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Abstract—We address a centralized caching problem with
unequal cache sizes. We consider a system with a server of
files connected through a shared error-free link to a group of
cache-enabled users where one subgroup has a larger cache
size than the other. We propose an explicit caching scheme for
the considered system aimed at minimizing the load of worst-
case demands over the shared link. As suggested by numerical
evaluations, our scheme improves upon the best existing explicit
scheme by having a lower worst-case load; also, our scheme
performs within a multiplicative factor of 1.11 from the scheme
that can be obtained by solving an optimisation problem in which
the number of parameters grows exponentially with the number
of users.

Index Terms—Centralized Caching, Unequal Cache Sizes

I. INTRODUCTION

Content traffic, which is the dominant form of traffic in data

communication networks, is not uniformly distributed over the

day. This makes caching an integral part of data networks in

order to tackle the non-uniformity of traffic. Caching schemes

consist of two phases for content delivery. In the first phase,

called the placement phase, content is partly placed in caches

close to users. This phase takes place during off-peak hours

when the requests of users are still unknown. In the second

phase, called the delivery phase, each user requests a file while

having access to a cache of pre-fetched content. This phase

takes place during peak hours when we need to minimize the

load over the network.

The information-theoretic study of a network of caches

originated with the work of Maddah-Ali and Niesen [1]. They

considered a centralized multicast set-up where there is a server

of files connected via a shared error-free link to a group of

users, each equipped with a dedicated cache of equal size. They

introduced a caching gain called global caching gain. This gain

is in addition to local caching gain, which is the result of

the fact that users have access to part of their requested files.

Global caching gain is achieved by simultaneously sending data

to multiple users in the delivery phase via coded transmission

over the shared link.

The information-theoretic study of cache-aided networks has

then been extended to address other scenarios which arise in

practice such as decentralized caching [2], where the identity

or the number of users is not clear in the placement phase;

caching with non-uniform file popularity [3], where some of

the files in the server are more popular than the others; and

hierarchical caching [4], where there are multiple layers of

caches. Also, while most of existing works consider uncoded

cache placement, where the cache of each user is populated by

directly placing parts of the server files, it has been shown for

Server

User 1 L + 1

M̂F bits M̂F bits MF bits MF bits

· · · · · ·

W1

W2

W3

WN

·
·
·

F bits

User
K

User
L

User

Fig. 1. System model with a server storing N files of size F bits connected
through a shared error-free link to K users. User i is equipped with a cache of

size MiF bits where Mi = M̂ , 1 ≤ i ≤ L, and Mi = M , L+1 ≤ i ≤ K,
for some M̂ > M .

some special cases that coded cache placement can outperform

uncoded cache placement [1], [5]–[7].

A. Existing works and Contributions

In this work, we address caching problems where there is a

server connected through a shared error-free link to a group of

users with caches of possibly different sizes. The objective is to

minimize the load of worst-case demands over the shared link.

Considering decentralized caching with unequal cache sizes,

the placement phase is the same as the one for the equal-cache

case where randomly part of each file is assigned to the cache

of each user. The main challenge is to exploit all the coding

opportunities in the delivery phase [8], [9].

However, considering centralized caching with unequal cache

sizes, the challenge also involves designing the placement phase.

For the two-user case, Cao et al. [10] proposed an optimum

caching scheme, and showed that coded cache placement

outperforms uncoded. For a system with an arbitrary number

of users, Saeedi Bidokhti et al. [11] proposed a scheme with

uncoded cache placement constructed based on the memory

sharing of the scheme for centralized caching with equal cache

sizes [1]. Also, Ibrahim et al. [12], assuming uncoded cache

placement and linear coded delivery, formulated this problem

as a linear optimisation problem in which the number of

parameters grows exponentially with the number of users. As

the number of users grows, the scheme by Saeedi Bidokhti et

al. [11] remains simple at the cost of performance, and the

optimisation problem by Ibrahim et al. [12] becomes intractable.

