CENTRALIZERS OF C¹-DIFFEOMORPHISMS

YOSHIO TOGAWA

ABSTRACT. In this paper we prove that $Z(f) = \{f^k | k \in Z\}$ for generic Axiom A diffeomorphisms. We also prove that generic diffeomorphisms have no k-roots.

Introduction. Let M be a compact connected C^{∞} -manifold without boundary. A C'-dynamical system on M, $0 \le r \le \infty$, is the triple (M, \mathfrak{C}, f) , where \mathfrak{C} is the C'-structure of M and C is a C'-diffeomorphism of M. We simply let f refer to it. A C'-dynamical system naturally has the structure of C^{s} -dynamical system for any $0 \le s \le r$. Then a C^{s} -diffeomorphism gcommuting with f, i.e., $f \circ g = g \circ f$, is a C^{s} -symmetry of f in the sense that gpreserves the C^{s} -structure of the dynamical system f. Throughout we consider C^{1} -symmetries of C^{1} -dynamical systems. Let Diff(M) be the set of C^{1} diffeomorphisms of M with uniform C^{1} -topology. The centralizer of f, Z(f), is the set of all symmetries of f. Clearly, $f^{k} \in Z(f)$, for any $k \in Z$ (Zdenotes the set of integers). Then $g \in Z(f)$ is said to be trivial if $g = f^{k}$ for some $k \in Z$. Given a periodic point p of f, we say that $g \in Z(f)$ is W^{s} -trivial at p if $g|W^{s}(p) = f^{k}|W^{s}(p)$ for some $k \in Z$, and W^{s} -trivial if g is W^{s} -trivial at every periodic point of f.

Using the above notations, we can state our results as follows:

THEOREM 1. Generic diffeomorphisms have only W^s -trivial symmetries. More precisely, there exists a generic subset K^* of Diff(M) such that Z(f) consists only of W^s -trivial symmetries for any $f \in K^*$.

We say $g \in \text{Diff}(M)$ is a k-root of $f \in \text{Diff}(M)$ if $f = g^k$.

COROLLARY. Generic diffeomorphisms have no k-root for any $k \in \mathbb{Z}, k \neq \pm 1$.

Let A be the set of Axiom A diffeomorphisms.

THEOREM 2. There exists a generic subset A^* of A such that

$$Z(f) = \left\{ f^k | k \in Z \right\}$$

for any $f \in A^*$.

© American Mathematical Society 1978

Received by the editors May 13, 1977 and, in revised form, September 12, 1977. AMS (MOS) subject classifications (1970). Primary 58F99.

Key words and phrases. Axiom A diffeomorphism, symmetry, centralizer, k-root of diffeomorphism.

For C^{∞} -centralizers of C^{∞} -diffeomorphisms, B. Anderson in [1] has proved that having discrete centralizer is C^3 -open C^{∞} -dense property in *MS*. See also [2], [6], and [7, p. 809].

I would like to thank Professor Hiroshi Noguchi for his kind advice.

1. Local symmetries. In this section, we consider local symmetries of embeddings. Let $E(D_r) = \operatorname{emb}(D_r^n, R^n) \subset C^1(D_r^n, R^n)$ be the set of embeddings with C^1 -topology, where $D_r = D_r^n = \{x \in R^n | ||x|| \le r\}$. If $f \in E(D_r)$ has a fixed point p in int D_r , a local symmetry at p of f means an embedding g from some neighbourhood U_p of p into R^n such that

(i) g(p) = p,

(ii) $g \circ f$ and $f \circ g$ are germ equivalent at p, i.e., there is a neighbourhood V_p of p such that $f \circ g$ and $g \circ f$ are defined and coincide on it.

Then g is said to be *trivial* if g and f^k are germ equivalent at p for some $k \in \mathbb{Z}$, and W^s -trivial if $g|W^s(p)$ and $f^k|W^s(p)$ are germ equivalent at p.

Let $CE(D_r)$ be the set of contractions, i.e., the set of f's in $E(D_r)$ such that (i) $f(D_r) \subset \text{int } D_r$,

(ii) $\bigcap_{k=1}^{k=\infty} f^k(D_r)$ is just one point, and we let p_f denote it,

(iii) $Df(p_f)$ is a linear contraction.

Then $CE(D_r)$ is equipped with the topology as a subspace of $E(D_r)$.

