threshold 

𝑞!. For a meaningful comparison of aggregated attributes and weights on 

nodes these values should be of the same origin. If we do not have individu-
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al attributes in a network then we can use information from a graph itself. 

For example, 𝑞! can be a fraction of total in-degree influence on node i. 

Additionally, critical groups’ formation may have some probability, i.e. it 

is not necessary that some nodes truly want to or can cooperate with each 

other (depending on the problem statement). This means that some probabil-

ities are attributed to each critical group and they are taken into considera-

tion in the further analysis. 

For our Numerical Example 2 the sets of direct neighbors 𝑁! and critical 

groups when 𝑞! = 50%  of total influence for each node are shown in  

Table 3. Here we assume that critical groups are formed with probability 1. 

 

Table 3. Neighbors and critical groups for Numerical Example 2 

Node, i 𝑵𝒊 Critical groups, 𝛀 𝒊 , q = 50% 

1 {2, 3, 4, 6} 
{2, 3}, {2, 4}, {3, 4}, {4, 6}, {2, 3, 4}, {2, 3, 6}, {3, 4, 6}, 

{2, 3, 4, 6} 

2 {5, 6, 8} {5, 6}, {5, 8}, {6, 8}, {5, 6, 8} 

3 {4, 5, 9, 10} 
{4, 5}, {4, 10}, {5, 9}, {5, 10}, {9, 10}, {4, 5, 9}, {4, 5, 10},  

{5, 9, 10}, {4, 5, 9, 10} 

4 {5, 7, 9, 10} 
{5, 7}, {5, 9}, {5, 10}, {7, 9}, {7, 10}, {9, 10}, {5, 7, 9},  

{5, 7, 10}, {7, 9, 10}, {5, 7, 9, 10} 

5 ∅ ∅ 

6 {4, 7} {7}, {4, 7} 

7 {1, 2, 3} {2}, {1, 2}, {2, 3}, {1, 2, 3} 

8 {1, 4, 7} {7}, {1, 7}, {4, 7}, {1, 4 ,7} 

9 {1, 7} {7}, {1, 7} 

10 {1, 7} {7}, {1, 7} 

 

Pivotal members for node 1 when 𝑞! = 50% is provided in Table 4. 

 

Table 4. Critical groups and pivotal member for node 1 

Critical groups, Ω 1  Pivotal members, Ω! 1  

{2, 3} {2, 3} 

{2, 4} {2, 4} 

{3, 4} {3, 4} 
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Critical groups, Ω 1  Pivotal members, Ω! 1  

{4, 6} {4, 6} 

{2, 3, 4} ∅ 

{2, 3, 6} {2, 3} 

{3, 4, 6} {4} 

{2, 3, 4, 6} ∅ 

 

3.1. s-long-range interaction index based on paths (s-LRIC index) 

The first approach of the key nodes detection by s-LRIC index is based 

on paths.  

Now we construct intensity matrix 𝐶 = [𝑐!"] with respect to weights 𝑤!", 

thresholds 𝑞! and critical groups 𝛺 𝑗  as 

 

𝑐!" =

𝑤!"

min
! ! ⊆!!|!∈!! !

𝑤!"!∈! !

, 𝑖𝑓  𝑖 ∈ 𝛺! 𝑗 ⊆ 𝑁! ,

0, 𝑖 ∉ 𝛺! 𝑗 ⊆ 𝑁! ,

                                 (1) 

 

where 𝛺 𝑗 ⊆ 𝑁!  is a critical group of direct neighbors for node j, 

𝛺! 𝑗 ⊆ 𝛺 𝑗  is a group of pivotal members for 𝛺 𝑗 . 

We consider a critical group with the minimal sum of weights (in denom-

inator) to indicate the maximal possible direct influence of node i on node j. 

Obviously, if 𝑤!" ≥ 𝑞! then the direct influence of node i on node j is maxi-

mal and is equal to 1. Conversely, if node i does not have a direct connection 

to node j or it does not belong to any critical group then its direct influence 

is equal to 0. In other cases, if 0 < 𝑤!" < 𝑞! but node i is pivotal for node j 

then its direct influence is equal to 𝑐!", 0 < 𝑐!" < 1. 

Let us construct matrix 𝐶 = [𝑐!"] for Numerical Example 2 according to 

formula (1). There are 8 critical groups for node 1 (see Table 4) and, for ex-

ample, node 3 is pivotal in 𝛺 1 = 2, 3 , 3, 4 , {2, 3, 6} ; but we consider 

a critical group with the minimal sum of weights which is {2, 3}; hence, 

𝑐!" =
!!"

!!"!!!"

=
!""

