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CENTRALIZERS OF C'DIFFEOMORPHISMS

YOSHIO TOGAWA

Abstract. In this paper we prove that Z(f) = {fk\k e Z} for generic

Axiom A diffeomorphisms. We also prove that generic diffeomorphisms

have no £-roots.

Introduction. Let M be a compact connected C°°-manifold without

boundary. A C-dynamical system on M, 0 < r < oo, is the triple (M, E, f),

where E is the C-structure of M and C is a C-diffeomorphism of M. We

simply let/refer to it. A Cr-dynamical system naturally has the structure of

CJ-dynamical system for any 0 < s < r. Then a C^-diffeomorphism g

commuting with /, i.e., f°g = g°f, is a Cs-symmetry of f in the sense that g

preserves the CJ-structure of the dynamical system/. Throughout we consider

C'-symmetries of C'-dynamical systems. Let Diff(M) be the set of C'-

diffeomorphisms of M with uniform C'-topology. The centralizer of/, Z(f),

is the set of all symmetries of /. Clearly, /* E Z(f), for any k G Z (Z

denotes the set of integers). Then g G Z (f) is said to be trivial if g = fk for

some k G Z. Given a periodic point/? off, we say that g G Z(f) is Ws-trivial

atp if g\ Ws(p) = fk\ Ws(p) for some k G Z, and Ws-trivial if g is IP-trivial

at every periodic point off.

Using the above notations, we can state our results as follows:

Theorem 1. Generic diffeomorphisms have only Ws-trivial symmetries. More

precisely, there exists a generic subset K* of Diff(M) such that Z(f) consists

only of Ws-trivial symmetries for any f G K*.

We say g G Diff(Af ) is a k-root off G Diff(Af) if / = gk.

Corollary. Generic diffeomorphisms have no k-root for any k G Z, k =h

±1.

Let A be the set of Axiom A diffeomorphisms.

Theorem 2. There exists a generic subset A* of A such that

Z(f)={fk\kGZ)

for any f G A*.
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For C °°-centralizers of C °°-diffeomorphisms, B. Anderson in [1] has

proved that having discrete centralizer is C3-open C°°-dense property in MS.

See also [2], [6], and [7, p. 809].

I would like to thank Professor Hiroshi Noguchi for his kind advice.

1. Local symmetries. In this section, we consider local symmetries of

embeddings. Let E(Dr) = emb(/)r", R") e Cx(Drn, Rn) be the set of embed-

dings with C'-topology, where Dr = Drn = {x E R"\ \\x\\ < r). Iff E E(Dr)

has a fixed point p in int Dr, a local symmetry at p off means an embedding g

from some neighbourhood Up of p into R" such that

(i) g(P) = P,
(ii) g ° /and/ ° g are germ equivalent at/r, i.e., there is a neighbourhood Vp

of p such that/ ° g and g ° /are defined and coincide on it.

Then g is said to be trivial if g and /* are germ equivalent at p for some

k E Z, and Ws-trivial if g\ Ws(p) a.ndfk\ Ws(p) are germ equivalent at;?.

Let CE(Dr) be the set of contractions, i.e., the set of F s in E(Dr) such that

(ï)f(Dr) E int Dr,

(ii) D £ If/*(/>.) is just one point, and we let/y denote it,

(iii) Df(pj) is a linear contraction.

Then CE(Dr) is equipped with the topology as a subspace of E(Dr).

Proposition (1.1) There exists a Cx-generic subset CE*(Dr) of CE(Dr) such

that any f E CE*(Dr) has only trivial local symmetries at p¡.

The proof of this proposition is similar to the one of the theorem in our

previous paper [8], and we omit it.

