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Centralité des régions dans les réseaux de collaboration en R&D : Clarifications 
conceptuelles et proposition d’une nouvelle mesure 

Résumé 

Cet article propose une nouvelle mesure de centralité régionale dans le contexte de réseau de 

collaboration en R&D. Cette article discute d’abord comment les mesures de centralité de 

réseau existantes peuvent s’appliquer au contexte de réseau inter-régional de R&D. Par là, il 

démontre l’inaptitude de ces mesures à  s’appliquer à ce contexte d’une façon qui a du sens. 

Ensuite une nouvelle mesure plus appropriée est introduite, se basant sur des connexions 

indirectes entre agents au niveau inter-regional. Cette mesure peut s’exprimer à partir de 

trois composants très simples : la participation de la région au réseau de R&D inter-

régional, la part d’ouverture de la région, et la diversification de ses collaborations entre ses 

partenaires. On illustre ensuite la mesure et son comportement au regard d’autres mesures 

existantes en utilisant le réseau de co-invention Européen au niveau NUTS2. 

Mots-clés : centralité régionale, réseau inter-régional de R&D, réseau agrégé, réseau de co-
invention 

 

 

 

Centrality of regions in R&D networks: Conceptual clarifications and a new measure 

Abstract 

This paper aims at introducing a novel measure of regional centrality in the context of R&D 

networks. We first demonstrate some substantial problems of SNA-based centrality measures 

to cope with regional R&D networks in a meaningful way. Then, we introduce a new 

measurement approach of regional network centrality based on the concept of inter-regional 

bridging paths (indirect connections at the regional level). We show that the formal definition 

of our regional bridging centrality measure can be expressed in terms of three simple 

components: the participation intensity of a region in inter-regional R&D collaborations, the 

relative outward orientation in terms of all established links and the diversification of R&D 

collaborations among partner regions. We illustrate the measure and its behaviour with 

respect to other conventional centrality measures by using the European co-patent network at 

the NUTS 2 level.  

Keywords: network centrality of regions, inter-regional R&D networks, inter-regional 
bridges, aggregated networks, co-patent network  
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1 Introduction

Today it is widely recognized that external knowledge sources have become an essential

component for innovating organisations. Both theoretical and empirical literature over the

past decade provide evidence for the increasing importance of R&D networks for successful

innovation (see, e.g., Powell and Grodal, 2005; Wuchty et al., 2007). Up to now, most studies

have emphasized the crucial role of the ability to adopt external knowledge in form of learning

capabilities, such as technical or methodological skills, enabling innovating organisations to

apply the externally tapped knowledge in the organisational innovation process. However,

recently also the importance of a particular relative network positioning to access external

knowledge has been highlighted and attracted increasing attention (see, e.g., Ahuja, 2000;

Owen-Smith and Powell, 2004). It is assumed that not only the ability to learn, but also a

favourable position for a more efficient access to external knowledge is crucial.

From a network theoretical perspective, such a favourable positioning is referred to as

centrality of network vertices (Borgatti, 2005), where – in terms of R&D – these vertices rep-

resent knowledge producing actors interlinked via edges representing knowledge flows. Actors

showing a more central network position will more likely benefit from network advantages.

This argument has been taken up at the regional level in recent regional science literature,

where regions – constituting the aggregate of its knowledge producing organisations – are

treated as relevant unit of observation. In this context, the notion of inter-regional R&D

collaboration networks has come into use (see, e.g., Autant-Bernard et al., 2007) where re-

gions are the network nodes representing distinct pools of knowledge, which are assumed to

get into motion via the R&D relations between these regions, constituting the edges in the

network. Such a network representation has developed to an analytical vehicle that has been

applied to investigate the geography of R&D networks (Scherngell, 2013), in particular how

knowledge diffuses in a multi-regional system (see, e.g., Maggioni et al., 2007; Ponds et al.,

2010).

Given this recent focus on regional R&D networks, network analytic measures have been

increasingly applied at the regional level in order to characterize the inter-regional connec-

tedness and centrality of a region, by capturing also the structural properties of the network

(see, e.g., Sebestyén and Varga, 2013; Wanzenböck et al., 2015). For observing a region’s

centrality, up to now the most common analytical approaches from Social Network Analysis

(SNA) have been utilized, such as degree centrality or betweenness centrality (Wanzenböck

et al., 2014). However, these studies somehow neglect conceptual problems that arise for

networks defined at the aggregate level of regions. In particular, such problems are related

with the loss of information regarding the structure of network relations and with that, in-

formation on the real channels through which knowledge flows. In this context, the question

of how to adequately reflect regions in weighted network structures such as R&D networks
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become even more important.

As we argue in this paper, the specific characteristics of regions – regarded as aggregate

units – have to be taken into account and reflected in some way when designing analytical

measurement approaches for regional centrality. Relevant questions in this context are (i)

how can we conceive the centrality of regions in a network that is composed of several research

actors in its underlying structure, and (ii) what are then the main building blocks that might

characterize the centrality of regions, in particular when we talk about R&D networks?

This paper is one of the first that deals explicitly with the drawbacks and insufficiencies

related with conventional approaches to represent networks and measure centrality at the

level of regions. Against this background, the objective is to propose a new measurement

approach of regional centrality that is explicitly designed for aggregated networks at the

regional level, based on the concept of inter-regional bridging paths. Here a bridging path

is defined as an indirect connection between two regions via a third ‘bridging region’. From

a simple random matching process that models the collaborations among the micro-level

actors based on the information provided at the aggregated level, we derive a closed form

of the expected number of bridges between two regions stemming from a specific bridging

region. On this basis we are able to define a new measure of regional centrality that not only

depends on the number of links one region has, but also on the structure and intensity of its

cross-regional collaborations.

In its fundamentals, our measure of regional bridging centrality builds upon several network-

and knowledge-related arguments, referring to the role of bridges and the relevance of bridging

path between network actors, or the general importance of diversified knowledge sourcing and

technological recombinations (see, e.g., Kogut and Zander, 1992; Fleming, 2001; Singh, 2005).

Moreover, we show how such a measure defined for aggregated networks can be meaningfully

related to the regional dimension. We demonstrate how our measure of bridging centrality of

a region can be easily interpreted as a function of (i) the participation intensity of a region in

inter-regional R&D collaborations, (ii) the relative outward orientation in terms of all estab-

lished network links, and (iii) the diversification of network partner regions and knowledge

relations to them. Hence, it views network centrality as a multidimensional problem, and

integrates different region-specific aspects of the regional linking structure that might only

together determine the visibility and importance of regions in R&D networks.

