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Abstract

This paper aims at introducing a novel measure of regional centrality in the con-

text of R&D networks. We first demonstrate some substantial problems of SNA-based

centrality measures to cope with regional R&D networks in a meaningful way. Then,

we introduce a new measurement approach of regional network centrality based on the

concept of inter-regional bridging paths (indirect connections at the regional level). We

show that the formal definition of our regional bridging centrality measure can be ex-

pressed in terms of three simple components: the participation intensity of a region

in inter-regional R&D collaborations, the relative outward orientation in terms of all

established links and the diversification of R&D collaborations among partner regions.

We illustrate the measure and its behaviour with respect to other conventional central-

ity measures by using the example of the European co-patent network at the NUTS2

level.
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1 Introduction

Today it is widely recognized that external knowledge sources accessible via networks and

collaborations in research and development (R&D) have become an essential component for

innovating organisations (see e.g. Powell and Grodal, 2005; Wuchty et al., 2007). Up to now,

most studies have emphasized the crucial role of the ability to adopt external knowledge in

form of learning capabilities, such as technical or methodological skills, in order to apply the

externally tapped knowledge in the organisational innovation process. However, recently also

the importance of a particular relative network positioning to access external knowledge has

been highlighted and attracted increasing attention (see e.g. Ahuja, 2000; Owen-Smith and

Powell, 2004; Gilsing et al., 2008). It is assumed that not only the ability to learn, but also

a favourable position for a more efficient access to external knowledge is crucial.

From a network theoretical perspective, such a favorable positioning is referred to as cent-

rality of network vertices (Borgatti, 2005), where – in terms of R&D – these vertices represent

knowledge producing actors interlinked via edges representing knowledge flows. Actors show-

ing a more central network position will more likely benefit from network advantages. This

argument has been taken up at the regional level in recent regional science literature, where

regions – constituting the aggregate of its knowledge producing organisations – are treated

as relevant units of observation. In this context, the notion of inter-regional R&D collabor-

ation networks has come into use (see e.g. Autant-Bernard et al., 2007) where regions are

the network nodes representing distinct pools of knowledge, which are assumed to get into

motion via the R&D relations between these regions, constituting the edges in the network.

Such a network representation has developed to an analytical vehicle that has been applied

to investigate the geography of R&D networks (Scherngell, 2013), in particular how knowledge

diffuses between regions (see e.g. Maggioni et al., 2007; Ponds et al., 2010). Compared to

studies focusing on the structural properties of network linkages established within actors

in single region (see e.g. Fleming et al., 2007a; Giuliani, 2007; Crespo et al., 2014; Ter Wal,

2014), these studies mainly investigate the structure of linkages in a multi-regional system.

Given this recent focus on regional R&D networks, network analytic techniques have been

increasingly applied at the regional level in order to characterize the inter-regional connec-

tedness of a region (see e.g. Maggioni et al., 2007; Sebestén and Varga, 2013; Wanzenböck

et al., 2014). For observing a region’s centrality, up to now the most common analytical ap-

proaches from Social Network Analysis (SNA) have been utilized, such as degree centrality

or betweenness centrality (Wanzenböck et al. 2014; 2015). However, these studies somehow

neglect conceptual problems that arise for networks defined at the aggregate level of regions.

In particular, such problems are related with the loss of information regarding the structure

of network relations and with that, information on the real channels through which know-

ledge flows. In this context, the question of how to adequately reflect regions in weighted
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network structures such as R&D networks become even more important.

As we argue in this paper, the specific characteristics of regions – regarded as aggregate

units – have to be taken into account and reflected in some way when designing analytical

measurement approaches for regional centrality. Relevant questions in this context are (i)

how can we conceive the centrality of regions in a network that is composed of several research

actors in its underlying structure, and (ii) what are then the main building blocks that might

characterize the centrality of regions, in particular when we consider R&D networks?

This paper is one of the first that deals explicitly with the drawbacks and insufficiencies

related with conventional approaches to represent networks and measure centrality at the

level of regions. Against this background, the objective is to propose a new measurement

approach of regional centrality that is explicitly designed for aggregated networks at the

regional level, based on the concept of inter-regional bridging paths. Here a bridging path

is defined as an indirect connection between two regions via a third ‘bridging region’. From

a simple random matching process that models the collaborations among the micro-level

actors based on the information provided at the aggregated level, we derive a closed form

of the expected number of bridges between two regions stemming from a specific bridging

region. On this basis we are able to define a new measure of regional centrality that not only

depends on the number of links one region has, but also on the structure and intensity of its

cross-regional collaborations.

In its fundamentals, our measure of regional bridging centrality builds upon several network-

and knowledge-related arguments, referring to the relevance of bridging path between net-

work actors in light of diversified knowledge sourcing strategies and increasing need for tech-

nological recombinations (see e.g. Kogut and Zander, 1992; Fleming, 2001; Singh, 2005).

Moreover, the role of bridges between regions as mechanisms for network evolution and

inter-regional knowledge diffusion is addressed. We show how such a measure defined for

aggregated networks can be meaningfully related to the regional dimension. Our measure of

bridging centrality of a region can be easily interpreted as a function of (i) the participation

intensity of a region in inter-regional R&D collaborations, (ii) the relative outward orienta-

tion in terms of all established network links, and (iii) the diversification of network partner

regions and knowledge relations to them. Hence, it views network centrality as a multi-

dimensional problem, and integrates different region-specific aspects of the regional linking

structure that might only together determine the visibility and importance of regions in R&D

networks.

To illustrate our regional centrality measure we use a large-scale dataset on the European

co-patent network in the years 2006–2010 at the NUTS2 level. The comparative analysis with

three common SNA-based measures (degree, betweenness and eigenvector centrality) is based

on basic statistics on distribution and correlations between the four centrality measures ob-

served for the regional network. Despite striking similarities in correlations and distributional
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aspects on a more general level, the in-depth analysis of regional ranks reveals interesting

differences which emphasize the advantages of the regional bridging centrality measure, in

particular in terms of its interpretative power for region-level analyses.