In the light of the above mentioned issues, we propose a new

caching scheme with uncoded cache placement for centralized

caching with unequal cache sizes where there are two subgroups
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of users, one with a larger cache size than the other. Our caching

scheme outperforms the caching scheme proposed by Saeedi

Bidokhti et al. [11] suggested by numerical evaluations. In

comparison to the work by Ibrahim et al. [12], as our scheme

is an explicit scheme, it does not have the complexity issue

associated with solving an optimisation problem. Also, our

scheme performs within a multiplicative factor of 1.11 from

the scheme by Ibrahim et al. [12] suggested by numerical

evaluations.

II. SYSTEM MODEL

We consider a centralized caching problem where there

is a server storing N independent files Wℓ, ℓ ∈ N , N =
{1, 2, . . . , N}, connected through a shared error-free link to

K cache-enabled users, as shown in Fig. 1. We assume that

the number of files in the server is at least as many as the

number of users, i.e., N ≥ K. Each file in the server is of

size F ∈ N bits (where N is the set of natural numbers),

and is uniformly distributed over the set W =
{

1, 2, . . . , 2F
}

.

User i, i ∈ K, K = {1, 2, . . . ,K}, is equipped with a cache

of size MiF bits for some Mi ∈ R, 0 ≤ Mi ≤ N , where

R is the set of real numbers. The content of the cache of

user i is denoted by Zi. We represent all the cache sizes by

the vector M = (M1,M2, . . . ,MK). In this work, we assume

that there are two subgroups of users, one with a larger cache

size than the other, i.e., Mi = M̂ , 1 ≤ i ≤ L, and Mi = M ,

L + 1 ≤ i ≤ K, for some M̂ > M . User i requests Wdi

from the server where di ∈ N . We represent the request of all

the users by the vector d = (d1, d2, . . . , dK). User i needs to

decode Wdi
using Zi, and the signal Xd transmitted by the

server over the shared link.

As mentioned earlier, each caching scheme consists of two

phases, the placement phase and the delivery phase. The

placement phase consists of K caching functions

φi : W
N → Zi, i ∈ K,

where Zi=
{

1, 2, . . . , 2⌊MiF⌋
}

, i.e., Zi=φi (W1,W2, . . . ,WN).

The delivery phase consists of NK encoding functions

ψd : WN → X ,

where X =
{

1, 2, . . . , 2⌊RF⌋
}

, i.e.,

Xd = ψd (W1,W2, . . . ,WN ) .

We refer to RF as the load of the transmission and R as the

rate of the transmission over the shared link.

The delivery phase consists of also KNK decoding functions

θd,i : Zi ×X → W , i ∈ K,

i.e., Ŵd,i = θd,i(Xd, Zi), where Ŵd,i is the decoded version

of Wdi
at user i when the demand vector is d.

The probability of error for the scheme is defined as

max
d

max
i

P (Ŵd,i 6=Wdi
).

Definition 1: For a given M, we say that the rate R is

achievable if for every ǫ > 0 and large enough F , there exists

a caching scheme with rate R such that its probability of error

is less than ǫ. For a given M, we also define R⋆(M) as the

infimum of all achievable rates.

III. BACKGROUND

In this section, we first consider centralized caching with

equal cache sizes, i.e., Mi =M, ∀i, and review the optimum

scheme among those with uncoded placement [1], [13]. We

then review existing works on centralized caching with unequal

cache sizes where there are more than two users [11], [12].

A. Equal Cache Sizes

Here, we present the optimum caching scheme for centralized

caching with equal cache sizes when the cache placement is

uncoded, and N ≥ K [1]. In this scheme, a parameter denoted

by t is defined at the beginning as

t =
KM

N
.

First, assume that t is an integer. As 0 ≤ M ≤ N , we

have t ∈ {0, 1, 2, . . . ,K}. In the placement phase, Wℓ, ℓ ∈ N ,

is divided into
(

K
t

)

non-overlapping parts denoted by Wℓ,T

where T ⊆ K and |T | = t (|T | denotes the cardinality of the

set T ). Wℓ,T is then placed in the cache of user i if i ∈ T .

This means that the size of each part is F

(kt)
bits, and we place

(

K−1
t−1

)

parts from each file in the cache of user i. Therefore,

we satisfy the cache size constraint as we have

N

(

K−1
t−1

)

(

K
t

) =M.

