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1 Introduction

The holographic properties of three-dimensional anti de-Sitter gravity are very special:

the asymptotic symmetry algebra represents the two dimensional conformal algebra with

a definite prediction for the classical central charge in the Dirac bracket algebra of the

canonical generators [1], the solution space includes rotating black holes [2], and the dual

theory on the classical level is Liouville theory [3]. Furthermore, using the classical central

extension in Cardy’s formula allows one to reproduce the Bekenstein-Hawking entropy of

the BTZ black holes [4] (see also [5]).

Whereas all these results have natural analogues in asymptotically flat gravity at null

infinity in three dimensions [6–12], the four-dimensional case [13–15] is more involved. One

reason is the non-integrability of the charges in the presence of gravitational radiation [16].

Another source of complication is due to the desire to include superrotations in the BMS

group [17–19] or the associated algebra [20–23], which goes together with allowing for

suitable singularities in the solution space on which superrotations act. Besides formal

reasons that drive one to include these additional symmetries, they have been shown to

lead to new physical applications such as the subleading soft graviton theorem [24, 25]

or the spin memory effect [26, 27]. A naive treatment of the charges associated to the

extended algebra, that is to say integrating regular solutions on the celestial sphere with

generators that have poles, generically leads to divergences [28, 29]. One way to avoid

dealing directly with those is simply not to integrate over the celestial sphere and to work

with the local current algebra instead [30]. For some problems this is however not good

enough as they do require a well-defined integration, or more precisely, a suitable moment

– 1 –



J
H
E
P
0
6
(
2
0
1
7
)
0
0
7

map from solution space into the dual of the symmetry algebra. One such problem concerns

the central charge.

The aim of the present paper is to clarify formal aspects of the field dependent cen-

tral extension that appears in the modified Dirac bracket algebra of charges and cur-

rents [28, 30], by explicitly constructing the centrally extended Lie algebroid that comes

with the bms4 algebra and its action on the free data at null infinity.

More precisely, we first reformulate the field dependent central extension as a local

BRST 2-cocycle, in much the same way the Adler-Bardeen non-abelian gauge anomaly can

be reformulated as the BRST 1-cocycle that appears in the transgression from the charac-

teristic class TrF 3 to the primitive element TrC5 (see e.g. [31–34]). Despite the BRST-type

formulation, we do not imply that we are dealing with gauge symmetries. Rather, as in

the three-dimensional case where the asymptotic symmetries of the gravitational/Chern-

Simons theory become the global symmetries of the dual Wess-Zumino-Witten or Liouville-

type theory, we consider BMS4 as the global symmetry group of a suitable dual theory.

The BRST formulation here is just a convenient way to encode Lie algebra or algebroid

cohomology.

For the above considerations, the associated local functionals are formal in the sense

that they are given by equivalence classes of top forms up to exact ones, which means that

one disregards all boundary terms that come from integrations by parts. When looking for

concrete realizations, one is led towards formulations in terms of vertex operator algebras of

conformal field theories where spatial integrals correspond to taking residues (see e.g. [35]

or [36, 37] for elementary introductions, [38] where related contour integrals have appeared

in the current context and [39, 40] for related constructions applied to BMS3).

Alternatively, as proposed in [18], one may map I + to a cylinder times a line and

explicitly realize the centrally extended bms4 algebroid using Fourier analysis. The effect of

mapping a gravitational solution from the 2-punctured Riemann sphere to the cylinder is a

shift of the zero mode of the asymptotic part of the shear, and thus also of the subleading

part of the angular metric, that is linear in retarded time. As a consequence, this implies

a constant shift of the zero mode of the news, in direct analogy with the standard shift of

the zero mode of the energy momentum tensor in a conformal field theory.

Since it might not be widely known in the physics literature, we start by briefly recalling

the general framework for central extensions in a Lie algebroid/Lie-Rinehart pair (see

e.g. [41, 42]) before applying the construction to the case of interest.