!""
= 0.6. Similarly, we define direct influences for other 

nodes. 
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Thus, we evaluated the direct influence of the first level on each node in 

a network. To define the total influence between nodes we need to redesign 

our graph by the replacement of weights 𝑤!" on edges with values of direct 

influences 𝑐!". A new graph of direct influences looks like 

 
Fig. 5. A graph representing matrix C for Numerical Example 2 

 

According to formula (1) node 1 does not influence other nodes with re-

spect to 𝑞! = 50% of total influence. 

Generally, the construction of matrix 𝐶 is highly related to [Aleskerov et 

al., 2014] because it requires to consider separately each node j for which we 

ignore all outgoing edges while other nodes of the graph are assumed as po-

tentially influential on j.  

To evaluate indirect influences of nodes we need to introduce a concept 

of a path between a pair of nodes. 



	
  

	
  

20	
  

Definition 3. A path between nodes i and j is a sequence of edges such 

that the end of one edge is the beginning of the next edge, i.e. 𝑃
!

!"
=

𝑖, 𝑙! , 𝑙!, 𝑙! , … , 𝑙! , 𝑙!!! ,… , 𝑙!!!, 𝑙!!! , 𝑙!!!, 𝑗  is k-th path be-

tween nodes i and j where 𝑙! is an intermediate node. The number of edges 

in the sequence is the length of a path (see Fig. 6). 

 

 

Fig. 6. A path in a graph 

 

To analyze the indirect influence of node i on node j we consider all sim-

ple paths between them, i.e. paths such that there are no nodes that occur on 

the path at least twice. For instance, for our Numerical Example 2 there are 

4 paths between nodes 7 and 3: {(7, 10), (10, 3)}, {(7, 4), (4, 3)}, {(7, 9), (9, 

3)}, {(7, 9), (9, 4), (4, 3)}. 

Here we can limit the maximal length of paths with some parameter s be-

cause very long paths usually are not representative in terms of indirect in-

fluence.  

Denote by 𝑃!" = {𝑃
!

!"
,… ,𝑃!

!"
} a set of all simple paths between i and j, 

where m is the total number of simple paths, and 𝑛 𝑘 = 𝑃
!

!"
≤ 𝑠 is equal 

to the k-th path’s length. Then the influence of i on j via k-th path 𝑃
!

!"
 is de-

fined as 

𝑓 𝑃
!

!"
= 𝑐

!!!
!   ×𝑐

!!
!
!!
!×…×𝑐

!
! ! !!

!
!
                                                                    (2) 

or 

𝑓 𝑃
!

!"
= min 𝑐

!!!
! , 𝑐

!!
!
!!
! ,… , 𝑐

!
! ! !!

!
!
                                                          (3) 

where 𝑖, 𝑙!
! , 𝑙!

! ,… , 𝑙
! ! !!

!
, 𝑗 is an ordered sequence of nodes in the k-th path. 

According to the formula (2) the influence of node i on node j through 

the k-th path 𝑃
!

!"
 is calculated as the aggregate value of direct influences be-

tween nodes which lie in this path. The formula (3) can be interpreted as the 

k-th path capacity of the influence (we cannot influence through the k-th 

path more than the minimal value of the influence is allowed on this path).  
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After we considered the influence of node i on node j through all paths of 

length less than or equal to s (formula (2) or (3)) we need to aggregate the 

total influence of node i on node j. We propose three ways of the aggrega-

tion of the possible influence; the aggregated results form new matrix 

𝐶
∗
= [𝑐!"

∗ ]:  

1. The total influence via the sum of possible influences 

𝑐!"
∗ (𝑠) = min 𝑓 𝑃

!

!"

!: !
!

!"
!!

, 1                                                         (4) 

2. The total influence via maximum possible influence 

𝑐!"
∗ (𝑠) = max

!: !
!

!"
!!

𝑓(𝑃
!

!"
)                                                                                           (5) 

3. The total influence via the threshold aggregation 

The model of the threshold aggregation was proposed in [Aleskerov et 

al., 2007]. Each node in a graph with n nodes is evaluated by n grades that 

may have m different values. Then for each node k we calculate values 

𝑣! 𝑘 ,… 𝑣!(𝑘) where 𝑣!(𝑘) is the number of i-th grades that node k re-

ceived, i=1,…,m. According to the threshold rule node x V-dominates node y 

if 𝑣! 𝑥 < 𝑣!(𝑦)  or ∃𝑑 ≤ 𝑚:∀ℎ < 𝑑  𝑣! 𝑥 = 𝑣! 𝑦  and 𝑣! 𝑥 < 𝑣! 𝑦 . 