In the delivery phase, the server transmits

Xd,S =
⊕

s∈S

Wds,S\s,

for every S ⊆ K where |S| = t + 1. This results in the

transmission rate of

Req(N,K,M) =

(

K
t+1

)

(

K
t

) .

This delivery scheme satisfies the demands of all the K
users [1].

Now, assume that t is not an integer. In this case, memory

sharing is utilized where tint is defined as

tint , ⌊t⌋ ,

and α is computed using the following equation

M =
tN

K
= α

tintN

K
+ (1− α)

(tint + 1)N

K
,

where 0 < α ≤ 1. Based on α, the caching problem is divided

into two independent problems. In the first one, the cache size

is α tintN
K
F , and we cache the first αF bits of the files, denoted

by W
(α)
ℓ , ℓ ∈ N . In the delivery phase, the server transmits

X
(α)
d,S1

=
⊕

s∈S1

W
(α)
ds,S1\s

, (1)

for every S1 ⊆ K where |S1| = tint + 1.

In the second one, the cache size is (1− α) (tint+1)N
K

F , and

we cache the last (1−α)F bits of the files, denoted by W
(1−α)
ℓ ,

ℓ ∈ N . In the delivery phase, the server transmits

X
(1−α)
d,S2

=
⊕

s∈S2

W
(1−α)
ds,S2\s

, (2)

for every S2 ⊆ K where |S2| = tint + 2.
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Fig. 2. An existing scheme for centralized caching with unequal cache sizes

Consequently, the rate

Req(N,K,M) = α

(

K
tint+1

)

(

K
tint

) + (1− α)

(

K
tint+2

)

(

K
tint+1

) , (3)

is achieved where
(

a
b

)

is considered to be zero if b > a.

B. Unequal Cache Sizes

Here, we present existing works on centralized caching with

unequal cache sizes where there are more than two users.

1) Scheme 1 [11]: In this scheme, assuming without loss

of generality that M1 ≥ M2 ≥ · · · ≥ MK , the problem is

divided into K caching problems. In problem i, i ∈ K, there

are two groups of users: the first group is composed of users

1 to i, all with equal cache size of (Mi −Mi+1)F bits; the

second group is composed of users i + 1 to K, all without

cache. In problem K, MK+1 is considered as zero, and there

is only one group consisting of K users all with equal cache

size of MKF bits. In problem i, we only consider βiF bits

of the files where β1 + β2 + · · · + βK = 1. This scheme is

schematically shown in Fig. 2 for the three-user case. Based

on the equal cache results, the transmission rate for caching

problem i is

Ri = βiReq(N, i,
Mi −Mi+1

βi
) + βi(K − i), i ∈ K. (4)

The first term on the right-hand side of (4) corresponds to the

transmission rate for the first groups of users, and the second

term corresponds to the transmission rate for the second group

of users, which are without cache in problem i.
Therefore, by optimising the sum rate over the parameters

(β1, β2, . . . , βK), we achieve the following transmission rate

Rex1(N,K,M) = min
(β1,...,βK):

∑
K
i=1

βi=1

K
∑

i=1

Ri. (5)

2) Scheme 2 [12]: In this scheme, the problem of cen-

tralized caching with unequal cache sizes is formulated as

an optimisation problem where it is assumed that the cache

placement is uncoded, and the delivery phase uses linear coding.

To characterize all possible uncoded placement policies, the

parameter aS , S ⊆ K, is defined where aSF represents the

length of Wℓ,S as the fraction of Wℓ stored in the cache of

users in S . Hence, these parameters must satisfy
∑

S⊆K

aS = 1,

and
∑

S⊆K:i∈S

aS ≤
Mi

N
, i ∈ K.