To illustrate our regional centrality measure we use a large-scale dataset on the European

co-patent network in the year 2006 at the NUTS 2 level. The comparative analysis with three

common SNA-based measures (degree, betweenness and eigenvector centrality) is based on

basic statistics on distribution and correlations between the four centrality measures observed

for the regional network. Despite striking similarities in correlations and distributional as-

pects on a more general level, the in-depth analysis of regional ranks reveals interesting

differences which emphasize the advantages of the regional bridging centrality measure, in
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particular in terms of its interpretative power for region-level analyses.

The remainder of this study is structured as follows: Section 2 discusses in some detail

the conventional approach to measure the centrality of regions in R&D networks. Section 3

introduces the concept of bridging paths, constituting the main essence of the measurement

approach proposed in this study, before Section 4 formally derives the bridging centrality

measure for regions. Section 5 shifts attention to the illustrative example, applying our

measure to the European co-patent network and comparing results with conventional meas-

ures, before Section 6 concludes with a summary of the main results and some ideas for future

research.

2 The conventional measurement approach

The notion of the centrality of regions in regional R&D networks has come into use just

recently. It is argued that the knowledge creation ability within a region depends to a large

extent on the ability of the region-specifc actors to efficiently access region-external know-

ledge (see, e.g., Bathelt et al., 2004; Graf, 2011). Inter-regional R&D networks are regarded

as effective means in this regard with network links representing direct channels to a specific

(region-external) source of knowledge that actors otherwise would not have access to. Against

this background, need has been expressed to derive analytical approaches to measure a re-

gion’s centrality in such networks, enabling the empirical researcher to characterize whether

a region has a favourable position in the network, whether it takes a specific – for instance

‘brokering’ – role from a global network perspective, or how a region’s network positioning

changes over time.

However, the concept of network centrality was originally defined at the individual level

in human communication networks and the implications of using this concept at the regional

level remain unclear. Therefore, this section intends to clarify the concept of network cent-

rality as applied to inter-regional knowledge networks. We start with examining the origin,

meaning, and purpose of network centrality (Subsection 2.1), and then lay out the major

hurdles facing its transposition to regional R&D networks (Subsection 2.2). Finally, the two

last subsections provide different ways to adapt well known centrality measures to the re-

gional case, while at the same time keeping focus on their interpretation in the R&D context

and pointing out their conceptual limitations.

2.1 A short introduction to the notion and context of centrality

measures in social networks

The inception of the use of the concept of centrality in social network analysis (SNA) lies

on the impetus of Bavelas’ early researches (Bavelas, 1948). He was interested in linking the
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relational position of individuals within working-groups – namely their network-centrality –

to their performance and influence over the group. Many empirical studies have followed

to investigate if such a link existed in these type of networks, i.e., human communication

networks (e.g., Bavelas, 1950; Leavitt, 1951; Faucheux and Moscovici, 1960; Burgess, 1969).

The consequence of this line of work was to unveil the potential of the concept of network

centrality in SNA.

As the representation of interactions in a network-form is not limited to human com-

munication networks, the notion of centrality was soon extended and applied to various

other types of networks. Indeed, this idea of investigating the influence of structural pos-

ition within networks was promising and has triggered many researches where the unit of

analysis took different forms. Such studies include the application of the notion of centrality

on: inter-personal networks within organizations (Beauchamp, 1965), cities in transportation

networks (Pitts, 1965), the diffusion of innovation in inter-firm informal communication net-

works (Czepiel, 1974), the spread of diseases in infection networks (Bell et al., 1999), crime

networks (Calvó-Armengol and Zenou, 2004), etc.

Along with these studies, a set of centrality measures has also emerged. Indeed, numerous

measures have spawned either to refine existing measures or to adapt them to the networks

under scrutiny. Those centrality measures include: the degree centrality, the betweenness

(Freeman, 1977), the closeness (Freeman, 1979), the eigenvector (Bonacich, 1972), Katz’s

prestige (Katz, 1953), Bonacich’s measure of power (Bonacich, 1987), etc.

Consequently, as a wide variety of centrality measures has been developed, one should

expect that they differ in the meaning they purport and in the contexts they can be applied

to. These differences are in fact tied to the very definition of network centrality.

The goal of a centrality measure is to assign to each agent of a network a value related

to her/his position within the network. The variety of centrality measures then comes from

the fact that each favours a particular network-pattern over others and each carries a ‘view’

of what being central should be. Thus, centrality measures are not neutral: they rank the

agents along some – often hidden – normative viewpoint which should support the aim of

the study itself. In other words, different notions of centrality imply different ‘competing

"theories" of how centrality may affect group process’ (Freeman, 1979, p. 238).

Then, the choice of a centrality measure should be dictated by the purpose it is aimed to

serve (Borgatti, 2005). This purpose is brought about by the researcher and his research study

and is of course highly context dependent. For instance, the kind of centrality measure used in

the study of infection networks should be different from the one used in inter-firm cooperation

networks.1 This very idea is also, albeit slightly differently, formulated by Bonacich (1987,

1In the study of spreading disease in infection networks, the notion of eigenvector centrality catches best
the idea that the central agent, if infected, would spread the fastest the disease across the network (Borgatti,
1995). When studying flows of information in inter-firm communication networks, the closeness centrality
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p. 1181):

There are different types of centrality, depending on the degrees to which local

and global structures should be weighted in a particular study and whether that

weight should be positive or negative. [...] There is no point in subsuming all

these situations under one measure.

Therefore, there is no unique and ‘best’ measure of centrality, no ‘one size fits all’ centrality

measure. One then should remember the implicit choices underlying centrality measures

and the context to which they can be applied. Therefore, we are now going to discuss the

particular context of regional R&D networks and question whether centrality measures can

be applied to it.

2.2 Can the concept of network-centrality be applied to R&D net-

works?

We now delineate two key elements impeding the straightforward application of network-

centrality measures to regional R&D networks. First, regions are not single entities. Indeed,

while being at the centre of the analysis, regions are not the ‘actors’ taking part to the action

of the network. Only the agents that compose the regions are involved in R&D networks

(and any kind of inter-regional network more generally). Centrality measures are best suited

for situations where the unit of analysis is also the actor of the network. In fact, in the

case of regional centrality, there is a strong duality between the micro strata, where lie the

actors of the network, and the meso strata, where lies the focus of the centrality measure.