Suppose that /0 E E(D"); fix 0 £ R", and let L = Z)/0(0) be hyperbolic

with skewness t, where D" denotes the unit disc. Let R" = Rs ffi Ru be the

splitting of R" to the contracting and expanding subspace of L. Choose any

0 < e < ¿(I - t)(1 + t)"1, then there exists r > 0 such that ||£>/0(jc) - L\\

< e/2 for any x E Drs X Dru. Choose any 0 < 5 < min(e2rr, e/2). Let Q(f0)

be the 5-neighbourhood of /0 in E(D"), i.e.,

0(/0) = {/EF(/)")|||/-/0||1<S},

where || ||, denotes the C'-norm. Notice that if / E Q(f0), then ||/(0)|| < 8

and Lip(/ - L) < e in Drs X Dru.

Now we can apply the Stable Manifold Theorem [4] and get the following:

Lemma (1.1) /// £ Q(fQ), then f has unique fixed point pf in Dr and there

exists a continuous map

Q:Q(fo)^Cx(D¡,Dr»),   /r-»gr,

such that the graph of Qj gives the stable manifold for f.

Consider the map

*: Q(f0)^CE(D?/2),   f»Ps ./-(/„ Qf)\Dr/2,
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whereps: R" -> Rs denotes the projection and Is denotes the identity map of

Lemma (1.2) xp is an open continuous map.

Proof. Since the composition map ° is continuous [5], so is i//. Let e > 0

and/ E Q(f0) be given. We show that if g G CE(D'/2) is sufficiently close to

xp(f), then there is a map / E Q(f0) such that xp(f) = g and ||/- /||, < e.

This implies that xp is an open map. Let Wf = (Is, qf)(D?). Let U be a tubular

neighbourhood of Wf" and tr: U-* Wf be the projection of this bundle. Let a

be a bump function on U with a\Wj = 1. First we extend g to D' so that g

coincides with ps ° f ° (Is, Qf) out of D2r/3. Using the diffeomorphism ps\ Wf,

we lift this extension of g to Wf and get a map g: Wf -» Wf. Then the

required map/is defined by

f\D- U = f\D- U,   f\U = f\U+((g-f)°n)a.

It is clear that/ E t|/~ x(CE*(D?/2)) has only IP-trivial symmetries. Since xp

is an open continuous map, we can conclude that xp~x(CE*(D?/2)) is generic

in Q(f0), because the inverse image of a generic subset by an open

continuous map is also generic. Hence we get:

Proposition (1.2) ///0 E E(D") has 0 as a hyperbolic fixed point, then there

exist an r-disc Dr, a neighbourhood Q(f0) off0 in E(D"), and its generic subset

Q*(f0) such that any f G Q*(f0) has only Ws-trivial local symmetries at pf,

which is the unique fixed point of f in Dr.

2. Proof of Theorem 1. Let per(/, m) be the set of the periodic points of /of

period m G N (N denotes the set of the natural numbers). Let Km be the set

of fs G Diff(Af ) such that

(i) eachp G per(/, m) is hyperbolic,

(ii) if p, q G per(/, m) have different orbits, then they have different eigen-

values.

Property (ii) implies that g(Of(p)) = Of(p) for any/? E per(/, m) and any

g G Z(f), where Of(p) denotes the orbit of p under /. Notice that each

per(/, m) is finite, each Km is open dense, and A = DZ=TXm is generic in

Diff(AZ). Let A* be the set of fs G Km such that any g E Z(f) is IP-trivial

at any p G per(/, m).

To prove Theorem 1, we have only to show that each A* is generic in Km,

because this implies that A* = fl „=1°^ *s generic in A and any/ E A* has

only IP-trivial symmetries. Further, because Diff(A/) is second countable, it

is sufficient to prove that any/0 E K* has a neighbourhood U(f0) in Km such

that U(f0) n K* is generic in U(f0).

Choose a neighbourhood V(p¡) for each/?, E per(/0, m) such that V(p¡) n

per(/0, m) = {/?,}. Then we can take a neighbourhood Ux(f0) of/0 in Km such

that iff G Ux(f0),

per(/, m) n V(p,) = one pointpfi, for each/?, E per(/, m), and
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per(/, m) c U ^(F,)>    P¡ <= per(/0, m).