In the delivery phase, the server transmits

Xd,T =
⊕

j∈T

W T
dj
,

to the users in T where T is a non-empty subset of K. W T
dj

,

which is a part of Wdj
, needs to be decoded at user j, and

cancelled by all the users in T \ {j}. Therefore, W T
dj

is

constructed from subfiles Wdj ,S where T \ {j} ⊆ S and

j /∈ S . To characterize all possible linear delivery policies, two

sets of parameters are defined: (i) vT where vT F represents

the length of W T
dj
, ∀j ∈ T , and consequently Xd,T . (ii)

uTS where uTS F is the length of W T
dj ,S

which is the fraction

of Wdj ,S used in the construction W T
dj

. In order to have a

feasible delivery scheme, these parameters need to satisfy some

conditions [12, equations (25)–(30)]. By considering (a,u,v)
as all the optimisation parameters, and C(N,K,M) as all the

conditions that need to be met in the both placement and

delivery phases, we achieve the following transmission rate

Rex2(N,K,M)=max
d



 min
(a,u,v):C(N,K,M)

∑

T ∈K:|T |6=0

vT



 . (6)

IV. PROPOSED CACHING SCHEME

In this section, we first provide some insights into our

proposed scheme using an example. We then propose a scheme

for a system with two subgroups of users, one with a larger

cache size than the other, i.e., Mi = M̂ , 1 ≤ i ≤ L, and

Mi =M , L+ 1 ≤ i ≤ K, for some M̂ > M .

A. An Example

In our example, as shown in Fig. 3, we consider the case

where the number of files in the server is four, denoted for

simplicity by (A,B,C,D), and the number of users is also

four. The first three users have a cache of size 2F bits, and

the forth one has a cache of size F bits. First, we ignore

the extra cache available at the first three users, and use the

equal-cache scheme. This divides each file into four parts,

and places (Ai, Bi, Ci, Di), i ∈ {1, 2, 3, 4}, in the cache of

user i. Therefore, assuming without loss of generality that

users 1, 2, 3 and 4 request A, B, C , and D respectively, the

server needs to transmit A2⊕B1, A3⊕C1, B3⊕C2, A4⊕D1,

B4 ⊕D2 and C4 ⊕D3, and we achieve the rate of R = 3/2
by ignoring the extra cache available at the first three users.

Now, to utilize the extra cache available at users 1, 2, and 3,

we look at what is going to be transmitted when ignoring

these extra caches, and fill the extra caches to reduce the load

of the transmission. In particular, we reduce the load of the

transmissions which are only of benefit to the users with a

larger cache size (i.e., A2⊕B1, A3⊕C1, B3⊕C2). To do this,

we divide Ai, i ∈ {1, 2, 3} into two equal parts, A′
i and A′′

i . We

do the same for Bi, Ci, and Di, i ∈ {1, 2, 3}. We then place

(A′
2, B

′
2, C

′
2, D

′
2) and (A′

3, B
′
3, C

′
3, D

′
3) in the extra cache of

user 1, (A′
1, B

′
1, C

′
1, D

′
1) and (A′′

3 , B
′′
3 , C

′′
3 , D

′′
3 ) in the extra
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Fig. 3. An example for our proposed scheme

cache of user 2, and (A′′
1 , B

′′
1 , C

′′
1 , D

′′
1 ) and (A′′

2 , B
′′
2 , C

′′
2 , D

′′
2 )

in the extra cache of user 3. Therefore, considering the extra

cache available at the first three users, instead of A2 ⊕ B1,

A3 ⊕ C1, B3 ⊕ C2, we just need to transmit A′′
2 ⊕B′′

1 ⊕ C ′
1,

and A′′
3 ⊕B′

3 ⊕C ′
2 to satisfy the demands of all users, and we

achieve the rate R = 1.

Note that what we did in the second part is equivalent to

using the equal-cache scheme for a system with a server storing

four files of size 3
4F bits, i.e., A∗ = (A1, A2, A3), B

∗ =
(B1, B2, B3), C

∗ = (C1, C2, C3), and D∗ = (D1, D2, D3),
and with three users each with a cache of size 2F bits. This

can be seen by defining A∗
12 = (A′

1, A
′
2), A

∗
13 = (A′′

1 , A
′
3),

and A∗
23 = (A′′

2 , A
′′
3) for A∗, and also similarly for B∗, C∗,

and D∗. Then we can check that (A∗
T , B

∗
T , C

∗
T , D

∗
T ), T ∈

{{12}, {13}, {23}}, is in the cache of user i, i ∈ {1, 2, 3} if

i ∈ T .