In other words, firstly we compare the number of the worst grades; if they 

are equal then we compare the number of the second worst grades, etc. If 

some node is not V-dominated by other nodes then this node is considered as 

the best one. 

Considering the threshold rule as one of possible ways on how the indi-

rect influence can be evaluated, we propose the following aggregation pro-

cedure 

𝑐!"
∗
𝑠 = 𝑓 𝑃!

!"
                                                                                                (6) 

where 

𝑧 = argmin
!:  !(!)!!

𝑣(𝑃
!

!"
)                                                                                         (7) 

and 

𝑣 𝑃
!

!"
= 𝑣! 𝑃!

!"
∗ (𝑠 + 1)!!!!

!!! + 𝑠 − 𝑛 𝑘                 (8) 
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Formula (6) – (8) are identical to the threshold rule [Aleskerov et al. 

2010]. 

Hence, we construct a matrix !∗ ! = [!!"
∗ (!)] where !!"

∗
!  is a total in-

fluence of node i on node j with respect to paths of length less than s. Note 

that if there are no paths between nodes i and j then ∀!  !!"
∗
! = 0.  

As a result, we propose two methods of path power estimation and three 

methods of the aggregation of possible influence. Hence, we can assume that 

there are 6 ways of the estimation of long-range interactions in a graph. 

However, not all combinations of (2) – (3) and (4) – (6) are reasonable. 

Thus, we propose the following combinations (see Table 5): 

• (2) – (4): an influence of i on j goes through all paths with respect to 

all layers in these paths; 

• (2) – (5): an influence of i on j goes through a maximal path with 

respect to all layers in this path; 

• (2) – (6): an influence of i on j goes through the best paths accord-

ing to the threshold rule with respect to all layers in these paths; 

• (3) – (5): an influence of i on j goes through a maximal path with 

respect to one minimal layer in this path; 

• (3) – (6): an influence of i on j goes through the best paths accord-

ing to the threshold rule with respect to one minimal layer in this path. 

The combination (3) – (4) is not very reasonable because, firstly, for eve-

ry path we evaluate the capacity of the influences which can confine on one 

edge for different paths; then we sum up these influences, which means that 

we may consider the same influence several times. 

 

Table 5. Possible combinations of methods for indirect influence 

 

Paths aggregation 

Sum of paths 

influences 

Maximal path 

influence 
Threshold rule 

P
a

th
  

in
fl

u
e
n

c
e
 

Multiplication  

of direct  

influence 

SumPaths MaxPath MultT 

Minimal direct 

influence 
– MaxMin MaxT 
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For our Numerical Example 2 we evaluate the indirect influence of node 

7 on node 1 through all existing paths in the graph (see Table 6). 

 

Table 6. The indirect influence of node 7 on node 1 via paths 

 

If we do not limit the length of a path with parameter s then there are 9 

ways of the influence of node 7 on node 1; otherwise, if we limit the length 

of a path with, for example, s = 2, then we will consider the influence of 7 

on 1 only through 2 paths (1
st
 and 3

rd
 ones). 

To compare different paths by the threshold rule the following grades of 

direct influence are proposed. 

Grades: 

0. 0 ≤ 𝑐!" < 0.2; 

1. 0.2 ≤ 𝑐!" < 0.5; 

2. 0.5 ≤ 𝑐!" < 0.7; 

3. 0.7 ≤ 𝑐!" ≤ 1. 

Now we can define the path between node 7 and node 1 according to the 

threshold rule. Note that for the threshold rule the values on the edges are 

equal to the grades which were proposed above. The results are provided in 

Table 7. 

 

ID Simple Paths 
Multiplication of paths’  

influences (2) 

Minimal direct  

influence (3) 

1 7
!,!

4
!,!"

1 0,375 0,5 

2 7
!,!

4
!,!

3
!,!

1 0,12 0,4 

3 7
!

6
!,!"

1 0,25 0,25 

4 7
!

6
!,!"

2
!,!

1 0,024 0,06 

5 7
!

8
!,!"

2
!,!

1 0,376 0,4 

6 7
!

9
!,!

3
!,!

1 0,24 0,4 

7 7
!

9
!,!

4
!,!!

1 0,375 0,5 

8 7
!

10
!,!

3
!,!

1 0,36 0,6 

9 7
!

10
!,!

4
!,!"

1 0,375 0,5 
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Table 7. Paths aggregation by the threshold rule, s=3, m=4 

ID, k Path 
Path 

(grades on edges) 

Paths influence, 

𝒗 𝑷
𝒌

𝟕𝟏  

1 7
!,!

4
!,!"

1 7
!

4
!

1 21* 

2 7
!,!