The remainder of this study is structured as follows: Section 2 discusses in some detail

the conventional approaches to measure the centrality of regions in R&D networks. Section 3

introduces the concept of bridging paths, constituting the main essence of the measurement

approach proposed in this study, before Section 4 formally derives the bridging centrality

measure for regions. Section 5 shifts attention to the illustrative example, applying our

measure to the European co-patent network and comparing results with conventional meas-

ures, before Section 6 concludes with a summary of the main results and some ideas for future

research.

2 The conventional measurement approach

The notion of the centrality of regions in R&D networks has come into use just recently. A

rising body of literature deals with the distinct knowledge transmission channels than span

across regions, so-called global pipelines, and their role for the innovativeness and growth

performance of localities (see e.g. Bathelt et al., 2004; Giuliani and Bell, 2005; Trippl et al.,

2009; Balland et al., 2013; Morrison et al., 2013). It is argued that the knowledge creation

ability within a region depends not only on internal resources and capabilities but to a large

extent also on the ability of the region-specifc actors to efficiently access and integrate region-

external knowledge. Inter-regional R&D collaboration networks are regarded as effective

means in this regard with network links representing direct channels to a specific (region-

external) source of knowledge that actors otherwise would not have access to. Moreover,

the links in networks can also be seen as vehicles of information, for example information

on who would be a suitable and reliable partner to collaborate with, in particular across

regional borders (see e.g. Gulati and Gargiulo, 1999; Cassi and Plunket, 2015). Against this

background, need has been expressed to derive analytical approaches to measure a region’s

centrality in such networks, enabling the empirical researcher to characterize whether a region

has a favourable position in the network, whether it takes a specific – for instance ‘brokering’

– role from a global network perspective, or how a region’s network positioning changes over

time.

The concept of centrality originates from Social Network Analysis (SNA). It is used to

assign a value to each actor of a network, depending on their position within the network

(Wasserman and Faust, 1994). Most measures of network centrality have been developed for

their application on social networks, where the nodes of the network are clearly identified in

terms of individuals. Accordingly, the original meaning borne by the SNA centrality measures

as well as respective interpretations rely on the context of individuals and their social beha-
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viours. It is assumed that such individuals participate in social systems connecting them to

other individuals, whose relations comprise important influences on one another’s behaviours,

affecting actors’ perceptions, beliefs and actions through a variety of structural mechanisms

that are socially constructed by relations among them. In the context of centrality, the main

SNA assumptions are that direct contacts and more intensive interactions enable the actors

to dispose of better information, a greater awareness, and a higher propensity for influencing

or being influenced by others. Indirect relations through intermediaries may also bring ex-

posure to new ideas and access to useful resources that may be acquired through interactions

with others (Barber et al., 2011).

The traditional SNA centrality measures are directly derived from these assumptions.

If these measures focus only on the importance of direct connections they are referred to

as local centrality measures (e.g. the degree centrality just counts the number of direct

links). In contrast, global measures, such as betweenness centrality, also take account of

indirect links and structural properties of the network (see Wasserman and Faust, 1994,

for an overview and definition of various centrality measures). Empirical works focusing on

regional centrality usually apply these conventional measures – derived in a SNA context

with the specific assumptions discussed above – to regions. Hence, the underlying system of

interaction, i.e. the micro structure consisting of actors which actually ‘take the decisions’

on how to behave in the network, is more or less neglected.

Thus, the conventional measurement approach of calculating regional centrality based on

a regional R&D network raises important conceptual issues that should be tackled. First,

it implies that every actor within a region would homogeneously benefit from the R&D

connections to other regions, irrespective of who establishes the relations and the strength of

these relations. Such an approach is based on the assumption that region-internal knowledge

flows are ‘in the air’ (Breschi and Lissoni, 2001). However, this assumption appears heroic

and can hardly be made; it remains unclear how the actors located in a central region benefit

from the region’s centrality. Second, a specific conceptual problem refers to global centrality

measures, for instance in the case of regional betweenness centrality. A region with a high

betweenness, i.e. being on many shortest paths, assumes that this translates into all its actors

being on shortest paths, as if they were only one entity. Also this assumption does not hold.

Some recent empirical works have recognized this problem and have tried to overcome

it by putting higher emphasis on the underlying micro structure of regional R&D networks.

For example, Wanzenböck et al. (2015) define the centrality of a region as the sum of the

centrality of its actors. However, the approach of aggregating micro-level network centralities

may be also flawed, with considerable problems stemming from the links occurring internally

to regions. Consider for instance a case where a region shows a very dense structure of

internal connections but no link to any other region (see Figure C.1 in appendix). In this

case, the region can have a high value of centrality (due to the high centrality of the actors in
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the region) despite being isolated from an inter-regional perspective. This is fundamentally

problematic since a measure of regional centrality should not be able to assign a high rank

to a region which have no external links. The centrality of a region should clearly relate

to its position within the inter-regional network. On the other hand, if one cuts all internal

linkages, regions appear to be equivalent despite considerable differences in the region-internal

structure (see Figure C.2 in appendix).

Given these considerations, there is a need for developing alternative centrality measures

applicable for regional R&D networks and resting on more robust conceptual grounds. In

what follows, we provide a first attempt for the development of novel measurement approaches

that explicitly address the conceptual problems discussed above by taking into account the

underlying micro structure of regional R&D networks.

3 The concept of bridging paths

There is a strong need for overcoming the duality in analysing R&D networks of regions

concerning the micro level which encompasses the actors participating in R&D collaborations,

and the aggregate, i.e. regional, level where the analysis focuses on. As has been discussed in

the previous section, major problems arise in applying and interpreting conventional SNA-

based centrality measures. The purpose of this section is to provide a new concept that

is meaningful in the context of inter-regional R&D networks. We introduce the notion of

‘bridging path’ denoting a form of indirect connection between regions, i.e. regions are

indirectly connected in the network thanks to their micro-level actors. We first define this

concept before providing an approach to derive the expected number of bridging paths from

aggregate flows of R&D interactions. The expected number of bridging paths between regions

will be the major building block of the regional centrality measure we introduce in the next

section.