Indeed, to assimilate regions as ‘actors’ would imply to assume that all agents within them

would act as one and only one entity; it would require to do ‘as if’ the region was a single

agent, like for instance a single researcher. If this ‘as if’ hypothesis may be reliable when

studying small groups in which information is quickly shared and without depreciation, such

as research teams or even – under some conditions – organizations, it no longer holds when

looking at complex structures such as regions which are often composed of heterogeneous,

non necessarily interacting, agents.2

Second, the links in R&D networks involve a particular kind of flows. For instance, in

collaboration networks, a link may be the medium of various types of exchanges and could

then be interpreted in different ways. If we focus specifically on the notion of knowledge

production, the links can represent the access to a specific source of knowledge that agents

would have otherwise not have access to, like the possibility to share tacit knowledge with a

reports the best the idea that the central agent would be the first to ‘know’ the novelties and by then have
a technological edge over its competitors (Czepiel, 1974; Freeman, 1979).

2It is to note that Everett and Borgatti (1999) propose an extension of centrality measures to groups but
where within-group homogeneity is required to provide a proper interpretation.
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partner (Collins, 2001). If the focus is more on the dynamics of the collaboration network,

links can be seen as vehicles of information, on who would be a suitable and a reliable partner

to collaborate with, particularly across regional borders (see, e.g., Gulati and Gargiulo, 1999;

Cassi and Plunket, 2015). These two simple different perspectives on how to interpret network

links have different implications. In the first case, in which we consider flows of knowledge,

the benefits from network-distant agents may decay much more steeply than for the case of

flows of information which is acquired and shared more easily. These differences in flows’

nature and behaviour are not innocuous regarding the interpretation of centrality measures,

as Borgatti (2005, p. 69) has pointed out: ‘the importance of a node in a network cannot be

determined without reference to how traffic flows through the network’. He has also shown

that different centrality measures each carry an implicit different assumption about the kind

of flow it is suited for, so that they cannot be applied to any network.

With these details in mind, the next subsection considers the case in which regional R&D

networks are seen as weighted networks. Some widely used centrality measures are described

as well as: 1) their classic interpretation in the context in which they were originally defined

and 2) their interpretation when applied to regional R&D networks. Finally, last subsection

investigates the case in which a region’s centrality is inferred by its agents centralities.

2.3 Regional R&D networks as weighted networks

The first manner to adapt existing centrality measures to regional R&D networks is to con-

sider the regions as the nodes of the network. Accordingly, the inter-regional R&D collabor-

ation network can be depicted by the matrix G of typical element gij which represents the

number of links between the agents from regions i and j. As collaborations are bilateral

and their flow can be higher than one, it yields an undirected weighted matrix G of typical

element gij ∈ R
+.

We discuss three conventional measurement in this case: the degree-, the eigenvector-

and the betweenness-centrality. The properties of these centrality measures are discussed in

light of the context of R&D networks.

The first centrality measure, is the degree-centrality. The notion of degree-centrality in

SNA was primarily defined as the number of connections an agent had in communications

networks and is reviewed in Freeman (1979). As Freeman mentions, early researchers in SNA

even considered it as the sole centrality measure, able to summarize the importance of a node

in a network. In the case of regional networks, the links between two nodes are typically

weighted, the degree of a node can then be defined as the sum of all the links stemming from
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it.3 Let di be the degree of node i, it is formally defined as follows: di =
∑

j gij .4 Depending

on the kind of network under study, the degree can be interpreted as the probability to be

reached in a network by a random walk or the ability to infect other agents in a one time

period (Borgatti, 2005). However, these two interpretations hardly make sense in the case

of R&D networks. Another simple and unambiguous interpretation of the degree is just the

dominance of a given region over other regions in terms of R&D collaborations. Depending

on the purpose of the study, this interpretation may be relevant. However, in any case, this

measure suffers from a major flaw: it does not convey any information on the structure of

the network.

Another centrality measure widely used in SNA is the eigenvector centrality. This measure

was introduced by Bonacich (1972) and states that the importance of a node is related

to the importance of the nodes it is connected to. Contrary to the degree-centrality, the

eigenvector-centrality of a given node depends on the information on all the links of the

network, meaning the position of the nodes within the global network has an influence on

their centrality. Therefore, two nodes with the same degree can have different eigenvector

centralities. Formally, the eigenvector-centrality of a node, ei, is defined by the relation:

λei =
∑

j gijej , with λ > 0 a proportionality factor. This centrality is self-referential and can

be solved by writing it in a matrix-form:

λe = Ge, (1)

where e is the vector of all centralities. The vector e that solves equation (1) is the eigenvector

of the matrix G associated to the eigenvalue λ.5 The very idea reflected by this measure is

related to node influence. The main driver is that a node will be more influential if it

has influence on very influential nodes (the influence being measured by the links between

the nodes). While being an appealing feature for studies on individual’s influence, this

interpretation is strongly impeded by the problem of the micro/meso duality of the regional

network. Indeed, assume a region is central thanks to connections to important regions, do

its agents – who are the actors of the network – really benefit from their region’s centrality?

It would imply that every agent within a region would homogeneously benefit from the

influence of all other agents of the region, which seems hardly the case. It then happens that

this measure is hardly transposable to the regional level.

3In the case where the network is directed, like for instance in a patent-citations network, the number
of links emanating from a node (e.g., references made to other patents) is called the out-degree while the
number of links received (e.g., the number of citations received from other patents) is called in-degree. For
undirected networks, such as collaboration networks, the in-degree is equal to the out-degree.

4There is a generalization of the degree centrality for weighted networks given by Opsahl et al. (2010) but
whose interpretation in this context remains unclear.

5By convention, it is standard to use the eigenvector associated to the largest eigenvalue (Bonacich, 1987;
Jackson, 2010).
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A third measure commonly applied in SNA is the betweenness-centrality. To define it, we

first introduce the notion of network path and shortest path. A path between two nodes i

and j is a sequence of K distinct nodes {n1, . . . ,nK} starting from i (i.e., n1 = i), ending with

j (i.e., nK = j) and such that each consecutive pair of nodes is connected in the network.6

The length of a path is the number of nodes composing the path. Then, a shortest path

between i and j is a path that has minimal length. Now, let SP (jk) to be the number of

shortest paths between nodes j and k, and SPi(jk) the number of shortest paths between j

and k where node i appears. Then the betweenness-centrality of i is defined by the following

equation:

Bi =
∑

j 6=i

∑

k 6={i,j}

SPi(jk)

SP (jk)
,

the term in the double sum depicting the share of shortest paths between j and k where i

lies on.