4
!,!

3
!,!

1 7
!

4
!

3
!

1 96 

3 7
!

6
!,!"

1 7
!

6
!

1 69 

4 7
!

6
!,!"

2
!,!

1 7
!

6
!

2
!

1 324 

5 7
!

8
!,!"

2
!,!

1 7
!

8
!

2
!

1 72 

6 7
!

9
!,!

3
!,!

1 7
!

9
!

3
!

1 84 

7 7
!

9
!,!

4
!,!"

1 7
!

9
!

4
!

1 24 

8 7
!

10
!,!

3
!,!

1 7
!

10
!

3
!

1 36 

9 7
!

10
!,!

4
!,!"

1 7
!

10
!

4
!

1 24 

*
 is the path chosen by the threshold rule. 

Thus, there are 9 possible ways how node 7 influences node 1. Let us 

now aggregate this information into a single value by different methods. The 

overall results are provided in Table 8. 

 

Table 8. The total influence of node to node 1 by different methods 

Method Considered paths IDs Influence 

SumPaths 1–9 1 

MaxPath 5 0,376 

MaxMin 8 0,6 

MultT 1 0,375 

MaxT 1 0,5 

 

Similarly, we can estimate the influence of any other elements and con-

struct the matrix 𝐶∗ according to different methods. The results are provided 

in Tables 9–13. 
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Table 9. Matrix C* for Numerical Example 2, SumPaths 

 

 

Table 10. Matrix C* for Numerical Example 2, MaxPath 

 
1 2 3 4 5 6 7 8 9 10 

1 0 0 0 0 0 0 0 0 0 0 

2 0,4 0 0,6 0,5 0 1 1 1 1 1 

3 0,6 0 0 0 0 0 0 0 0 0 

4 0,75 0 0,4 0 0 0 0 0 0 0 

5 0,377 0,942 0,6 0,5 0 0,942 0,942 0,942 0,942 0,942 

6 0,25 0,058 0,035 0,029 0 0 0,058 0,058 0,058 0,058 

7 0,377 0,942 0,6 0,5 0 1 0 1 1 1 

8 0,377 0,942 0,565 0,471 0 0,942 0,942 0 0,942 0,942 

9 0,375 0 0,4 0,5 0 0 0 0 0 0 

10 0,375 0 0,6 0,5 0 0 0 0 0 0 

 

 
1 2 3 4 5 6 7 8 9 10 

1 0 0 0 0 0 0 0 0 0 0 

2 1 0 1 1 0 1 1 1 1 1 

3 0,6 0 0 0 0 0 0 0 0 0 

4 0,99 0 0,4 0 0 0 0 0 0 0 

5 1 0,942 1 1 0 0,942 0,942 0,942 0,942 0,942 

6 0,381 0,058 0,093 0,087 0 0 0,058 0,058 0,058 0,058 

7 1 1 1 1 0 1 0 1 1 1 

8 1 0,942 1 1 0 0,942 0,942 0 0,942 0,942 

9 0,735 0 0,6 0,5 0 0 0 0 0 0 

10 0,855 0 0,8 0,5 0 0 0 0 0 0 
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Table 11. Matrix C* for Numerical Example 2, MaxMin 

 
1 2 3 4 5 6 7 8 9 10 

1 0 0 0 0 0 0 0 0 0 0 

2 0,6 0 0,6 0,5 0 1 1 1 1 1 

3 0,6 0 0 0 0 0 0 0 0 0 

4 0,75 0 0,4 0 0 0 0 0 0 0 

5 0,6 0,942 0,6 0,5 0 0,942 0,942 0,942 0,942 0,942 

6 0,25 0,058 0,058 0,058 0 0 0,058 0,058 0,058 0,058 

7 0,6 0,942 0,6 0,5 0 1 0 1 1 1 

8 0,6 0,942 0,6 0,5 0 0,942 0,942 0 0,942 0,942 

9 0,5 0 0,4 0,5 0 0 0 0 0 0 

10 0,6 0 0,6 0,5 0 0 0 0 0 0 

 

Table 12. Matrix C* for Numerical Example 2, MultT 

 
1 2 3 4 5 6 7 8 9 10 

1 0 0 0 0 0 0 0 0 0 0 

2 0,375 0 0,6 0,5 0 1 1 1 1 1 

3 0,6 0 0 0 0 0 0 0 0 0 

4 0,75 0 0,4 0 0 0 0 0 0 0 

5 0,375 0,942 0,6 0,5 0 0,942 0,942 0,942 0,942 0,942 

6 0,25 0,058 0,035 0,029 0 0 0,058 0,058 0,058 0,058 

7 0,375 0,942 0,6 0,5 0 1 0 1 1 1 

8 0,353 0,942 0,565 0,471 0 0,942 0,942 0 0,942 0,942 

9 0,375 0 0,4 0,5 0 0 0 0 0 0 

10 0,375 0 0,6 0,5 0 0 0 0 0 0 
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Table 13. Matrix C* for Numerical Example 2, MaxT 