PROPOSITION (1.1) There exists a C^1 -generic subset $CE^*(D_r)$ of $CE(D_r)$ such that any $f \in CE^*(D_r)$ has only trivial local symmetries at p_f .

The proof of this proposition is similar to the one of the theorem in our previous paper [8], and we omit it.

Suppose that $f_0 \in E(D^n)$; fix $0 \in R^n$, and let $L = Df_0(0)$ be hyperbolic with skewness τ , where D^n denotes the unit disc. Let $R^n = R^s \oplus R^u$ be the splitting of R^n to the contracting and expanding subspace of L. Choose any $0 < \varepsilon < \frac{1}{2}(1 - \tau)(1 + \tau)^{-1}$, then there exists r > 0 such that $||Df_0(x) - L||$ $< \varepsilon/2$ for any $x \in D_r^s \times D_r^u$. Choose any $0 < \delta < \min(\varepsilon^2 r\tau, \varepsilon/2)$. Let $Q(f_0)$ be the δ -neighbourhood of f_0 in $E(D^n)$, i.e.,

 $Q(f_0) = \{ f \in E(D^n) | ||f - f_0||_1 < \delta \},\$

where $\| \|_1$ denotes the C^1 -norm. Notice that if $f \in Q(f_0)$, then $\| f(0) \| < \delta$ and $\operatorname{Lip}(f - L) < \varepsilon$ in $D_r^s \times D_r^u$.

Now we can apply the Stable Manifold Theorem [4] and get the following:

LEMMA (1.1) If $f \in Q(f_0)$, then f has unique fixed point p_f in D_r and there exists a continuous map

$$\mathfrak{g}\colon Q(f_0)\to C^1(D_r^s,D_r^u), \quad f\mapsto \mathfrak{g}_r,$$

such that the graph of g_f gives the stable manifold for f.

Consider the map

$$\psi: Q(f_0) \to CE(D_{r/2}^s), \quad f \mapsto p_s \circ f \circ (I_s, \mathfrak{g}_f) | D_{r/2},$$

where $p_s: \mathbb{R}^n \to \mathbb{R}^s$ denotes the projection and I_s denotes the identity map of D_r^s .

LEMMA (1.2) ψ is an open continuous map.

PROOF. Since the composition map \circ is continuous [5], so is ψ . Let $\varepsilon > 0$ and $f \in Q(f_0)$ be given. We show that if $g \in CE(D_{r/2}^s)$ is sufficiently close to $\psi(f)$, then there is a map $\tilde{f} \in Q(f_0)$ such that $\psi(\tilde{f}) = g$ and $||\tilde{f} - f||_1 < \varepsilon$. This implies that ψ is an open map. Let $W_f^s = (I_s, \mathfrak{g}_f)(D_r^s)$. Let U be a tubular neighbourhood of W_f^s and $\pi: U \to W_f^s$ be the projection of this bundle. Let α be a bump function on U with $\alpha | W_f^s = 1$. First we extend g to D_r^s so that g coincides with $p_s \circ f \circ (I_s, \mathfrak{g}_f)$ out of $D_{2r/3}^s$. Using the diffeomorphism $p_s | W_f^s$, we lift this extension of g to W_f^s and get a map $\tilde{g}: W_f^s \to W_f^s$. Then the required map \tilde{f} is defined by

$$\tilde{f}|D - U = f|D - U, \quad \tilde{f}|U = f|U + ((\tilde{g} - f) \circ \pi)\alpha.$$

It is clear that $f \in \psi^{-1}(CE^*(D_{r/2}^s))$ has only W^s -trivial symmetries. Since ψ is an open continuous map, we can conclude that $\psi^{-1}(CE^*(D_{r/2}^s))$ is generic in $Q(f_0)$, because the inverse image of a generic subset by an open continuous map is also generic. Hence we get:

PROPOSITION (1.2) If $f_0 \in E(D^n)$ has 0 as a hyperbolic fixed point, then there exist an r-disc D_r , a neighbourhood $Q(f_0)$ of f_0 in $E(D^n)$, and its generic subset $Q^*(f_0)$ such that any $f \in Q^*(f_0)$ has only W^s -trivial local symmetries at p_f , which is the unique fixed point of f in D_r .