For introducing the bridging path concept, consider a network where the nodes are the

regions and the connections between the regions represent the R&D interactions between

their actors. This represents a weighted network where we define gij as the number of R&D

interactions (i.e. micro-level links) between regions i and j. Further, each micro-level link

between two regions is denoted by ya
ij , where ya

ij represents the ath link between regions i

and j with a ∈ {1, . . . ,gij}. A bridging path is then regarded as a set of two links at the

micro level connecting three actors from three different regions. Speaking in social network

analytical terms, the micro-level actor in one region act as a ‘broker’ (Burt, 1992) for two

other not directly connected actors; he/she has a bridging role in the network of regions

linking indirectly the micro-level actors of two other regions. This triangulation between

actors located in three different regions leads to the notion of an inter-regional bridging path.

Formally, a bridging path is defined as a set of two links from two different regions, say i and
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Figure 1: Illustration of the notion of bridging path
Notes: The figure depicts three bridging paths formed by the following pairs of links: (y2

ik,y1

jk), (y1

ij ,y2

jk) and
(y2

ij ,y3

jk). So the regional dyads (j,k), (i,k) and (i, j) have respectively 0, 2 and 1 bridging paths stemming
from regions i, j and k, respectively.

j, with a third one, say k, so that the actors from i and j are both connected to the same

actor in k. This means that a pair of links (ya
ik,yb

jk) forms a bridging path if, and only if, ya
ik

and yb
jk are connected to the same actor in region k.

This notion is depicted by Figure 1 which represents a regional network of three regions.

In this figure, the pair of links (y2
ik,y1

jk) is a bridging path between regions i and j stemming

from k because the actor from k maintains both links y2
ik and y1

jk. Although both regions

j and k do have links with region i, there is no bridging path between them because the

actors from i of the links y1
ik and y2

ik are neither connected to y1
ij , y2

ij nor y3
ij . Hence, region i

provide not any bridging path between regions j and k in this set-up. We see that the notion

of bridging path is about indirect connections. Accordingly, the region with most bridging

paths is region j, as it provides two bridging paths between regions i and k.

Different strands in the literature dealing with the geography of R&D networks and

knowledge diffusion deliver arguments of why inter-regional bridging paths are important.

These arguments may be related to both the knowledge creation performance of individual

regions and the diffusion of knowledge through network evolution in an inter-regional context.

For regions, a high number of bridging paths implies a more open positioning in the inter-

regional network, similar to a structural hole positioning as brought forward in SNA theory

(Burt, 2005). In contrast to closed and dense network structures, such a bridging position

between other regions can be related to the access to a more diversified knowledge pool. It is

assumed that the sources from which the actors draw their knowledge will have an impact on
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their ability to generate innovations, and knowledge flowing through bridging path is more

likely heterogeneous and non-redundant. Hence, an inter-regional bridging path might be

important for a region as it provides greater opportunities that, on the one hand, new ideas

and information from network partners can flow faster into the region through short path

length (Fleming et al., 2007a), and on the other hand, the knowledge already existing in the

network can be recombined to develop new ideas and applications (see e.g. Kogut and Zander,

1992; Cassiman and Veugelers, 2006). Studies have confirmed in this context that radical

innovations are indeed more often the result of different sources and a high diversity in (local

and non-local) knowledge linkages (see e.g. Trippl et al., 2009; Fitjar and Rodriguez-Pose,

2011; Fitjar and Huber, 2015). However, the degree of how an entire region might benefit

from its portfolio of global pipelines, i.e. the diversity of the knowledge pool, depends on

the internal capacities for exploiting the external knowledge brought into the regional system

and transferring it between the regional actors (see e.g. Giuliani, 2007; Morrison et al., 2013;

Wanzenböck and Piribauer, 2015).1

Furthermore, there is an increasing body of literature on R&D networks that place the

duality of local and non-local network linkages in light of the the technological regime and the

different stages of the knowledge value chain. Balland et al. (2013), for example, show that

global linkages in the GNSS industry are more often market-oriented relations predominantly

devoted to knowledge exploitation and technological diffusion at a higher stage of maturity of

the field. Ter Wal (2014) and Owen-Smith and Powell (2004) come to similar findings for the

field of biotechnology. Their investigations show that the spatial scale of R&D linkages highly

depends on the degree of codification and the nature of the knowledge being exchanged (basic

vs. industrial and mutually purposeful knowledge), and may be subject to change over the life

cycle of a distinct field (Ter Wal, 2014). Hence, similarly important from the perspective of

regional development is the ability of regional actors to identify technological transformations

and new market opportunities at an early stage. An open position in the network is assumed

to help a region in adapting oneself to such transformations, dealing with uncertainty or

preventing regional lock-in (Eisingerich et al., 2010). To this effect, inter-regional bridging

paths are assumed to contribute to a region’s enduring ability to produce new knowledge and

innovations.

From the perspective of inter-regional knowledge diffusion and integration, bridging paths

may also be of significance when we consider network formation and network evolution pro-

cesses across regions. Indeed, several recent studies have put at the forefront the consideration

1The effectiveness of inter-regional network linkages is further driven by other dimensions working at
the micro-level and assignable to the characteristics of organisations within a region, such as the distinct
institutional background and capabilities (Singh, 2005; Ponds et al., 2007) as well as the degree of cognitive
proximity of partners (Nooteboom et al., 2007). The individual knowledge base, the absorptive capacity and
the internal ressources of actors to manage a wider range of (explorative and exploitative) network ties might
further play a decisive role in how R&D linkages are established and in which way regional organisations can
benefit from them (Giuliani, 2007).
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that the structure of network links plays an important role in explaining future states of the

network (see e.g. Barabási et al., 2002; Jackson and Rogers, 2007). The network structure

is assumed to influence the level of knowledge being exchanged throughout the network, for

example between the core and the periphery (Cowan and Jonard, 2003, 2004; Fleming et al.,

2007a; Crespo et al., 2014), and with this, a region’s ability to activate new network ties

and participate in inter-regional knowledge diffusion. For instance, hubs in the network may

hold short path lengths to many other nodes in the network. If they form new collaboration

linkages across regional boundaries, i.e. pursue inter-regional bridging strategies, this could

accelerate knowledge diffusion across different network components and different regions.