 
1 2 3 4 5 6 7 8 9 10 

1 0 0 0 0 0 0 0 0 0 0 

2 0,5 0 0,6 0,5 0 1 1 1 1 1 

3 0,6 0 0 0 0 0 0 0 0 0 

4 0,75 0 0,4 0 0 0 0 0 0 0 

5 0,5 0,942 0,6 0,5 0 0,942 0,942 0,942 0,942 0,942 

6 0,25 0,058 0,058 0,058 0 0 0,058 0,058 0,058 0,058 

7 0,5 0,942 0,6 0,5 0 1 0 1 1 1 

8 0,5 0,942 0,6 0,5 0 0,942 0,942 0 0,942 0,942 

9 0,5 0 0,4 0,5 0 0 0 0 0 0 

10 0,5 0 0,6 0,5 0 0 0 0 0 0 

 

After we constructed the matrix of node-to-node influence 𝐶∗(𝑠) we can 

estimate the influence of a node within the whole graph. The aggregation of 

a matrix to a single vector of the influence 𝑐(𝑠) depends on the problem 

statement. Generally, we can use some pre-defined attributes of nodes or any 

other factors. For a network of influence we can, for example, estimate a 

relative independence of a node on other nodes, i.e. a weight of a node is 

higher if a smaller number of nodes influences this node with respect to the 

total influence through a graph. 

For Numerical Example 2 we can use the following aggregation ap-

proach: a weight of node i is its relative influence on other nodes with re-

spect to the whole graph influence, i.e.  

𝑢
!
=

!!"!

!!"!!

. 

 

The higher the influence of a node on other nodes the higher its weight 

is. Then the vector of influence 𝑐(𝑠) is 

𝑐 𝑠 = 𝐶
∗
∙ 𝑢, 

where 𝑢 = (𝑢!,… , 𝑢!"). 

For Numeric Example 2 vector u is calculated in Table 14. 
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Table 14. Individual weights of nodes 

Node, i 1 2 3 4 5 6 7 8 9 10 

Weight, u
i
 0,17 0,079 0,054 0,145 0,115 0,017 0,254 0,054 0,05 0,061 

In Table 15 we compare results that are obtained by proposed approaches 

(5 versions). 

Table 15. Aggregated values for Numerical Example 2 

Node 
LRIC 

SumPaths MaxPath MaxMin MultT MaxT 

1 0 0 0 0 0 

2 0,806 0,610 0,644 0,606 0,627 

3 0,102 0,102 0,102 0,102 0,102 

4 0,190 0,149 0,149 0,149 0,149 

5 0,855 0,655 0,693 0,654 0,676 

6 0,112 0,078 0,083 0,078 0,083 

7 0,631 0,426 0,464 0,425 0,447 

8 0,804 0,598 0,642 0,594 0,625 

9 0,230 0,158 0,179 0,158 0,179 

10 0,261 0,169 0,207 0,169 0,190 

 

We can see that all versions of the LRIC index detect nodes 2, 5, 8 as the 

most influential.  

 

3.2. s-long-range interactions index based on simulations 

The second approach of key node detection by s-LRIC index is based on 

simulations. The idea of this method is as follows: suppose that we unite 

some group of nodes and influence other nodes by this group; some influ-

enced nodes join the first group with respect  to their thresholds; the expand-

ed group again influences the rest of nodes and some of them join this ex-

panded group. We continue this procedure step by step until all nodes join 

the first group or there are no more nodes that are affected by final expanded 

group. Additionally, we can limit the number of steps with some parameter s 

and we can stop the procedure when we reach this limit. On the next stage, 

we unite another group of nodes and follow their effect of the influence on 

other nodes. When we study all groups that can be chosen on the first step, 

for each node we summarize the information about nodes that joined the 
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first group afterwards due to the fact that this node was in the first group. 

Thus, we get node-to-node influences and this information can be aggregat-

ed into a single vector.  

Formally, we have the network-graph 𝐺 𝑉,𝐸 , where 𝑉 = {1,… , 𝑛} is a 

set of nodes, |𝑉| = 𝑁, 𝐸 = 𝑖, 𝑗 ,      𝑖, 𝑗 ∈ 𝑉  is a set of weighted edges, and 

𝑤!" is a weight of edge 𝑖, 𝑗 . Let us illustrate the approach using Numerical 

Example 2. 