B. Scheme with Two Levels of Caches

In this subsection, we explain our proposed scheme for the

system where the first L users have a cache of size M̂F bits,

and the last K − L users have a cache of size MF bits for

some M < M̂ .

1) An incremental placement approach: We first describe

a concept which is used later in our proposed scheme for the

unequal-cache problem. Suppose that we initially have a system

with N files, and K users each having a cache of size MF
bits. We use the equal-cache scheme described in Section III-A

to fill the caches.

We later increase the cache size of each user by (M ′−M)F
bits for some M ′ > M . The problem is that we are not allowed

to change the content of the first MF bits that we have already

filled, but we want to fill the additional cache in such a way

that the overall cache has the same content placement as the

scheme described in Section III-A for the new system with N
files, and K users each having a cache of size M ′F bits.

We present our solution when M = tN
K

and M ′ = (t+1)N
K

for some integer t. The solution can be easily extended to an

arbitrary M and M ′. In the cache placement for the system

with the parameters (N,K,M), we divide Wℓ, ℓ ∈ N , into
(

K
t

)

subfiles denoted by Wℓ,T , and place the ones with i ∈ T
in the cache of user i. This means that we put

(

K−1
t−1

)

subfiles

of Wℓ in the cache of each user. After increasing the cache

of each user to M ′F bits, we further divide each subfile into

(K− t) parts denoted by Wℓ,T ,j , j ∈ K\T , and place Wℓ,T ,j

in the cache of user j. This adds Wℓ,T ,j , j /∈ T , to the cache

of user j while keeping the existing content of the first MF
bits of user j, i.e., Wℓ,T ,i j ∈ T , i ∈ K \ T . This means that

we add

N

(

K−1
t

)

(

K
t

)

(K − t)
F =

N

K
F = (M ′ −M)F bits,

to the cache of each user which satisfies the cache size

constraint. Our cache placement for the system with the

parameters (N,K,M ′) becomes the same as the one described

in Section III-A by merging all the parts Wℓ,T ,j which have

the same T ′ = T ∪ {j} as a single subfile Wℓ,T ′ , where

|T ′| = t+ 1.

2) Proposed Scheme: We here present our proposed scheme

for the system where Mi = M̂ , i ∈ L, L = {1, 2, . . . , L}, and

Mi =M , i ∈ K \ L, for some M < M̂ .

Our placement phase is composed of two stages. In the first

stage, we ignore the extra cache available at the first L users,

and use the equal-cache placement for the system with the

parameters (N,K,M). Hence, at the end of this stage, we can

achieve the rate in (3) by transmitting X
(α)
d,S1

, defined in (1),

for any S1 ⊆ K where |S1| = tint + 1, and X
(1−α)
d,S2

, defined

in (2), for any S2 ⊆ K where |S2| = tint + 2.

In the second stage of our placement phase, we fill the extra

cache available at the first L users by looking at what are

going to be transmitted when ignoring these extra caches. To

do so, we try to reduce the load of the transmissions which

are intended only for the users with a larger cache size, i.e.,

X
(α)
d,S1

for any S1 ⊆ L (|S1| = tint + 1), and X
(1−α)
d,S2

for any

S2 ⊆ L (|S2| = tint + 2). These transmissions are constructed

from the subfiles W
(α)
ℓ,T1

, T1 ⊆ L, |T1| = tint, and W
(1−α)
ℓ,T2

,

T2 ⊆ L, |T2| = tint + 1. These subfiles occupy
(

L−1
tint−1

)

(

K
tint

) NαF+

(

L−1
tint

)

(

K
tint+1

)N(1− α)F bits, (7)

of each user’s cache, and the sum-length of these subfiles for

any ℓ ∈ N is

F ′ ,

(

L
tint

)

(

K
tint

)αF +

(

L
tint+1

)

(

K
tint+1

) (1− α)F bits.

Considering our aim in designing the second stage of our

placement phase, we again use the equal-cache placement for

the subfiles W
(α)
ℓ,T1

, T1 ⊆ L, |T1| = tint, and W
(1−α)
ℓ,T2

, T2 ⊆ L
|T2| = tint+1 while considering the extra cache available at the

first L users. This means that we use the equal-cache scheme

for a system with N files of size F ′ bits, and L users each

having a cache of size M ′F ′ bits where

M ′F ′ ,

(

L−1
tint−1

)

(

K
tint

) NαF+

(

L−1
tint

)

(

K
tint+1

)N(1− α)F+(M̂ −M)F. (8)

Note that we are not allowed to change what we have already

placed in the cache of the first L users in the first stage.