2 Local description of a Lie algebroid

Consider an algebra of functions A in variables φi with elements denoted by f(φ) and a

vector space g generated over A by a set eα, with elements denoted by ξ = ξα(φ)eα. The

vector space g is turned into a Lie algebra by defining

[eα, eβ ] = fγαβ(φ)eγ , (2.1)

[eα, f(φ)] = Riα(φ)∂if, (2.2)
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where ∂i = ∂
∂φi

, by extending the bracket using skew-symmetry and the Leibniz rule, and

by requiring that

2Ri[α∂iR
j
β] = fγαβR

j
γ , (2.3)

Ri[γ∂if
ε
αβ] = f εδ[γf

δ
αβ], (2.4)

where square brackets denote skew-symmetrization of the included indices of the same

type, divided by the factorial of the number of these indices. In other words, all Jacobi

identities hold when using the rules and conditions (2.3) and (2.4). Alternatively, instead

of (2.2), one can define δξf = ξαRiα∂if and

[ξ1, ξ2] = (ξα1 ξ
β
2 f

γ
αβ + δξ1ξ

γ
2 − δξ2ξ

γ
1 )eγ , (2.5)

with

[δξ1 , δξ2 ] = δ[ξ1,ξ2]. (2.6)

Note that here and below, we will systematically use the notation

δξf = [ξ, f ]. (2.7)

Introducing Grassmann odd variables Cα and ∂α = ∂
∂Cα , the graded space of polyno-

mials in these variables taking values in A is denoted by Ω∗. Its elements are denoted by

ω =
∑
p=0

1

p!
ωα1...αp(φ)Cα1 . . . Cαp , (2.8)

where ωα1...αp = ω[α1...αp]. Equations (2.3) and (2.4) are then equivalent to the requirement

that

γ = CαRiα∂i −
1

2
CαCβfγαβ∂γ , (2.9)

is a differential on Ω∗,

γ2 = 0. (2.10)

The particular case where the fγαβ are constants and do not depend explicitly on the fields

is referred to as an action algebroid.

Note that in the case of interest below, fields and their derivatives are relevant, so that

these formulas have to be suitably interpreted in, respectively extended to, the context of

jet-bundles, see e.g. [43–46].

3 Central extensions

A trivial central extension is constructed by adding a generator Z to g, with ĝ consisting

of elements ξ̂ = ξα(φ)eα + ξZ(φ)Z, keeping (2.1) unchanged, while

[Z, eα] = 0 = [Z, f(φ)], (3.1)

and the bracket again extended by skew-symetry and Leibniz rule.
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Consider a 2-cocycle,

γω2 = 0 ⇐⇒ Ri[γ∂iωαβ] = ωδ[γf
δ
αβ]. (3.2)

This condition is equivalent to saying that ĝ, where (2.1) is changed to

[eα, eβ ] = fγαβ(φ)eγ + ωαβ(φ)Z, (3.3)

and all other relations are kept unchanged, is still a Lie algebroid. In the case where ω2 is

a coboundary,

ω2 = γη1 ⇐⇒ ωαβ = 2Ri[α∂iηβ] − f
γ
αβηγ , (3.4)

this extended Lie algebroid is equivalent to the trivially extended Lie algebroid by the

change of generators

e′α = eα − ηαZ, Z ′ = Z. (3.5)

The differential of the extended Lie algebroid is

γ̂ = γ − 1

2
CαCβωαβ

∂

∂CZ
(3.6)

in the space of polynomials in Cα, CZ with values in functions of φi. By construction, the

2-cocycle ω2, becomes trivial in the extended complex, ω2 = −γ̂CZ .

For later use, we note that, if Kξ1,ξ2 = ωαβξ
α
1 ξ

β
2 , ηξ = ηαξ

α, the cocycle condition (3.2)

and the coboundary condition (3.4) can also be written as

K[ξ1,ξ2],ξ3 − [ξ3,Kξ1,ξ2 ] + cyclic(1, 2, 3) = 0, (3.7)

Kξ1,ξ2 = [ξ1, ηξ2 ]− [ξ2, ηξ1 ]− η[ξ1,ξ2], (3.8)

and that the extension defined by (3.3) is equivalent to

[ξ̂1, ξ̂2] = [ξ1, ξ2] +Kξ1,ξ2Z. (3.9)

4 BMS4 action algebroid

We describe here relevant elements of the symmetry structure of four-dimensional asymp-

totically flat spacetimes at null infinity. We will adopt the point of view developed

in [18, 21–23, 28, 30, 47], to which we refer for more details and assume at the outset

to be in the simplest case for our purpose here, with future null infinity I + taken as the

2-punctured Riemann sphere times a line.