Firstly, we construct matrix 𝐶 = [𝑐!"] with respect to weights 𝑤!"  and 

predefined thresholds 𝑞! (a level of absolute influence) 

𝑐!" = min
𝑤!"

𝑞!
, 1                                                                                             (9) 

Matrix C indicates the share of the influence of node j on node i with re-

spect to threshold 𝑞! . For Numerical Example 2 consider thresholds 

𝑞! = 50%   of the total influence on node i. A graph of relative influences for 

Numerical Example 2 is provided on Fig. 7. 

Here we introduce a concept of minimal direct critical groups of node i. 

Definition 4. A group of neighbors of node i 𝛺! 𝑖 ⊆ 𝑁! is a minimal di-

rect critical group if 𝑐!"!∈!! !
≥ 1and ∀𝑘 ∈ 𝛺! 𝑖 𝑐!"!∈!! ! \{!} < 1, i.e. 

according to Definition 2 all members are pivotal. 

In Table 16 nodes’ neighbors and minimal direct critical groups are rep-

resented for Numerical Example 2. 

Now we activate some group of nodes to follow its effect on the graph. It 

is unreasonable to choose a group that does not contain any minimal direct 

critical group, because such groups are not influential. For instance, for Nu-

merical Example 2 it is useless to choose nodes 1, 3 and 10 because they do 

not influence other nodes enough (with respect to thresholds). Contrary, if 

we choose nodes 2 and 7, then they influence nodes 6, 8, 9, 10 (because of 

node 7); expanded group {2, 6, 7, 8, 9, 10} influences node 4 (because of 

critical groups {7, 9}, {7, 10} or {9, 10}). A new expanded group {2, 4, 6, 

7, 8, 9, 10} influences node 1 (because of the critical groups {2, 4} or {4, 

6}) and node 3 (because of the critical group {4, 10}). Final expanded group 

{1, 2, 3, 4, 6, 7, 8, 9, 10} does not influences the rest node 5 and we stop at 

this stage. Hence, nodes 2 and 7 explicitly affect all nodes except node 5. 
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However, if we limit the number of steps with parameter s and assume s = 2 

then nodes 2 and 7 will not influence nodes 1 and 3 either. 

 
Fig. 7. Influence intensities for Numerical Example 2 

Table 16. Minimal direct critical groups for Numerical Example 2 

Node, i Neighbors, 𝑵𝒊 Minimal direct critical groups, 𝜴𝒅
𝒊  

1 {2, 3, 4, 6} {2, 3}, {2, 4}, {3, 4}, {4, 6} 

2 {5, 6, 8} {5, 6}, {5, 8}, {6, 8} 

3 {4, 5, 9, 10} {4, 5}, {4, 10}, {5, 9}, {5, 10} 

4 {5, 7, 9, 10} 
{5, 7}, {5, 9}, {5, 10}, {7, 9}, {7, 10}, 

{9, 10} 

5 ∅ ∅ 

6 {4, 7} {7} 

7 {1, 2, 3} {2} 

8 {1, 4, 7} {7} 

9 {1, 7} {7} 

10 {1, 7} {7} 
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Let 𝐾!
!
  be some group of nodes that are chosen on the first step, and 𝐾!

! 

be a final expanded group that is obtained from 𝐾!
!. When we consider all 

possible 𝐾!
! (in the worst case we need to consider 2! − 2 groups of nodes) 

we can form resulting matrix of node-to-node influence 𝐶∗ 𝑠 = 𝑐!"
∗
𝑠  

where 

𝑐!"
∗
𝑠 =

𝑙:  𝑗   ∈ 𝐾!
!|  𝑖 ∈ 𝐾!

!
, 𝑖 ∈ 𝛺!(𝑗)

𝑙:  𝑖 ∈ 𝐾
!

!
− 𝑙:  𝑖, 𝑗 ∈ 𝐾

!

!
.                                              (10) 

 

In other words, the influence of node i on node j is the number of times 

node j hits into final broaden group when node i is chosen on the first step 

and node i is contained in minimal direct critical group of node j divided by 

the number of times node i is chosen on the first step but not together with 

node j. Apparently, if 𝑖 ∉ 𝛺!(𝑗) then 𝑐!"
∗
𝑠 = 0. 

Note that if we consider all possible groups on the first step then each 

node is met there in a half of the instances, and any pair of nodes is met in a 

quarter of the instances. Hence, denominator in formula (10) is equal to 

!
!
!!

!
−

!
!
!!

!
= 2

!!!
− 2

!!!
− 2

!!. 