2. Proof of Theorem 1. Let per(f, m) be the set of the periodic points of f of period $m \in N$ (N denotes the set of the natural numbers). Let K_m be the set of f's \in Diff(M) such that

(i) each $p \in per(f, m)$ is hyperbolic,

(ii) if $p, q \in per(f, m)$ have different orbits, then they have different eigenvalues.

Property (ii) implies that $g(O_f(p)) = O_f(p)$ for any $p \in per(f, m)$ and any $g \in Z(f)$, where $O_f(p)$ denotes the orbit of p under f. Notice that each per(f, m) is finite, each K_m is open dense, and $K = \bigcap_{m=1}^{m=\infty} K_m$ is generic in Diff(M). Let K_m^* be the set of f's $\in K_m$ such that any $g \in Z(f)$ is W^s -trivial at any $p \in per(f, m)$.

To prove Theorem 1, we have only to show that each K_m^* is generic in K_m , because this implies that $K^* = \bigcap_{m=1}^{m=\infty} K_m^*$ is generic in K and any $f \in K^*$ has only W^s -trivial symmetries. Further, because Diff(M) is second countable, it is sufficient to prove that any $f_0 \in K_m^*$ has a neighbourhood $U(f_0)$ in K_m such that $U(f_0) \cap K_m^*$ is generic in $U(f_0)$.

Choose a neighbourhood $V(p_i)$ for each $p_i \in per(f_0, m)$ such that $V(p_i) \cap per(f_0, m) = \{p_i\}$. Then we can take a neighbourhood $U_1(f_0)$ of f_0 in K_m such that if $f \in U_1(f_0)$,

 $per(f, m) \cap V(p_i) = one point p_{f,i}$, for each $p_i \in per(f, m)$, and

$$\operatorname{per}(f, m) \subset \bigcup V(p_i), \quad p_i \in \operatorname{per}(f_0, m).$$

LEMMA (2.1) Using the above notations, there exist a neighbourhood $U(f_0, p_i) \subset U_1(f_0)$ and its generic subset $U^*(f_0, p_i)$ for each p_i such that any $f \in U^*(f_0, p_i)$ has only W^s -trivial symmetries at p_{f_i} .

Let $U(f_0) = \bigcap U(f_0, p_i)$, $p_i \in per(f_0, m)$. Then $U(f_0) \cap K_m^*$ contains a generic set $\bigcap U^*(f_0, p_i)$ of $U(f_0)$, hence is generic itself. So we get Theorem 1 from the above lemma.

We now prove Lemma (2.1). We can choose a neighbourhood $V_1(p_i)$ such that $f_0^j(\operatorname{Cl}(V_1(p_i))) \subset V(f_0^j(p_i)), 0 \leq j \leq m$.

Without loss of any generality, we can assume that there exists a chart $\{\varphi_i, U(p_i)\}$ such that $\varphi_i(p_i) = 0$ and $\varphi_i(\operatorname{Cl}(V_1(p_i)))$ is the unit disc of \mathbb{R}^n , $n = \dim(M)$. We choose a neighbourhood $U_2(f_0, p_i) \subset U_1(f_0)$ in K_m such that for any $f \in U_1(f_0)$

(i) $p_{f,i} \in V_1(p_i)$, (ii) $f^j(\operatorname{Cl}(V_1(p_i))) \subset V(f^j(p_i)), 0 \le j \le m$. We define a map

$$\Lambda_i: U_2(f_0, p_i) \to E(D^n)$$

by

$$\Lambda_i(f) = \varphi_i \circ f^m \circ \varphi_i^{-1} | D.$$

Then Λ_i is open continuous. Suppose that $f \in U_2(f_0, p_i)$ and $g \in Z(f)$ is not W^s -trivial at $p_{f,i}$. Because $f^j \circ g(p_{f,i}) = p_{f,i}$ for some $0 \le j \le m$, and $f^j \circ g \in Z(f)$ is not W^s -trivial at $p_{f,i}$, we can suppose $g(p_{f,i}) = p_{f,i}$, without loss of any generality. Then the germ of $\varphi_i \circ g \circ \varphi_i^{-1}$ at $\varphi(p_{f,i})$ gives a germ of a local symmetry of $\Lambda_i(f)$ at $\varphi_i(p_{f,i})$ which is not W^s -trivial at $\varphi_i(p_{f,i})$. Hence $\Lambda_i^{-1}(Q(\Lambda(f_0)))$ and its generic subset $\Lambda_i^{-1}(Q^*(\Lambda(f_0)))$ give the required $U(f_0, p_i)$ and $U^*(f_0, p_i)$ of Lemma (2.1) respectively, proving Theorem 1.