Lemma  (2.1)   Using  the  above   notations,   there  exist  a  neighbourhood

U(fo>Pi) C ^i(/o) ar,d Us generic subset U*(f0, p¡) for each p¡ such that any

f £ U*(f0,p¡) has only Ws-trivial symmetries at pfi.

Let U(f0) = n U(f0,Pi), Pi £ per(/0, ttj). Then U(f0) n K* contains a

generic set n U*(f0,p¡) of U(f0), hence is generic itself. So we get Theorem 1

from the above lemma.

We now prove Lemma (2.1). We can choose a neighbourhood Vx(p¡) such

theLtfi(C\(Vx(Pi))) e V(fi(p,)),0< j < m.

Without loss of any generality, we can assume that there exists a chart

{<p„ U(pi)) such that ^¡(p,) = 0 and <p,(Cl(F,(p,))) is the unit disc of R",

n = dim(Af ). We choose a neighbourhood U2(f0, p¡) c Ux(f0) in Km such that

for any/E Ux(f0)

(ï)pfJ E Vx(Pi),
(iï)f(Cl(Vx(Pi))) c V(f(Pi)), 0 < j < m.
We define a map

Ai:U2(f0,pi)-^E(D")

by

A,(/) = aWm°<ï>r1|o.

Then A, is open continuous. Suppose that / £ U2(f0, p¡) and g £ Z (/) is

not IP-trivial at /y,.. Because /y ° g(pfJ) = P/,, for some 0 < / < m, and

fj ° g E Z(f) is not IP-trivial at pfi, we can suppose g(pfi) = p¡¿, without

loss of any generality. Then the germ of <p¡ ° g ° <p,~ ' at (p(pfi) gives a germ of

a local symmetry of A,(/) at <p,(/y,) which is not ^-trivial at q>¡(pj3¡). Hence

A/_1({?(A(/0))) and its generic subset A/'((2*(A(/0))) give the required

U(fQ,p¡) and U*(f0,p¡) of Lemma (2.1) respectively, proving Theorem 1.

3. Proof of Theorem 2. We shall prove Theorem 2. Let K*~x = {/"'|/ £

A:*). Then ff*_1 is generic in Diff(M), and any/ E K*~x has only W-trivial

symmetries. We shall prove that any f E K* n K*~x n A has only trivial

symmetries. Let f E K* n K*~x p\ A and g E Z(/). Let Q = ñ, u • • • U

Í2m be the spectral decomposition. First we show that there is an integer k(i)

for each ß, such that g\ Ws(p) = /*(,)| W(p) for any p E ñ, n per/. This is

trivial if fi, is an orbit of a periodic point. So we assume that ß, is infinite. Let

p £ fl(- n per / and let

g| HV' (p) = fk\ W* (p),       g\ W" (p) = f\ W (p).

Since fi, is topological transitive and periodic points are dense in ß,, p is not

isolated in ß, n per/ Since the family of stable manifolds is smooth, then

Ws(p) n W(q) t¿ 0, W"(p) n ^(77) ^ 0 for sufficiently near q E Q,. n

per/ Using the A-lemma, we can conclude that Ws(p) n W"(p) — per/ t^ 0,

and this implies that k = j. Suppose thatp,,p2 G ß/ n per/, and let

g\rVS(Pi)  =fk\W° (Px), g\W* (p2) = f\W* (p2).
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Since Ws(Px) is dense in 0, [7, p. 783], then Ws(px) n Wu(p2) ¥> 0. This

implies that k = j. Hence there is an integer k(i) such that g\Ws(p) =

fk«)\ ws(p) for any/? E fi,, n per/.

Since the continuity of the family of the stable manifolds on ñ, implies that

Cl( (J W (/?),/? E per/ n Q,-) DlJ»" (*),       * G 0„

and since »"(Q,-) = U IP(x), x E ß, [3], then

g\Cl(W* (SI,)) = fk"\C\(W° (SI,)).

Since Af = U IP(fi,-), connectedness of M implies that k(l) = • • • = k(m),

hence g is trivial, proving the Theorem 2.
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