This form of centrality was originally defined in the context of communication networks,

where links between agents represent information flows. When Freeman introduced this

measure, he defined central agents as ‘structurally central to the degree that they stand

between others and can therefore facilitate, impede or bias the transmission of messages’

(Freeman, 1977, p. 36). Alternatively, betweenness-centrality can be seen as how much

a node is necessary for flows to connect all other nodes in the network. Despite being

computationally easy to apply at the regional level, this measure suffers from major flaws

when applied to regional R&D networks. Indeed, for the importance of being in the ‘shortest

path’ to hold, two assumptions are necessary. The first is that the flows necessarily follow

the shortest path (which makes the ‘central agent’ able to retain information and exert some

influence). If information (or the adequate flow) does not pass only through shortest paths,

this measure becomes much less relevant. In R&D networks, this may not be the case: for

instance, when considering information over potential partners obtained via collaboration,

that information may not be limited to flow only through shortest paths, just because of the

nature of information. The second assumption is that flows do not suffer from any decay.

Indeed, at the moment where the relevance of network-flows are reduced with the network-

distance, then what is the use of being in the middle of network-paths between agents? In

this case, the betweenness of a region, beyond its first or second circle of connections, may

be of little use. For instance, if connections materialize access to knowledge sources, it is

quite unlikely that agents far apart with respect to the network-distance influence each other.

Last, beyond these two limiting assumptions, the betweenness measure happens to be much

better suited for networks composed of individuals (be it firms or inventors). As for the

eigenvector centrality, its interpretation hardly fits the regional scale as a region with a high

6Mathematically, {n1, . . . ,nK} is a path between i and j if gnknk+1
> 0 for all k ∈ {1, . . . ,K −1}, with

n1 = i and nK = j.
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Figure 1: Illustration of a regional network in which a region has a strong internal structure
yet no link with the outside.

betweenness does not necessarily translates into its agents being on shortest paths.

As we have shown, existing measures can be applied to regional R&D networks, when

taking regions as the nodes of a weighted network. But the interpretation of the measures

and their conceptual meaning is far from being straightforward, if applicable at all. In the

next section we show and discuss another way of accounting for regional centrality.

2.4 Regions as the aggregate centrality of their actors

A different way to measure regional centrality is to assume that a region’s centrality actually

refers to the centrality of its agents. Indeed, since regional networks can be seen as the

aggregate interactions of the agents from these regions, a natural way to assess a region’s

centrality could be to link it to the centrality of its agents.

In doing so, the first step is to find the relevant actor of the network. In co-patenting

networks, it can either be firms or inventors. The choice depends on whether we believe that

the information and knowledge pool of firms is shared among all its inventors. If so, then

firms can be considered as the real actors of the network. We will call ‘agent’ the entity

resulting of this choice. Thus, the regional network can then be depicted by a micro-level

network formed of the links between the agents, each of them belonging to a region. To build

the regional centrality, one has to choose the relevant centrality measure and compute it at

the agent’s level. Let ci be the centrality of agent i and let Sr be the set of agents belonging

to region r. Then, the centrality of region r, Cr, can be defined merely as the sum of the
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Figure 2: Sample of an inter-regional network. Illustration of two regions with external links,
differentiated with respect to their internal links.

centrality of its agents, as follows:

Cr =
∑

i∈Sr

ci.

Beyond the problems inherent to the centrality measures (e.g., linked to the nature of the

flows), discussed earlier, this methodology – aggregation of micro-level network centralities

– also involves drawbacks. The main problem stems from the links occurring internally

to regions. Indeed, should intra-regional links be counted in the micro-level network? An

example of a problematic case is illustrated by Figure 1. In this figure, a network of three

regions is represented: region A has many agents that are all connected to each other but have

not any link with other regions; conversely, the agents from regions B and C have no intra-

regional link but do have cross-regional collaborations. Actually, if the network is computed

at the micro-level, whatever the measure, region A will have the higher centrality, despite

having no inter-regional link whatsoever. This is fundamentally problematic: a measure of

regional centrality should not be able to rate high regions having no external links simply

because it should somewhat relate to the position within the interregional network which is

not the case here.

A straightforward solution to this problem would be to ‘cut’ all intra-regional links: the

centrality would then be computed using a network where all internal links would be severed.

Yet, this adjustment would also lead to conceptual problems. Take for instance the example

illustrated by Figure 2. This figure depicts a network of two regions, A and B, that are very
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similar. They both are composed of four agents and each have a link with an other region.

Region A has a strong internal structure: all its agents are connected. On the contrary,

no agent from region B does have any link within the region. Despite that the agents of

the two regions have different positions in the global network, if all internal links are cut to

compute the centralities, then the two regions would be equivalent. Cutting internal links

would involve a distortion in the network structure.

Consequently, the major problem raised by the aggregation of micro-level centralities is

that intra-regional links cannot either be kept or removed without posing conceptual prob-

lems.

As developed in this section, the centrality measures discussed so far all suffer from

conceptual drawbacks when applied at the regional level. Given these considerations, there

is a need for developing alternative centrality measures applicable for regional R&D networks

and resting on more robust conceptual grounds. In what follows, we provide a first attempt

for the development of novel measurement approaches that explicitly address the conceptual

problems discussed above by taking into account the underlying micro structure of regional

R&D networks.

3 The concept of bridging paths

There is a strong need for overcoming the duality in analyses of R&D networks of regions

concerning the micro level which encompasses the actors participating in R&D collaborations,

and the aggregate, i.e. regional, level where the analysis focuses on. As has been discussed in

the previous section, major problems arise in applying and interpreting conventional SNA-

based centrality measures. The purpose of this section is to provide a new concept that

is meaningful in the context of inter-regional R&D networks. We introduce the notion of

a bridging path denoting a form of indirect connection between regions, i.e. regions are

indirectly connected in the network thanks to their micro-level actors. We first define this

concept before providing an approach to derive the expected number of bridging paths from

aggregate flows of R&D interactions. The expected number of bridging paths between regions

will be the major building block of the regional centrality measure we introduce in the next

section.