The interpretation of the matrix 𝐶∗(𝑠) is straightforward. If value 𝑐!"
∗  is 

close to 1 then node i tremendously influences node j. On the contrary, if 

value 𝑐!"
∗  is close to 0 then node i poorly influences node j. Again, we can 

aggregate node-to-node influences to a single vector as was described above. 

The results of simulation approach for Numerical Example 2 are present-

ed in Table 17. 

 

Table 17. Simulations results for Numerical Example 2 

Node, i 1 2 3 4 5 6 7 8 9 10 

LRIC 

(Simul) 
0 0,239 0,01 0,047 0,16 0,119 0,187 0,124 0,053 0,062 

 

Simulations detect nodes 2, 5 and 7 as the most influential in the graph. 

We can see that this approach detects pivotal node 7 that is chosen by most 

of the classical measures and two implicit influential nodes 2 and 5 that are 

chosen by all versions of LRIC index. 
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One of the key advantages of this approach is that it accurately takes into 

account all chain reactions of a graph, so-called domino or contagion effect. 

On the other hand, as this method is highly memory consuming (in the 

worst case we need to consider all combinations) this brings up the question 

of the limitation of considered combinations, i.e. which node’s combinations 

should be chosen on the first stage and which ones can be ignored. Usually, 

in most real-life situations the formation of nodes groups has some probabil-

ity; this means that depending on the problem statement it is not always 

practical to consider combinations with a low probability to emerge.  

If there are no natural limitations on the number of combinations then it 

is reasonable to introduce some general limitations, for example, we can 

limit the size of 𝐾!
! with some predefined parameter 𝑛!, i.e. 𝐾!

!
≤ 𝑛!; or 

we can set limits on the number of combinations and chain reactions with 

parameter s, etc. 

Let us compare our results with classical centrality measures and SRIC 

index.  In Table 18 classical centrality measures and SRIC index are calcu-

lated for Numerical Example 2. 

 

Table 18. Classical centrality measures and SRIC index for Numerical 

Example 2 

Cent- 

rality 

 

Node 

𝑪
𝒘  𝒊𝒏!𝒅𝒆𝒈 𝑪𝒘  𝒐𝒖𝒕!𝒅𝒆𝒈 𝑪𝒘  𝒅𝒆𝒈 𝑪𝒘  𝒅𝒆𝒈!𝒅𝒊𝒇𝒇 𝑪𝒃𝒕𝒘 𝑪

𝒄𝒍 (*) 𝑪
𝑷𝒂𝒈𝒆𝑹𝒂𝒏𝒌 𝑪

𝒆𝒊𝒈 𝑪
𝑩𝒐𝒏𝒂𝒄𝒊𝒄𝒉 SRIC 

1 1000 1530 2530 530 11 0,00069 0,176 0,826 –1,034 0 

2 1000 710 1710 –290 18 0,00124 0,105 0,565 –1,034 0,315 

3 1000 490 1490 –510 1 0,00040 0,109 0,494 –1,034 0,041 

4 1000 1305 2305 305 11 0,00060 0,109 0,717 –1,034 0,123 

5 0 1035 1035 1035 0 0,00103 0,015 0,303 –1,330 0,102 

6 1000 155 1155 –845 0 0,00025 0,077 0,494 –0,887 0,009 

7 1000 2290 3290 1290 22 0,00117 0,144 1 –1,182 0,264 

8 1000 485 1485 –515 9 0,00099 0,084 0,586 –0,443 0,043 

9 1000 450 1450 –550 1,5 0,00030 0,090 0,601 –0,887 0,042 

10 1000 550 1550 –450 6,5 0,00031 0,090 0,626 –0,887 0,059 

 

(*) Closeness centrality: inverse average maximal outflow ⇒ low values 

are more significant. 
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We can see that classical centrality measures detect nodes 1, 4, 7 as the 

most influential while SRIC index detects nodes 2, 4, 7. None of these indi-

ces (except Bonacich) indicate node 8 as the influential one, however it af-

fects node 2 very strong which in its turn influences nodes 1 and 7. Moreo-

ver, node 5, which is not considered by classical measures and SRIC index, 

influences nodes 2, 3 and 4, which are very influential too. Additionally, 

node 1 does not play a significant role in the graph because its outgoing in-

tensities are relatively small. Hence, classical centrality measures are not 

very appropriate for the influence estimation; SRIC index can be applied to 

small graphs with short paths between nodes (due to the fact that SRIC in-

dex consider only one layer between nodes). LRIC index can identify hidden 

nodes that are very important in terms of the influence. 