Moreover, recent research in the context of R&D networks has shown that two actors

are more likely to collaborate together if they share a common collaborator (that is if they

are indirectly linked in the network, see e.g. Fafchamps et al., 2010). There are good reas-

ons to assume that bridging paths matter for the evolution of the whole network. They

create network proximity and opportunity for (triadic) closure. Indeed, if bridging paths

represent indirect connections between actors from different regions, then we can assume

that those regions which provide the bridging paths are in a position to facilitate the con-

nectivity between other regions in the network. Such inter-regional closure structures may

be of particular importance for the development of distinct technological networks, where

knowledge integration between different components is crucial and the need for intensified

and trust-based collaborations is high (Ter Wal, 2014). Bridging paths can thus be seen as

important for regions not only in the context of accessing a diversified knowledge pool, but

also in a network formation perspective. It helps establishing inter-regional R&D connections

and with that inter-regional integration of (technological) knowledge.

4 A new measure of regional centrality

By proposing the significance of the bridging path concept for measuring regional centrality

in regional R&D networks, the question of how this concept can be incorporated into regional

centrality measures arises at this point. Usually, empirical researchers focusing on regions

as units of observations face the problem that the underlying micro structure of the R&D

network may be either undefined or unobservable. Concerning the latter, one may consider

the example of co-patenting networks (see e.g. Lata et al., 2015), for which the relevant

actors are individual persons (inventors) that are hardly identifiable as homogeneous nodes

over time. Thus, we introduce a random matching process that will allow us to approximate

the underlying micro-structure by deriving an expected number of bridging paths (ENB)

between two regions.2

2This model is an adaptation of the one in Bergé (2016).
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To introduce and illustrate the random matching process, take the case of three regions,

A, B and C whose actors have R&D interactions. The term “link” will denote an R&D

interaction between two actors and is seen as a collaboration between these actors. The

random matching process uses only the aggregate flow of collaborations between A and B

and the one between B and C. It hinges on the assumption that any observed link with the

bridging region was randomly assigned to one actor from that region. Therefore, if there are

two actors in region B and one link with region A, we consider that each actor of B would

have a 50% chance to be connected with an actor from A. This assumption is very similar

to the one used by Bloom et al. (2013), who provide a measure of technological similarity

between firms’ patenting activity introducing a model which considers random encounters

between pairs of scientists. The random matching process reflects the ex post probability

to be matched, i.e. the probability that two actors from two particular regions have been

matched conditional on the structure of the inter-regional flows of collaborations. It simply

relates to the fact that the higher the number of R&D interactions with a particular region,

the higher the likelihood that an actor has collaborated with that region. The very intention

is to give a baseline for a micro-network that was likely to occur, with respect to what is

observable at the meso level.3

On this basis, it is now possible to derive the expected number of bridging paths stemming

from a given region by using directly the aggregate flows of collaborations occurring between

regions. First, denote by ni the number of actors active in R&D collaboration in region

i. Then the expected number of bridging paths, ENBi
jk, between the two regions j and k

stemming from the bridging region i along the random matching process is:4

ENBi
jk =

gijgik

ni
. (1)

The expression related by equation (1) simply states that the more connections two

regions, j and k, have with a third common region, i, the more likely they will have indirect

connections at the micro level (bridging paths) thanks to the actors located in i.

Based on this, we are able to construct a new measure of the centrality of regions in R&D

networks, denoted as regional bridging centrality (BC). The BC is defined as the number

of bridging paths stemming from a region between all dyads of the network. Formally, this

means that the BC of region i is equal to:

3Note that assuming that the matching mechanism is based on preferential attachment instead of being
purely random would not lead to any significant changes to the closed form of the expected number of bridging
paths. Indeed, the ENB under preferential attachment would merely be an inflation of the ENB under the
random matching (the theoretical details are provided in Appendix B of Bergé, 2016).

4The proof is given in Appendix A.1.
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BCi =
∑

j 6=i

∑

k 6=i,j

ENBi
jk, (2)

where ENBi
jk is defined by equation (1).

The interesting point of our measure is that its definition can be pretty much simplified

and interpreted meaningfully in a regional context. Assume that the number of actors (ni)

is proportional to the number of R&D interactions (gi);5 then equation (2) decomposes to

a notion of centrality of a region that entails a combination of three different components,

reflecting i) a region’s participation intensity, ii) a region’s relative outward orientation and

iii) a region’s diversification of network links (see Appendix A.2 for a formal proof). It is

defined as

BCi = ḡi si (1−hi) , (3)

where

ḡi is the number of outer collaborations (i.e. outer degree, that is ḡi = gi −gii which is the

total number of collaborations of i, noted gi, excluding the internal ones, noted gii). It

refers to a region’s participation intensity in inter-regional R&D collaborations, which

affects positively the centrality of the region. It is a general measure of how well a region

is embedded in the particular R&D network. Note that a region’s size will amplify the

probability of yielding more bridges between other regions. The participation intensity

could therefore be interpreted as a broad measure of the relational capacity of the

regional network nodes, which should be taken into account.

si is the share of outer collaborations with si = ḡi/gi. It can be related to the relative

outward orientation of all established network linkages, i.e. the relative degree of ex-

ternal R&D interactions. It refers to the openness of a region with respect to knowledge

sourcing strategies. Given the fact that the BC focuses on the capacity of one region to

link other regions, a high number of region-internal collaborations would have a negative

influence as it potentially reduces the number of actors connecting different regions.

hi refers to the Herfindahl-Hischman (HH) index of the distribution of i’s outer collabora-

tions defined as hi =
∑

j 6=i(gij/ḡi)
2 . The term 1−hi varies between 0 and 1 according

5Note that the assumption of proportionality between the number of actors and the number of R&D
interactions is not limiting. Indeed, to empirically assess whether this was the case, we used data on patents,
detailed in Section 5. Here we identify the R&D interactions as co-patents and the actors of the network as
the inventors. Further, we used a simple algorithm to identify the inventors (two inventors from the same
region are considered identical if they have the same first and last names). The results show a 98% correlation
between the number of inventors in a given region and the number of patents produced by this region.
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to the degree of diversification of network links to other regions, and indicates how a re-

gion’s R&D collaborations are distributed along its neighboring regions in the network.