To introduce the concept of bridging paths, consider a network where the nodes are the

regions and the connections between the regions represent the R&D interactions between

their agents. This represents a weighted network where we define gij as the number of R&D

interactions (i.e. micro-level links) between regions i and j. Further, each micro-level link

between two regions is denoted by ya
ij , where ya

ij represents the ath link between regions i

and j with a ∈ {1, . . . ,gij}. A bridging path is then regarded as a set of two links at the
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micro level connecting three agents from three different regions. Speaking in social network

analytical terms, the micro-level agent in one region act as a ‘broker’ (Burt, 1992) for two

other not directly connected actors; he/she has a bridging role in the network of regions

linking indirectly the micro-level agents of two other regions. This triangulation between

actors located in three different regions leads to the notion of an inter-regional bridging path.

Formally, a bridging path is defined as a set of two links from two different regions, say i and

j, with a third one, say k, so that the agents from i and j are both connected to the same

agent in k. This means that a pair of links (ya
ik,yb

jk) forms a bridging path if, and only if,

ya
ik and yb

jk are connected to the same agent in region k. In other words, agents i and j are

indirectly connected thanks to one agent of region k.

This notion is depicted by figure 1 which represents a regional network of three regions.

In this figure, the pair of links (y2
ik,y1

jk) is a bridging path between regions i and j stemming

from k because the agent from k maintains both links y2
ik and y1

jk. Although both regions

j and k do have links with region i, there is no bridging path between them because the

agents from i of the links y1
ik and y2

ik are neither connected to y1
ij , y2

ij nor y3
ij . Hence, region i

provide not any bridging path between regions j and k in this set-up. We see that the notion

of bridging path is about indirect connections. Accordingly, the region with most bridging

paths is region j, as it provides two bridging paths between regions i and k.

Region  

          
Region   

Region   

Region   
     

     

     

     

     

     
Bridging Path 

R&D interactions 

Agent 

Figure 3: Illustration of the notion of bridging paths
Notes: The figure depicts three bridging paths formed by the following pairs of links: (y2

ik,y1

jk), (y1

ij ,y2

jk) and

(y2

ij ,y3

jk). So the regional dyads (j,k), (i,k) and (i, j) have respectively 0, 2 and 1 bridging paths stemming
from regions i, j and k, respectively.

The relevance of the bridging paths concept can be quite directly underlined by means of

basic theoretical considerations in innovation research. The creation of new knowledge is often

viewed as a recombination of existing knowledge (see, e.g., Kogut and Zander, 1992; Fleming,

2001; Cassiman and Veugelers, 2006). It implies that the source from which the agents draw

their knowledge will have an impact on their ability to generate interesting ideas and new
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knowledge. In the case where a region is isolated, where collaborations occur mainly within

the region, the knowledge pool may become redundant and even lead to lock-in situations

(see, e.g., David, 1985; Arthur, 1989). Collaborations with agents from other regions allow

to benefit from different knowledge bases (see, e.g., Singh, 2005; Berliant and Fujita, 2012),

help moderate the problem of redundancy and generate more radical innovations. From this

viewpoint, bridging paths provide better knowledge opportunities to regions. Then regions

from which stem many bridging paths could be seen as key players in the network with actors

potentially benefiting from a more diversified knowledge pool.

Moreover, bridging paths may also be of significance when we consider network formation

processes. Indeed, several recent studies have put at the forefront the consideration that the

structure of network links plays an important role in explaining future states of the network

(see, e.g., Barabâsi et al., 2002; Jackson and Rogers, 2007). Recent research in the context

of R&D networks has shown that two actors are more likely to collaborate together if they

share a common collaborator (that is if they are indirectly linked in the network, see, e.g.,

Fafchamps et al., 2010; ter Wal, 2014). Hence, bridging path create network proximity and

opportunity for (triadic) closure so that there are good reasons to assume that bridging paths

matter for the evolution of the whole network. Indeed, if bridging paths represent indirect

connections between agents from different regions, then we can assume that those regions

which provide the bridging paths are in a position to facilitate the connectivity between

other regions in the network. Bridging paths can then be seen as important for regions not

only in the context of accessing a diversified knowledge pool, but also in a network formation

perspective as it helps the formation of inter-regional connections and with that inter-regional

diffusion of knowledge.

4 A new measure of regional centrality

Proposing the significance of the bridging path concept for measuring regional centrality in

regional R&D networks, the question arises at this point how this concept can be incorporated

into regional centrality measures. Usually, empirical researchers focusing on regions as units

of observations, and by this, on regional R&D networks, face the problem that the underlying

micro structure of the network may be either undefined or unobservable. Concerning the

latter, one may consider the example of co-patenting networks (see, e.g., Lata et al., 2015),

for which the relevant actors are individual persons (inventors) that are hardly identifiable as

homogeneous nodes over time. Thus, we introduce a model of random matching. It allows us

to approximate the underlying micro-structure by deriving an expected number of bridging

paths (ENB) between two regions, using only the aggregate flows of collaborations between
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regions.7

Our random matching process relies on two basic assumptions: (i) collaborations occur

between two agents, and (ii) when a collaboration occurs, the two agents are matched at

random. By this, it reflects the ex post probability to be matched, i.e. the probability

that two agents for two particular regions have been matched conditional to the structure

of the inter-regional flows of collaborations. The very intention is to give a baseline for a

micro-network that was likely to occur, with respect to what is observable at the meso level.

Thus, random matching is used to infer the structure of the micro network by using only the

information included the links between the regions.

On this basis, it is now possible to derive the expected number of bridging paths stemming

from a given region by using directly the aggregate flows of collaborations occurring between

regions. First, denote by ni the number of actors active in R&D collaboration in region

i. Then the expected number of bridging paths, ENBi
jk, between the two regions j and k

stemming from the bridging region i along the random matching process is:8

ENBi
jk =

gijgik

ni
. (2)

The expression related by equation (2) simply states that the more connections two

regions, j and k, have with a third common region, i, the more likely they will have indirect

connections at the micro level (bridging paths) thanks to the actors located in i.

Based on this, we are able to construct a new measure of the centrality of regions in R&D

networks, denoted as regional bridging centrality (BC). The BC is defined as the number

of bridging paths stemming from a region between all dyads of the network. Formally, this

means that the BC of region i is equal to:

BCi =
∑

j 6=i

∑

k 6=i,j

ENBi
jk, (3)

where ENBi
jk is defined by equation (2).

The interesting point of our measure is that its definition can be pretty much simplified

and interpreted meaningfully in a regional context. Assume that the number of agents (ni)

is proportional to the number of projects (gi); then equation (3) decomposes to a notion of

centrality of a region that entails a combination of three different components, reflecting i) a

region’s participation intensity, ii) a region’s relative outward orientation and iii) a region’s

7This model is an adaptation of the one in Bergé (2015). In fact, the methodology is very similar to
the one used by Bloom et al. (2013), which provides a measure of technological similarity between firms’
patenting activity introducing a model which considers random encounters between pairs of scientists.