In order to compare rankings, we used a correlation analysis. Since the 

position in the ranking is a rank variable, to assess the consistency of differ-

ent orderings other than traditional Pearson coefficient rank correlation coef-

ficients should be used. In our work it is applied the idea of Kendall metrics 

[Kendall, 1970], that counts the number of pairwise disagreements between 

two ranking lists. We have used Goodman and Kruskal γ rank coefficient as 

well, which shows the similarity of the orderings of the data when ranked by 

each of the quantities [Goodman, Kruskal, 1954]. This coefficient looks as 

𝛾 =
!!!!!

!!!!!

, where 𝑁! is the number of pairs of cases ranked in the same or-

der on both variables (number of concordant pairs) and 𝑁! is the number of 

pairs of cases ranked in reversed order on both variables (number of re-

versed pairs). 

The results are provided below (see Tables 22–23). 

 

4. Computational complexity of centrality measures 

We will discuss here a computational complexity of classical and pro-

posed centrality measures. An important issue of classical centrality 

measures is the scope of information they aggregate: the more information 

about nodes they consider, the more difficult it is to calculate them for large 

networks.  
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Since in-degree, out-degree and degree centralities calculate the number 

of edges for each node, the computational complexity of these measures is 

linear. In order to calculate the closeness and betweenness centralitities, the 

shortest paths between all node-pairs should be considered (total number is 

|𝑉| ∙ ( 𝑉 − 1)). The fastest known single-source shortest-path algorithm is 

the Dijkstra's algorithm proposed in [Dijkstra, 1959] that has a worst case 

performance equal to 𝑂( 𝐸 + |𝑉| ∙ log   |𝑉|). Thus, closeness and between-

ness centralities are more difficult to calculate for large networks since they 

require a polynomial time. As for the eigenvector centrality and its counter-

parts, these measures have a polynomial computational complexity since 

they require to compute the eigenvector of adjacency matrix A. However, 

many approximate algorithms with a low computational complexity that 

implement the main idea of these centrality measures were proposed and 

integrated in standard software packages.  

As for the Myerson value, this measure requires to consider all subgraphs 

(the total number is 2|!| − 1) which is impossible to do for a large number 

of nodes. There have been developed some approximate algorithms to calcu-

late the Shapley value (which provides a basis for the Myerson value); in 

[Fatima et al., 2008] there is an extended benchmark study of some approx-

imation methods. 

As to proposed models, SRIC and LRIC consider all possible pivotal 

groups for each node the total number of which in the worst case is 

2
|!|!!

− 1. Distant interactions require the enumeration of all simple paths 

in a graph, which can reach more than |𝑉|! operating cycles. However, some 

simplifications can be introduced, as the limitation of the size of groups and 

path length. Simulations require the consideration of all subgroups of nodes; 

however, it is not rational to enumerate all of them, because not all sub-

groups are influential. 

The calculation of classical centrality measures was performed in R 3.2.2 

software package with the use of embedded functions (“igraph” package). 

The calculation of proposed measures was produced with the help of 

MATLAB R2015. 
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5. Conclusion 

Network analysis plays a significant role in many problem areas. When 

we study different relationships between elements we often need to identify 

the most powerful participants, or in terms of graph theory, we need to de-

tect key nodes. 

We explored two approaches of the influence measure in a network-

graph. The key advantage of this approach with comparison to existing 

methods is that we consider long-distance connections as well as special 

attributes of nodes (in the form of thresholds) and group influence on nodes. 

This allows us to detect hidden key nodes: while classical measures detect 

explicit powerful nodes our methods also detect nodes that influence other 

nodes in groups or by long-range interactions.  

Another important aspect is that our approach also allow us to estimate 

the intensity of influence of nodes: due to the fact that on one of the stages 

of the calculation we get node-to-node influences we can not only estimate 

the level of influence on other nodes for each node but also the level of in-

fluence of all nodes on each node. In other words, the methods admit many 

ways of aggregation which lead to different interpretations of nodes power. 

The first approach is based on the analysis of all simple paths between all 

pairs of nodes in a graph; such methodology allows us to control all chan-

nels of influence. As a result, we obtain 5 versions of long-range interaction 

index (LRIC index). The second approach is based on the idea of simula-

tions: we sequentially consider different influential groups and track the 

changes in a graph. This allows us to consider all possible scenarios of 

nodes cooperation. 

As our methods are complex for the calculation we suggest some natural 

limitations as the length of considered paths, the size of groups, etc. 

We demonstrate the consistency of our approaches on some numerical 

examples which confirm that existing measures do not detect hidden nodes 

but LRIC indices and simulations are able to identify them. 

The developed new centrality measures can be successfully applied to 

many real life processes. 
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