In this case, the more the collaborations are concentrated, the less the region is central.

Concentration reduces the actors’ possibility to build bridges among different regions.

This also relates to the fact that the more the outer collaboration pool is diversified over

different regions, the more the region can draw its knowledge from different sources.

One especially promising property of the measure is that it takes account of the peculiar char-

acteristics of regional networks. Indeed, regional networks are characterised by the structure

of region-internal and region-external links and this feature cannot be dealt with adequately

by using a single (a-spatial) SNA centrality measure. A region’s ability to benefit from new

ties in the R&D network or exploit external knowledge sources via the links may be determ-

ined by all three components together. Outward orientation and higher diversification in

particular may help a region to develop and renew the regional knowledge base faster, or

prevent lock-in situations in certain technologies (see e.g. Breschi and Lenzi, 2015).

Finally, it is worth noting that the concept of bridging path is flexible and can easily

be adapted to fit other forms of network centrality, depending on the context that is to be

highlighted, as shown in Appendix B. In the analysis of R&D networks, for instance, it may

be important to account for different categories of network linkages, such as intra-national vs.

inter-national links when the R&D network under consideration crosses countries. However,

in the illustrative example that follows, we stick to the regional level demonstrating an

application of the original measure introduced in this section.

5 An illustrative example: an application to the European

co-patent network

Given the promising features of the regional bridging centrality (BC) measure as defined in

the previous section, an application to empirical regional R&D networks is required in order

to illustrate the behaviour of the measure as compared to the conventional ones. To this end,

we will employ co-patent data, comparing the regional BC with three other commonly used

centrality measures, that is the degree, the eigenvector and the betweenness centrality.6 We

use the European co-patent network, a network of inter- and intra-regional collaborations

in patent production observed at the regional level. A co-patent, that is a collaboration

6The degree is here calculated as the number of unique R&D interactions the actors of a region are involved
in. The eigenvector and the betweenness centrality are computed using the package igraph available in the
statistical software R. Both these two measures are based on the weighted regional co-patent network where
the nodes are the regions and where the linkages between any two regions are the number of patents co-
invented by actors from these two regions. Due to the nature of the network, we used the weighted version
of both the betweenness and the eigenvector centrality.
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issuing a patent grant, is a visible trail of a successful R&D collaboration and is defined as

an invention implying at least two inventors. This data are extracted from the REGPAT

database (Maraut et al., 2008) and consist of all patents applied for at the European patent

office (EPO) in the period 2006–2010.7 We make use of the information contained in each

patent record to build the co-patent network. Particularly, we use the address contained in

each inventor’s byline to map every patent to a set of NUTS2 regions. That is, the NUTS2

regions represent the place of residence of the inventors when the patent was applied for.8 The

number of inter-regional collaborations between two regions results from co-patents having

at least one inventor from each of these two regions. Collaborations occurring strictly within

the regions are counted as intra-regional patents.

The network consists of collaboration flows between 250 NUTS2 regions. This cross-

regional co-patenting network is based on a total of 171,451 patents, producing 121,036

inter-regional collaborations linking the 250 NUTS2 regions. As a starting point, the three

components of the BC are described by Table 1a. The participation intensity is on average

968, which means that the regions show on average 968 co-patent links to other regions

in the network. This is much higher than the median of 368, confirming the right-skewed

distribution of the number of co-patent links the individual regions hold to other regions.

More interestingly is the relative outward orientation. Here, the median is 73%, meaning

that for half of the regions, more than 73% of their patents are of inter-regional nature, being

invented with at least one partner outside the regions. Also diversification is relatively high,

with an average at 0.88 (as indicated by 1 minus the HH index), meaning that the co-patents

are rather distributed along several regions. Hence, the regions resort – on average – to a

rich portfolio of partner regions leading to a diversified structure of inter-regional knowledge

exchanges in patenting. In contrast to the participation intensity, the other two components,

the relative outward orientation and the structure, are slightly left skewed, and can be seen

as moderators of the scale of a region. Indeed, being a large region with a high network

participation intensity does not necessarily lead to a high centrality value, if either the share

of intra-regional collaborations is very large or inter-regional links are concentrated among

only a few regions.

Table 1 reports some statistics on the BC measure as compared to the conventional meas-

ures, and the correlations among them. Note that for the sake of comparison, all measures

7Note that the use of different time frames to build the dataset, such as 2004–2006 or 2008–2010, imply
no important differences on the results.