8For a formal proof, see Bergé (2015).

15



diversification of network links.9 It is defined as

BCi = ḡi si (1−hi) , (4)

where

ḡi is the number of outer collaborations (i.e. outer degree, that is ḡi = gi −gii which is the

total number of collaborations of i, noted gi, excluding the internal ones, noted gii). It

refers to a region’s participation intensity in inter-regional collaborations, which affects

positively the centrality of the region. It is a general measure of how well a region is

embedded in the particular R&D network. Note that a region’s size will amplify the

probability of yielding more bridges between other regions. The participation intensity

could therefore be interpreted as a broad measure of the relational capacity of the

regional network nodes, which should be taken into account.

si is the share of outer collaborations with si = ḡi/gi. It can be related to the relative out-

ward orientation of all established network linkages, i.e. the relative degree of external

R&D interactions. It refers to the openness of a region with respect to knowledge

sourcing strategies. Given the fact that the BC focuses on the capacity of one region

to link other regions, a high number of region-internal collaborations would have a

negative influence as it potentially reduces the number of actors connecting different

regions.

hi refers to the Herfindahl-Hischman (HH) index of the distribution of i’s outer collabor-

ations defined as hi =
∑

j 6=i(gij/ḡi)
2 . The term 1−hi varies between 0 and 1 according

to the degree of diversification of network links to other regions, and indicates how a

region’s collaborations are distributed along its neighboring regions in the network. In

this case, the more the collaborations are concentrated, the less the region is central.

This is because concentration offsets the benefits of outer connections as it reduces

the actors’ possibility to build bridges among different regions. Also it relates to the

fact that the more the outer collaboration pool is diversified over different regions, the

more the region can draw its knowledge from different sources.

One central promising property of the measure is that it takes account of the peculiar charac-

teristics of regional networks. Indeed, regional networks are characterised by the structure of

region-internal and region-external links and this feature cannot be dealt with adequately by

using a single (a-spatial) SNA centrality measure. A region’s ability to benefit from new ties

in the R&D network or exploit external knowledge sources via the links may be determined

9The formal proof is given in Appendix A.
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by all three components together. Outward orientation and higher diversification in partic-

ular may help a region to develop and renew the regional knowledge base faster, or prevent

lock-in situations in certain technologies (see, e.g., Breschi and Lenzi, 2015).

5 An illustrative example: an application to the European

co-patent network

Given the promising features of the regional bridging centrality (BC) measure as defined in

the previous section, an application to empirical regional R&D networks is required in order

to illustrate the behaviour of the measure as compared to the conventional ones. To this end,

we will employ co-patent data, comparing the regional BC with three other commonly used

centrality measures, that is degree, eigenvector and betweenness centrality.10 We use the

European co-patent network, a network of inter- and intra-regional collaborations in patent

production observed at the regional level. A co-patent, that is a collaboration issuing a

patent grant, is a visible trail of a successful R&D collaboration and is defined as an invention

implying at least two inventors. This data are extracted from the REGPAT database (Maraut

et al., 2008) and consist of all patents applied for at the European patent office (EPO) in

the year 2006. We make use of the information contained in each patent record to build the

co-patent network. Particularly, we use the address contained in each inventor’s byline to

map every patent to a set of NUTS 2 regions. That is, the NUTS 2 regions represent the

place of residence of the inventors when they applied the patent. We consider that the flow

of inter-regional collaborations between two regions consists of all patents having at least one

inventor from each of these two regions. Collaborations occurring strictly within the regions

are counted as intra-regional patent.

The network consists of collaboration flows between 245 NUTS 2 regions. This cross-

regional co-patenting network is based on a total of 40,142 patents, of which 16,661 are

inter-regional collaborations linking the 245 NUTS 2 regions. As a starting point, the three

components of the BC are described by table 1a. The participation intensity is on average

237, which means that the regions show on average 237 co-patent links to other regions

in the network. This is much higher than the median of 100, confirming the right-skewed

distribution of the number of co-patent links the individual regions hold to other regions.

More interestingly is the relative outward orientation. Here, the median is 71%, meaning

that for half the regions, more than 71% of their patents are of inter-regional nature, being

10The degree is here calculated as the number of unique projects the agents of a region are involved in. The
eigenvector and the betweenness centrality are computed using the package igraph available in the statistical
software R. Both these two measures are based on the weighted regional co-patent network where the nodes
are the regions and where the linkages between any two regions are the number of patents co-invented by
agents from these two regions. Due to the nature of the network, we used the weighted version of both the
betweenness and the eigenvector centrality.
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invented with at least one partner outside the regions. Also diversification is relatively high,

with an average at 85%, meaning that the co-patents are rather distributed along several

regions. Hence, the regions resort – on average – to a rich portfolio of partner regions leading

to a diversified structure of inter-regional knowledge exchanges in patenting. In contrast to

the participation intensity, the other two components, the relative outward orientation and

the structure, are slightly left skewed, and can be seen as moderators of the scale of a region.

Indeed, being a large region with a high network participation intensity does not necessarily

lead to a high centrality value, if either the share of intra-regional collaborations is very large

or inter-regional links are concentrated among only a few regions.

Table 1 reports some statistics on the BC measure as compared to the conventional

measures, and the correlations among them. Note that all measures are normalized so that

the highest value is one and the lowest zero.11 While there is no large difference in the

summary statistics provided by table 1b, it can still be noted that the eigenvector-centrality

is clearly the more skewed of the four measures. Table 1c further shows that the correlation

between the bridging centrality and the other measures ranges from 70% to 93%. Those

high levels are reassuring as they show that the BC does not completely reorder the regional

positioning. The difference in the distribution of the four centrality measures compared is

also illustrated by figure 2 which reports the cumulative distribution of each measure. We

can see that the eigenvector-centrality, except at the very beginning of the distribution, is on

the top of all other measures while the BC lies between the degree and the betweenness. The

differences in distribution are higher at the beginning of the distribution (below 0.50) than

at the end where the distribution of the BC, the degree and the betweenness are much closer.