Otherwise, we cannot assume that, from the delivery phase

when ignoring the extra caches, the transmissions X
(α)
d,S1

where

S1 = T1 ∪ {j}, |T1| = tint, T1 ⊆ L, j ∈ K \ L, and X
(1−α)
d,S2

where S2 = T2 ∪ {j}, |T2| = tint + 1, T2 ⊆ L, j ∈ K \ L, can



still be decoded by target users. Therefore, we employ our

proposed solution in Section IV-B1 for using the equal-cache

scheme for the second time.

Two scenarios can happen in the second stage.

Scenario 1 where M ′ ≤ N : In this scenario, we achieve the

rate

Rueq(N,K,L, M̂,M)=Req(N,K,M)−R′+Req(N,L,M
′)
F ′

F
,

where

R′ = α

(

L
tint+1

)

(

K
tint

) + (1− α)

(

L
tint+2

)

(

K
tint+1

) .

R′F is the load of the transmissions intended only for the users

with a larger cache size if we ignore their extra caches (or

equivalently if we just utilize the first stage of our placement

phase). Req(N,L,M
′)F ′ is the new load of the transmissions

intended only for the users with a larger cache size at the end

of the second stage.

Scenario 2 where M ′ > N : In this scenario, we also use

memory sharing between the case with M̂ = Φ, where

Φ ,M −

(

L−1
tint−1

)

(

K
tint

) Nα−

(

L−1
tint

)

(

K
tint+1

)N(1− α) +N
F ′

F
,

and the case with M̂ = N . In the system with M̂ = Φ,

according to (8), we have M ′ = N , and we achieve the rate

Req(N,K,M)−R′. In the system with M̂ = N , we can simply

just remove the first L users as they can cache the whole files

in the server, and we achieve the rate Req(N,K − L,M).
Therefore, in this scenario, we achieve the rate

Rueq(N,K,L, M̂,M) =γ(Req(N,K,M)−R′)

+ (1− γ)Req(N,K − L,M),

where 0 ≤ γ ≤ 1, and is calculated using M̂ = γΦ+(1−γ)N .

V. COMPARISON WITH EXISTING WORKS

In this section, we present our numerical results comparing

our proposed scheme with the existing works, described in

Section III-B. Our numerical results, characterizing the trade-

off between the worst-case transmission rate and cache size

for systems with two levels of cache sizes, suggest that our

scheme outperforms the scheme by Saeedi Bidokhti et al. [11].

Considering the work by Ibrahim et al. [12], as the complexity

of the solution grows exponentially with the number of users,

we implemented that work for systems with up to four users.

Our numerical evaluations suggest that our scheme performs

withing a multiplicative factor of 1.11 from that scheme, i.e.,

1 ≤
Rueq

Rex2
≤ 1.11. As an example, this comparison is shown

in Fig. 4 for a four-user system with the parameters N = 10,

K = 4, M1 =M2 = 3M3 = 3M4. For these parameters, our

scheme performs as well as the work by Ibrahim et al. [12]

without needing to solve an optimisation problem to obtain

the scheme.

VI. CONCLUSION

We addressed the problem of centralized caching with

unequal cache sizes. We proposed an explicit scheme for

the system with a server of files connected through a shared

error-free link to a group of users where one subgroup is
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Fig. 4. Comparing the worst-case transmission rate of the proposed scheme
with the existing ones for the system with N = 10, K = 4, M1 = M2 =

3M3 = 3M4.

equipped with a larger cache size than the other. Numerical

results comparing our scheme with existing works showed that

our scheme improves upon the existing explicit scheme by

having a lower worst-case transmission rate over the shared

link. Numerical results also showed that our scheme achieves

within a multiplicative factor of 1.11 from the optimal worst-

case transmission rate for schemes with uncoded placement

and linear coded delivery without needing to solve a complex

optimisation problem.
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