8We use the location of inventors to map the inter-regional collaboration network. This choice is made in
order to insure that a patent’s location matches the place where it has been produced. Indeed, an alternative
way to locate the patents would have been to use the applicants’ addresses. However, the applicant’s address
often refers to the firms headquarters, whose location is likely to be different to that of the place of production.
Therefore using applicants addresses to locate the patents would have yielded another network that could
have been interesting to analyse. Nevertheless, we here stick to inter-regional collaborations between “places
of production”, in line with the literature (see e.g. Fleming et al., 2007b).
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are normalized so that the highest value is one and the lowest zero.9 While there is no large

difference in the summary statistics provided by Table 1b, it can still be noted that the

eigenvector and the betweenness centrality are highly skewed, in contrast to the BC and the

degree centrality. Table 1c further shows that the correlation between the bridging centrality

and the other measures ranges from 61% to 93%. Those high levels are reassuring as they

show that the BC does not completely reorder the regional positioning. The difference in the

distribution of the four centrality measures is also illustrated by Figure 2 which reports the

cumulative distribution of each measure. The graph of the cumulative distributions depicts

two groups. On the one hand, the betweenness and the eigenvector centrality are close and

at the top of the other distributions. On the other hand, both the degree centrality and the

BC are at the bottom, with the distribution of the BC being above the distribution of the

degree. Overall, the differences are higher at the beginning of the distribution (below 0.50)

than at the end, where the distribution of all the centrality measures become much closer.

However, the differences with existing measurements are real and it is worthwhile to point

out the changes occurring to some particular regions. Moreover, it becomes obvious from

this basic statistics that the bridging centrality is a combination of three components. It

depends not only the scale of a region, like it might be the case for the degree centrality, or

the quality of partners, i.e. whether they are located at the very core of the network, as for

the eigenvector centrality. Therefore, it might be of particular interest how differently the

three components are distributed across the individual regions.

Table 2 represents the top 30 centralities ordered by the bridging centrality. We focus on

commenting the most salient differences. The ranking is clearly dominated by German regions

which rank highest for most measures.10 Interestingly, we find 13 German regions among the

15 best ranked regions for the bridging centrality.11 This results from the fact that they show

both a high participation intensity as well as high openness from an inter-regional perspective;

they show a high absolute as well as relative number of inter-regional co-patents. However,

the concentration tendency and high clustering of co-patenting activities at the national level

of Germany may point to the fact that economic linkages at the national level prevail. Likely

explanations are low language / cultural barriers as well as lower transaction costs. These

factors seem to promote the high regional bridging centrality in German regions.12

Another interesting case is the region of Île de France (FR10) which ranks at the 16th po-

9Formally, the transformation applied to each centrality measure is: (x−xmin)/(xmax −xmin).
10The spatial distribution of all four centrality measures over the EU is shown by Figure C.3 in appendix.
11Note that the performance of German regions is not merely driven by the fact that German NUTS2

regions are usually smaller geographical aggregates than NUTS2 regions in other EU countries, which could
drive up their number of inter-regional collaborations at the national level. Indeed, when we redo the analysis
taking German regions at the NUTS1 level while keeping other regions at the NUTS2 level, German regions
still trust the top of the rankings.

12The national versus international nature of collaborations and its effects on regional network centrality
might deserve further attention, and constitute an interesting route for the further development of the regional
bridging centrality measure. We thank an anonymous reviewer for raising this issue.
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Table 2: Centralities of the top 30 regions for the co-patent network, ranked by bridging
centrality.

NUTS2
Bridging

Centrality
Degree

Centrality
Eigenvector
Centrality

Betweenness
Centrality

value (rank) value (rank) value (rank) value (rank)
Karlsruhe DE12 1.00 ( 1) 0.87 ( 5) 1.00 ( 1) 0.22 (10)

Darmstadt DE71 0.93 ( 2) 0.88 ( 4) 0.82 ( 3) 0.45 ( 4)
Düsseldorf DEA1 0.84 ( 3) 0.82 ( 6) 0.68 ( 4) 0.22 ( 9)

Köln DEA2 0.76 ( 4) 0.73 ( 7) 0.63 ( 6) 0.33 ( 6)
Rheinhessen-Pfalz DEB3 0.73 ( 5) 0.64 ( 8) 0.85 ( 2) 0.13 (16)

Oberbayern DE21 0.63 ( 6) 0.96 ( 2) 0.42 ( 7) 1.00 ( 1)
Stuttgart DE11 0.59 ( 7) 0.95 ( 3) 0.64 ( 5) 0.37 ( 5)
Freiburg DE13 0.49 ( 8) 0.52 (10) 0.34 ( 9) 0.19 (11)

Northwestern Switzerland CH03 0.43 ( 9) 0.41 (14) 0.16 (17) 0.10 (24)
Arnsberg DEA5 0.42 (10) 0.39 (16) 0.33 (10) 0.06 (45)
Tübingen DE14 0.40 (11) 0.44 (12) 0.38 ( 8) 0.07 (36)

Berlin DE30 0.39 (12) 0.40 (15) 0.22 (14) 0.19 (12)
Münster DEA3 0.39 (13) 0.31 (20) 0.27 (11) 0.05 (49)

Mittelfranken DE25 0.37 (14) 0.43 (13) 0.20 (15) 0.11 (20)
Zurich CH04 0.35 (15) 0.34 (18) 0.12 (21) 0.08 (32)

Île de France FR10 0.34 (16) 1.00 ( 1) 0.08 (35) 0.93 ( 2)
Schwaben DE27 0.33 (17) 0.31 (21) 0.25 (12) 0.03 (71)

Brandenburg DE40 0.28 (18) 0.22 (30) 0.15 (18) 0.05 (54)
Hamburg DE60 0.27 (19) 0.23 (29) 0.09 (28) 0.05 (48)

Unterfranken DE26 0.27 (20) 0.27 (23) 0.25 (13) 0.10 (23)
Alsace FR42 0.26 (21) 0.23 (27) 0.13 (19) 0.09 (31)

Espace Mittelland CH02 0.26 (22) 0.27 (22) 0.08 (30) 0.05 (50)
Prov. Vlaams-Brabant BE24 0.25 (23) 0.20 (34) 0.04 (46) 0.10 (25)

Hannover DE92 0.24 (24) 0.25 (24) 0.12 (22) 0.05 (53)
Rhône-Alpes FR71 0.24 (25) 0.57 ( 9) 0.08 (34) 0.33 ( 7)

Koblenz DEB1 0.21 (26) 0.17 (46) 0.18 (16) 0.01 (96)
Lüneburg DE93 0.21 (27) 0.17 (42) 0.07 (37) 0.02 (79)

Eastern Switzerland CH05 0.21 (28) 0.19 (36) 0.07 (38) 0.01 (97)
Prov. Antwerpen BE21 0.20 (29) 0.18 (38) 0.05 (44) 0.09 (28)

Région de Bruxelles-Capitale
Brussels Hoofdstede

BE10 0.20 (30) 0.14 (59) 0.03 (55) 0.08 (34)
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Figure 2: Cumulative distributions of the centrality measures in log-log.

sition for the bridging centrality, while being ranked first with respect to its degree centrality.