Yet, the differences with existing measurements are real and it is worthwhile to point out to

changes occurring to some particular regions. Moreover, it becomes obvious from this basic

statistics that the bridging centrality is a combination of three components. It depends not

only the scale of a region, like it might be the case for the degree centrality, or the quality of

partners, i.e. whether they are located at the very core of the network, as for the eigenvector

centrality. Therefore, it might be of particular interest how differently the three components

are distributed across the individual regions.

11Formally, the transformation applied to each centrality measure is: (x−xmin)/(xmax −xmin).
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Table 1: Descriptive statistics of the components of the BC and of the centrality measures applied on co-patenting data.

(a) Descriptive statistics of the three components of the bridging centrality measure.

Min Q1 Median Q3 90% Max Mean SD Skewness Kurtosis
Participation intensity 1 26 100 280 559 2333 237.16 376.77 3.09 10.78

Relative outward orientation 0.2000 0.600 0.737 0.835 0.907 1 0.714 0.16 -0.45 -0.14
Diversification 0 0.831 0.893 0.925 0.945 0.972 0.850 0.14 -3.85 18.47

(b) Summary statistics.

Min Q1 Median Q3 90% Max Mean SD Skewness Kurtosis
Bridging Centrality 0.0000 0.0083 0.0332 0.0965 0.2231 1.0000 0.0881 0.1490 3.3465 13.2502

Degree 0.0000 0.0116 0.0406 0.1384 0.2597 1.0000 0.1081 0.1722 3.0310 10.1794
Eigenvector 0.0000 0.0010 0.0035 0.0208 0.0927 1.0000 0.0434 0.1285 4.9103 26.8212

Betweenness 0.0000 0.0022 0.0118 0.0595 0.1719 1.0000 0.0598 0.1307 4.3528 23.0673

(c) Correlations.

Bridging Centrality Degree Eigenvector Betweenness
Bridging Centrality 1.0000 0.9080 0.9311 0.6886

Degree 0.9080 1.0000 0.8141 0.8411
Eigenvector 0.9311 0.8141 1.0000 0.5641

Betweenness 0.6886 0.8411 0.5641 1.0000

Notes: The participation intensity is the outer degree. The relative outward orientation is the share of outside collaborations over all collabora-
tions, it varies between 0 and 1. The diversification is 1−hi with hi being the Herfindahl index of the distributions of region i’s collaborations
over all other regions; it varies between 0 and 1, the more the collaborations are concentrated, the lower is the measure. 9
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Table 2: Centralities of the top 30 regions for the co-patent network, ranked by bridging
centrality.

NUTS 2
Bridging

Centrality
Degree

Centrality
Eigenvector
Centrality

Betweenness
Centrality

value (rank) value (rank) value (rank) value (rank)
Karlsruhe DE12 1.00 ( 1) 0.90 ( 3) 1.00 ( 1) 0.46 ( 7)

Darmstadt DE71 0.85 ( 2) 0.86 ( 5) 0.79 ( 3) 0.53 ( 5)
Rheinhessen-Pfalz DEB3 0.80 ( 3) 0.66 ( 8) 0.89 ( 2) 0.25 (12)

Düsseldorf DEA1 0.80 ( 4) 0.82 ( 6) 0.62 ( 4) 0.51 ( 6)
Köln DEA2 0.78 ( 5) 0.73 ( 7) 0.59 ( 6) 0.55 ( 4)

Oberbayern DE21 0.57 ( 6) 0.93 ( 2) 0.39 ( 7) 0.93 ( 2)
Stuttgart DE11 0.51 ( 7) 0.87 ( 4) 0.59 ( 5) 0.34 ( 8)

Northwestern Switzerland CH03 0.50 ( 8) 0.44 (13) 0.18 (16) 0.24 (14)
Freiburg DE13 0.48 ( 9) 0.55 ( 9) 0.35 ( 9) 0.20 (20)

Arnsberg DEA5 0.42 (10) 0.39 (17) 0.31 (10) 0.06 (62)
Berlin DE30 0.40 (11) 0.42 (14) 0.22 (13) 0.18 (22)

Tübingen DE14 0.38 (12) 0.47 (12) 0.35 ( 8) 0.15 (31)
Île de France FR10 0.34 (13) 1.00 ( 1) 0.06 (36) 1.00 ( 1)

Münster DEA3 0.33 (14) 0.29 (19) 0.22 (12) 0.16 (28)
Mittelfranken DE25 0.33 (15) 0.40 (16) 0.16 (18) 0.11 (37)

Alsace FR42 0.30 (16) 0.26 (26) 0.13 (19) 0.22 (16)
Zurich CH04 0.30 (17) 0.32 (18) 0.11 (22) 0.18 (23)

Schwaben DE27 0.29 (18) 0.28 (20) 0.21 (14) 0.06 (58)
Brandenburg DE40 0.28 (19) 0.23 (29) 0.16 (17) 0.03 (92)

Hannover DE92 0.25 (20) 0.25 (27) 0.12 (21) 0.08 (50)
Unterfranken DE26 0.24 (21) 0.26 (24) 0.23 (11) 0.05 (64)
Rhône-Alpes FR71 0.24 (22) 0.54 (10) 0.06 (37) 0.32 (10)

Hamburg DE60 0.24 (23) 0.21 (35) 0.10 (25) 0.09 (47)
Prov. Vlaams-Brabant BE24 0.23 (24) 0.19 (38) 0.04 (44) 0.13 (33)

Espace Mittelland CH02 0.22 (25) 0.26 (25) 0.09 (26) 0.06 (60)
Koblenz DEB1 0.22 (26) 0.18 (40) 0.19 (15) 0.07 (57)

Schleswig-Holstein DEF0 0.22 (27) 0.22 (32) 0.10 (23) 0.04 (72)
Prov. Antwerpen BE21 0.21 (28) 0.21 (34) 0.04 (42) 0.19 (21)

Lüneburg DE93 0.20 (29) 0.17 (43) 0.07 (34) 0.10 (44)
Région de Bruxelles,
Brussels Hoofdstede

BE10 0.20 (30) 0.14 (61) 0.02 (56) 0.06 (59)
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Figure 4: Spatial distribution of the four centrality measures among the 242 NUTS 2 regions.
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Figure 5: Cumulative distributions of the centrality measures in log-log.