3. Proof of Theorem 2. We shall prove Theorem 2. Let $K^{*-1} = \{f^{-1} | f \in K^*\}$. Then K^{*-1} is generic in Diff(M), and any $f \in K^{*-1}$ has only W^u -trivial symmetries. We shall prove that any $f \in K^* \cap K^{*-1} \cap A$ has only trivial symmetries. Let $f \in K^* \cap K^{*-1} \cap A$ and $g \in Z(f)$. Let $\Omega = \Omega_1 \cup \cdots \cup \Omega_m$ be the spectral decomposition. First we show that there is an integer k(i) for each Ω_i such that $g | W^s(p) = f^{k(i)} | W^s(p)$ for any $p \in \Omega_i \cap \text{per } f$. This is trivial if Ω_i is an orbit of a periodic point. So we assume that Ω_i is infinite. Let $p \in \Omega_i \cap \text{per } f$, and let

$$g|W^{s}(p) = f^{k}|W^{s}(p), \qquad g|W^{u}(p) = f^{j}|W^{u}(p).$$

Since Ω_i is topological transitive and periodic points are dense in Ω_i , p is not isolated in $\Omega_i \cap \text{per } f$. Since the family of stable manifolds is smooth, then $W^s(p) \cap W^u(q) \neq \emptyset$, $W^u(p) \cap W^s(q) \neq \emptyset$ for sufficiently near $q \in \Omega_i \cap$ per f. Using the λ -lemma, we can conclude that $W^s(p) \cap W^u(p) - \text{per } f \neq \emptyset$, and this implies that k = j. Suppose that $p_1, p_2 \in \Omega_i \cap \text{per } f$, and let

$$g|W^{s}(p_{1}) = f^{k}|W^{s}(p_{1}), \quad g|W^{s}(p_{2}) = f^{j}|W^{s}(p_{2}).$$

Since $W^{s}(p_{1})$ is dense in Ω_{i} [7, p. 783], then $W^{s}(p_{1}) \cap W^{u}(p_{2}) \neq \emptyset$. This implies that k = j. Hence there is an integer k(i) such that $g|W^{s}(p) = f^{k(i)}|W^{s}(p)$ for any $p \in \Omega_{i} \cap \text{per } f$.

Since the continuity of the family of the stable manifolds on Ω_i implies that

$$\operatorname{Cl}\left(\bigcup W^{s}(p), p \in \operatorname{per} f \cap \Omega_{i}\right) \supset \bigcup W^{s}(x), \quad x \in \Omega_{i},$$

and since $W^{s}(\Omega_{i}) = \bigcup W^{s}(x), x \in \Omega_{i}$ [3], then

$$g | \operatorname{Cl}(W^{s}(\Omega_{i})) = f^{k(i)} | \operatorname{Cl}(W^{s}(\Omega_{i})).$$

Since $M = \bigcup W^s(\Omega_i)$, connectedness of M implies that $k(1) = \cdots = k(m)$, hence g is trivial, proving the Theorem 2.

References

1. B. Anderson, Diffeomorphisms with discrete centralizer, Topology 15 (1976), 143-147.

2. ____, Centralizer of C-diffeomorphisms, Trans. Amer. Math. Soc. 222 (1976), 97-106.

3. M. Hirsh, J. Palis, C. Pugh, and M. Shub, Neighbourhood of hyperbolic sets, Invent. Math. 9 (1970), 121-134.

4. M. Hirsh and C. Pugh, *Stable manifolds and hyperbolic sets*, Proc. of A. M. S. Summer Institute on Global Analysis at Berkeley, 1968, pp. 133–165.

5. M. Irvin, On the smoothness of the composition map, Quart. J. Math. Oxford Ser. (2) 23 (1972), 112-133.

6. J. Palis, Vector fields generate few diffeomorphisms, Bull. Amer. Math. Soc. 80 (1974), 503-505.

7. S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817.

8. Y. Togawa, Generic Morse-Smale diffeomorphisms have only trivial symmetries, Proc. Amer. Math. Soc. (to appear).

DEPARTMENT OF INFORMATION SCIENCES, SCIENCE UNIVERSITY OF TOKYO, NODA CITY, CHIBA 278, JAPAN