We see that the measure of degree centrality may overstate its position in the inter-regional

co-patent network. Although the structure of the collaborations of FR10 with its partnering

regions is highly distributed (it has a low HH index of 0.04), this region is characterised by

a high number of internal collaborations (the outer share of collaborations is only 44%), and

thus, do not provide many bridging paths to the inter-regional R&D network. By contrast,

the eigenvector centrality may understate the importance of FR10; it ranks only 35 as it is

linked to a lesser extent to the core regions. For the same reason as for FR10, some regions

that are ranked high in the degree centrality end up much lower in the BC; i.e. they show

high embeddedness in the inter-regional R&D network but are less open and diversified in

the structure of their inter-regional collaboration, thus receiving lower values of bridging

centrality.

Following the criteria of openness and diversification, interesting is also the case of Brussels

(BE10) which ranks after the 55th place for the degree and the eigenvector centrality. With

the BC, BE10 ranks 30th, gaining at least 25 places compared to these measures. However,

these SNA-based centrality measures may underestimate its positioning in the inter-regional

co-patent network: due to its very high outward orientation (its outer share is 94%) and a

highly distributed structure of collaborations (it has a low HH index of 0.07), this region is
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likely to provide many bridging paths to the network and may therefore be an important

bridge for the whole network and for inter-regional knowledge diffusion.

Figure 3: The European co-patent network
Notes: Node size corresponds to the relative outward orientation of a region, line width corresponds to the
number of co-patents between two region.

Figure 3 illustrates the European co-patent network for the European NUTS2 regions,

with the node size corresponding to the relative outward orientation of a region. It confirms

the very dense network structure between core regions clustered in Germany, which hold

intensive connections among each other. From a regional perspective, the bridging centrality

is high for these regions, i.e. they yield high values for all three components, despite the

fact that most of the links are confined at the national level. Furthermore, we observe a

high relative outward orientation of some South and Eastern European regions. In terms of

established co-patent links they seem to be highly open, which could be explained by their

reliance on external collaborations and knowledge sources, as well as the lack of internal

collaboration structures. Nevertheless, inter-regional linkages are generally weak for these

regions.

6 Concluding remarks

The notion of centrality is ubiquitous in debates on the role of regions in R&D networks.

Quantitative approaches to measure regional centrality, however, are often based on micro-
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level centrality measures as introduced in Social Network Analysis (SNA). The empirical

analysis of regional networks requires accounting for the network structure originally defined

at the micro level or by the linkages between different actors, which often limits the usefulness

and conclusive identification of regions in the network. A further unavoidable problem relates

to the considerable loss of information regarding network structure and meaning when regions

are regarded only as aggregate units. In this study we address this micro / meso-level

duality in how we view regional networks and define a region’s structural network positioning,

questioning the conventional measurement approaches for region-level analysis.

By introducing the notion of regional bridging centrality we suggest a new approach

for assessing the centrality of regions in R&D networks; one that is able to cope with the

regional dimension in measuring the centrality. Based on the concept of bridging paths, i.e.

a set of two links connecting three actors in three different regions, we develop a measure of

centrality that satisfies the requirements of both R&D networks and region-level applications:

A bridging path between regions characterizes a situation where regional actors represent

bridges or brokers in the network of regions as they connect indirectly the actors located in

two other regions. Such a triangulation in regional networks, as we argue, is a key issue for

knowledge recombinations, the extension of a region’s knowledge base as well as inter-regional

knowledge diffusion.

We further show that centrality in terms of bridging centrality can be viewed as a func-

tion of (i) the participation intensity in inter-regional R&D collaborations, (ii) its openness

to other regions (i.e. the relative outward orientation of network links), and iii) the diver-

sification of network links to other regions. With these three components – which are both

intuitive and computationally simple – we argue that regional network centrality has to be

viewed from a multidimensional perspective. Only with such an integrative approach we can

achieve a better understanding of the role of certain regions in inter-regional R&D networks.

The comparative analysis with three standard SNA-centrality measures confirms the per-

formance and usefulness of our measure of regional bridging centrality. We chose the inter-

regional co-patent network for European NUTS2 regions as an illustrative example. Des-

pite observing similar patterns in basic statistics like correlations of the centralities or the

skewness, we were able to show striking and interesting differences in the structure of the

inter-regional co-patent linkages across regions. The results reveal that thinking only of the

degree of participation is not enough. Rather, the most central regions show simultaneously

high embeddedness, high relative outward orientation and high diversification of their net-

work links (e.g. Karlsruhe). In contrast, regions that may be strongly embedded (i.e. high

participation intensity) may show low openness or diversification of links, thus yielding lower

centrality values (e.g. Île de France). Hence, a region’s outward orientation and the diversi-

fication of its network links moderates the influence of regional scale on network centrality.

This is a major strength of the measure proposed in this study, and it paves the way for future
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studies to examine the role of certain regions in R&D networks. Viewing network positioning

of regions in terms of regional bridging centrality might further elevate our understanding

of which regions are the most central, show high visibility and at the same time are most

important for the network and the inter-regional diffusion of knowledge.

There is room for further improvements of the concept of bridging path. Indeed, a crucial

point for future research is to devote higher emphasis to the specific characteristics of R&D

network links and our concept could be used to integrate these aspects. For example, as

shown in Appendix B, extensions of the bridging centrality can include a focus on the bridging

actors that indirectly connect national actors with international ones. Focusing on technology

related issues, one could consider bridging actors who indirectly connect actors from one

specific technology to others from another technology.Therefore, depending on the R&D

links’ characteristics one wants to focus on, there are different ways to extend the notion of

regional network centrality by using the concept of bridging paths.