Table 2 represents the top 30 centralities ordered by the bridging centrality. We focus on

commenting the most salient differences. As highlighted by Figure 4, the ranking is clearly

dominated by German regions which rank highest for most measures. Interestingly, we find

13 German regions among the 15 best ranked regions for the bridging centrality. This results

from the fact that they show both a high participation intensity as well as high openness

from an inter-regional perspective; they show a high absolute as well as relative number of

inter-regional co-patents. However, the concentration tendency and high clustering of co-

patenting activities at the national level of Germany may point to the fact that economic

linkages at the national level prevail. Likely explanations are low language / cultural barriers

as well as lower transaction costs. These factors seem to promote the high regional bridging

centrality in German regions.

Another interesting case is the region of Île de France (FR10) which ranks at the 13th po-

sition for the bridging centrality, while being ranked first with respect to its degree centrality.

We see that the measure of degree centrality may overstate its position in the inter-regional

co-patent network. Despite its highly distributed structure of collaborations (it has a low

HH index of 0.04), this region is highly reliant on internal collaborations (the outer share of

collaborations is only 45%) that it fails to provide much bridging paths to the inter-regional

R&D network. By contrast, the eigenvector centrality may understate the importance of
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FR10; it ranks only 36 as it is linked to the network core regions at a lower degree. For the

same reason as for FR10, some regions that are ranked high in the degree centrality end up

much lower in the BC; i.e. they show high embeddedness in the inter-regional R&D network

but are less open and diversified in the structure of their inter-regional collaboration, thus

receiving lower values of bridging centrality.

Following the criteria of openness and diversification, interesting is also the case of Brussels

(BE10) which ranks after the 56th place for all centrality measures other than the bridging

centrality. With the BC, BE10 ranks 30th, gaining at least 26 places compared to other

measures. Yet, the SNA-based centrality measures may underestimate its positioning in the

inter-regional co-patent network: due to its very high outward orientation (its outer share is

94%) and a highly distributed structure of collaborations (it has a low HH index of 0.07),

this region is likely to provide many bridging paths to the network and may therefore be an

important bridge for the whole network and for inter-regional knowledge diffusion.

Figure 6: The European co-patent network
Notes: Node size corresponds to the relative outward orientation of a region, line width corresponds to the
number of co-patents between two region.

Figure 3 illustrates the European co-patent network for the European NUTS 2 regions,

with the node size corresponding to the relative outward orientation of a region. It confirms
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the very dense network structure between core regions clustered in Germany, which hold

intensive connections among each other. From a regional perspective, the bridging centrality

is high for these regions, i.e. they yield high values for all three components, despite the

fact that most of the links are confined at the national level. Furthermore, we observe a

high relative outward orientation of some South and Eastern European regions. In terms of

established co-patent links they seem to be highly open, which could be explained by the

lack of internal collaboration structures. Nevertheless, inter-regional linkages are generally

weak for these regions.

6 Concluding remarks

The notion of centrality is ubiquitous in debates on the role of regions in R&D networks.

Quantitative approaches to measure regional centrality, however, are often based on micro-

level centrality measures as introduced in social network analysis (SNA). Empirical analysis of

regional networks requires accounting for the network structure originally defined at the micro

level or by the linkages between different organisations, which often limits the usefulness and

conclusive identification of regions in the network. A further unavoidable problem relates to

the considerable loss of information regarding network structure and meaning when regions

are regarded only as aggregate units. In this study we address this micro / meso-level duality

in how we view regional networks and the region’s structural network positioning is usually

defined, questioning the conventional measurement approaches for region-level analysis.

By introducing the notion of regional bridging centrality we suggest a new approach for

assessing the centrality of regions in R&D networks that is able to cope with the regional

dimension in measuring the centrality. Based on the concept of bridging paths, i.e. a set

of two links connecting three actors in three different regions, we develop a measure of

centrality that satisfies the requirements of both R&D networks and region-level applications:

A bridging path between regions characterizes a situation where regional actors represent

bridges or brokers in the network of regions as they connect indirectly the actors located in

two other regions. Such a triangulation in regional networks, as we argue, is a key issue for

knowledge recombinations and the extension of a region’s knowledge base.

We further show that centrality in terms of bridging centrality can be viewed as a function

of (i) the participation intensity in inter-regional collaborations, (ii) its openness to other

regions (i.e. the relative outward orientation of network links), and iii) the diversification

of links to other regions. With these three components – which are both intuitive and

computationally simple – we argue that regional network centrality has to be viewed from

a multidimensional perspective. Only with such an integrative perspective we can achieve a

better understanding of the role of certain regions in inter-regional R&D networks.

The comparative analysis with three standard SNA-centrality measures confirms the per-
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formance and usefulness of our measure of regional bridging centrality. We chose the inter-

regional co-patent network for European regions as illustrative example. Despite observing

similar patterns in basic statistics like correlations of the centralities or the skewness, we

were able to show striking and interesting differences in the structure of the inter-regional

co-patent linkages across regions. The results reveal that thinking only of the degree of

participation is not enough. Rather, the most central regions show simultaneously high em-

beddedness, high relative outward orientation and high diversification of their network links

(e.g. Karlsruhe). In contrast, regions that may be strongly embedded (i.e. high participation

intensity) may show low openness and diversification of links, thus yielding lower centrality

values (e.g. Île de France). Hence, a region’s outward orientation and the diversification of

its network links moderates the influence of regional scale on network centrality. This is a

major strength of the measure proposed in this study, and it paves the way for future studies

to examine the role of certain regions in networks of inter-regional knowledge flows. Viewing

network positioning of regions in terms of regional bridging centrality might further elevate

our understanding of which regions are the most central, show high visibility and at the same

time are most important for the network and the inter-regional diffusion of knowledge.

Furthermore, the bridging centrality measure may contribute to the development of a

multi-dimensional typology of regions, based on structural network criteria according to their

levels of embeddedness, openness and diversification of links in inter-regional networks. Such

a typology might enhance our understanding of how different the roles of regions in networks

might be, and how they contribute to the arrangement and evolution of the inter-regional

structure. This is one of our main points for a future research agenda. Moreover, it seems

natural that an application of the bridging centrality measure on other types of knowledge

networks according to different technological fields might reveal interesting patterns of the

most central network nodes. Hence, the measure of bridging centrality is not limited to the

context of R&D collaborations but may prove to be useful also for the application in other

types of network structures, such as inter-regional trade flows or inter-regional economic value

chains, also regarding their evolution over time.
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Appendix

A Obtaining the Bridging Centrality

Assume that the number of agents of region i, ni, and the number of projects of that region,

gi, are proportional so that ni = αgi. Then the bridging centrality can be rewritten as follows:
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Further, as the α is common to all regions, we lose no generality to setting it to α = 1. Which

yields the result. 2
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