Furthermore, the bridging centrality measure may contribute to the development of a

multi-dimensional typology of regions, based on structural network criteria according to their

levels of embeddedness, openness and diversification of links in inter-regional networks. Such

a typology might enhance our understanding of how different the roles of regions in networks

might be, and how they contribute to the arrangement and evolution of the inter-regional

structure. Moreover, it seems natural that an application of the bridging centrality measure

on other types of knowledge networks according to different technological fields might reveal

interesting patterns of the most central network nodes. Hence, the measure of bridging

centrality is not limited to the context of R&D collaborations but may prove to be useful

also for the application in other types of network structures, such as inter-regional trade flows

or inter-regional economic value chains, also regarding their evolution over time.
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A Proofs

We here show how to derive the results of equations (1) and (3).

A.1 The expected number of bridging paths

This proof is taken from Bergé (2016), the agents are the actors of the R&D network. Let

La
ik to represent the ath link, a ∈ {1, . . . ,gik}, between agents from regions i and k, and Lb

jk

to be the bth link, b ∈
{

1, . . . ,gjk

}

, between agents from regions j and k. By definition, the

pair of links (La
ik,Lb

jk) forms a bridging path if and only if they are both connected to the

same agent in region k (as depicted by Figure 1). Let the Greek letter ι, ι ∈ {1, . . . ,nk}, to

designate agent ι from region k. Hence, from the random matching process, we know that the

probability that agent ι is connected to any incoming link is pι = 1/nk. Thus, the probability

that agent ι is connected to both links La
ik and Lb

jk is p2
ι = 1/n2

k. Then the pair (La
ik,Lb

jk) is a

bridging path with probability p =
∑nk

ι=1 p2
ι = 1/nk (summing over all the agents of region k,

because each agent can be connected to both links). Let Xab to be the binary random variable

relating the event that the pair of links (La
ik,Lb

jk) is a bridging path. This random variable

has value 1 with probability p and 0 otherwise, so that its mean is E(Xab) = p. The random

variable giving the number of bridging paths between regions i and j via region k is then the

sum of all variables Xab, a and b ranging over {1, . . . ,gik} and
{

1, . . . ,gjk

}

, that is ranging

over all possible bridging paths. It follows that the expected number of bridging paths is

ENBk
ij = E(

∑gik
a=1

∑gjk

b=1
Xab). From the property of the mean operator, it can be rewritten as:

ENBk
ij =

∑gik
a=1

∑gjk

b=1
E(Xab) =

∑gik
a=1

∑gjk

b=1
p =

∑gik
a=1

∑gjk

b=1
(1/nk) = (gikgjk)/nk. �
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A.2 The Bridging Centrality

Assume that the number of actors of region i,ni, and the number of R&D interactions of that

region, gi, are proportional so that ni = αgi. then the bridging centrality can be rewritten

as:

BCi =
∑

j∈{Ω/i}

∑

k∈{Ω/{i,j}} ENBi
jk =

∑

j∈{Ω/i}

∑

k∈{Ω/{i,j}}

gijgik

αgi

= 1

α
1

gi

∑

j∈{Ω/i}

[

gij
∑

k∈{Ω/{i,j}} gik

]

=
1

α

1

gi

∑

j∈{Ω/i}

gij (ḡi −gij)

= 1

α
ḡ2

i

gi
− 1

gi

∑

j∈{Ω/i} g2
ij =

1

α

ḡ2
i

gi



1−
∑

j∈{Ω/i}

(

gij

ḡi

)2





= 1

α ḡisi (1−hi)

Further, as the α is common to all regions, we lose no generality to setting it to α = 1.

Which yields the result. 2

B Extensions using bridging paths

In this section we show how the concept of bridging path can be used to create other forms

of network centrality. We first introduce one possible extension in general terms and then

provide two examples.

General definition. Consider the general case in which regions, which are the nodes of the

network, can belong to different categories (think to countries for instance). Let Ci denote

the category of node i. By definition, nodes i and j are of the same category only if Ci = Cj .

Depending on the context, it can be interesting to assess how much a region provides bridging

paths between the nodes of its category and nodes of other categories.Then the number of

bridging paths that node i provides between the two kind of categories, noted BCsubset
i , can

be simply written as:13

BCsubset
i =

∑

j 6= i

Cj = Ci

∑

k 6= i

Ck 6= Ci

ENBi
jk =

g∇
i g∆

i

gi
, (4)

where g∇
i represents the number of connections between node i and the other nodes of its

category, and g∆
i connections between i and all other nodes that are not of its category. This

13This result can be obtained using simple rewritings as in Appendix A.2.
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measure is significantly different from the Bridging centrality of Section 4 since here only

bridging paths between a subset of all pairs of nodes are considered: the ones that are of

different categories.

Examples. In the context of the European research area, regions that are connected to both

i) other national regions and ii) international ones can be of particular importance. In this

context, the natural categories are the countries to which the regions belong. The measure

of centrality defined by Equation (4) then represents the expected number of bridging paths

stemming from the central region between its national collaborators and its international

ones.

Another illustration relates to organizations, when they are considered to be the nodes

of the network. On could differentiate two kind of actors (or categories): public and private.

This dichotomy can allow to have a form of centrality reflecting the idea of who is the most

central in terms of providing bridging paths between public and private institutions, which

is the measure defined in Equation (4).

C Figures

See figures C.1, C.2 and C.3.

Figure C.1: Illustration of a regional network where a region has a strong internal structure
yet no link with the outside.
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Figure C.2: Sample of a regional network. Illustration of two regions with external links,
differentiated with respect to their internal links.
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Figure C.3: Distribution of the centrality measures over the European regions for co-patenting
data.
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