The independent variables are u, ζ, ζ̄. The variable u is real, ū = u. In this context,

the bms4 algebra is parametrized by T (ζ, ζ̄) = T̄ , Y (ζ), Ȳ (ζ̄). It is the Lie algebra of

vector fields

ξ = f∂u + Y ∂ + Ȳ ∂̄, (4.1)

where ∂ = ∂ζ , ∂̄ = ∂ζ̄ ,

f = T +
1

2
uψ, ψ = ∂Y + ∂̄Ȳ . (4.2)
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Writing [ξT1,Y1,Ȳ1 , ξT2,Y2,Ȳ2 ] = ξ
T̂ ,Ŷ , ˆ̄Y

, this gives

T̂ = Y1∂T2 −
1

2
∂Y1T2 − (1↔ 2) + c.c., (4.3)

Ŷ = Y1∂Y2 − (1↔ 2), (4.4)

where c.c. denotes complex conjugation and ̂̄Y =
¯̂
Y .

The relevant fields are σ(u, ζ, ζ̄), its complex conjugate σ̄ and their derivatives. They

correspond to the asymptotic part of the complex shear, but for notational simplicity, we

have dropped the standard superscript 0. On-shell, they encode the subleading components

of the angular part of the BMS metric. They transform as

− [ξ, σ] =

[
f∂u + Y ∂ + Ȳ ∂̄ +

3

2
∂̄Ȳ − 1

2
∂Y

]
σ − ∂̄2f, (4.5)

with δξσ̄ = δξσ. Furthermore, the transformation of the derivative of a field corresponds

to the derivative of the transformation of the field,

[ξ, ∂kσ] = ∂k([ξ, σ]), [ξ, ∂̄kσ] = ∂̄k([ξ, σ]), [ξ, ∂kuσ] = ∂ku([ξ, σ]), (4.6)

together with the complex conjugates of these relations. Note that this implies in particular

the following transformation law for the news tensor σ̇ = ∂uσ,

− [ξ, σ̇] = [f∂u + Y ∂ + Ȳ ∂̄ + 2∂̄Ȳ ]σ̇ − 1

2
∂̄3Ȳ . (4.7)

It also follows that [ξ1, [ξ2, σ]] − [ξ2, [ξ1, σ]] = [[ξ1, ξ2], σ], as required by (2.3). There are

other fields on which bms4 acts non trivially, but they are passive in the sense that they

do not modify the commutators below.

It follows from the computations in [28, 30, 47] that the expression

Kξ1,ξ2 =

∫
dζ

∫
dζ̄
[(
σf1∂

3Y2 − (1↔ 2)
)

+ c.c.
]
, (4.8)

satisfies the cocycle condition (3.7) provided that the integral annihilates ∂ and ∂̄

derivatives.

5 BRST formulation

Introducing the Grassmann odd fields η(ζ), η̄(ζ̄), C(ζ, ζ̄) with C real, associated to Y, Ȳ , T ,

and the combination χ = C + u
2 (∂η + ∂̄η̄), the BRST differential of the BMS4 action

algebroid is defined through

γη = −η∂η, γC = −η∂C +
1

2
∂ηC + c.c.,

γσ = −
(
χ∂u + η∂ + η̄∂̄ +

3

2
∂̄η̄ − 1

2
∂η

)
σ + ∂̄2χ.

(5.1)
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When changing variables and using χ(u, ζ, ζ̄) instead of C, we have

χ̇ =
1

2
(∂η + ∂̄η̄), γχ = −

(
η∂ + η̄∂̄ − 1

2
∂η − 1

2
∂̄η̄

)
χ. (5.2)

The differential is extended so as to commute with complex conjugation and all deriva-

tives. The expression corresponding to the integrand of (4.8) and the associated spatial

components computed in [30] is given by

ω2,2 = dζdζ̄Ku − dudζ̄K + dudζK̄, (5.3)

where

Ku = χ(Q+ Q̄), K = η(Q+ Q̄) + ∂̄3η̄∂χ, Q = ∂3ησ. (5.4)

Introducing in addition

N = χK, Ō = ηη̄(Q+ Q̄) + η∂3η∂̄χ− η̄∂̄3η̄∂χ, (5.5)

and

ω3,1 = −(duŌ − dζN̄ + dζ̄N),

ω4,0 = ηη̄χ(Q+ Q̄) + η∂3ηχ∂̄χ− η̄∂̄3η̄χ∂χ

= η∂3η(η̄χσ + χ∂̄χ)− η̄∂̄3η̄(ηχσ̄ + χ∂χ) ,

(5.6)

the relations

γQ = −∂(ηQ)− ∂u(χQ)− ∂̄(η̄Q+ ∂3η∂̄χ), γKu = ∂N + ∂̄N̄ ,

γK = −∂uN + ∂̄Ō, γŌ = −∂uω4,0, γN = −∂̄ω4,0,
(5.7)

allow one to easily derive the descent equations

γω2,2 + dHω
3,1 = 0,

γω3,1 + dHω
4,0 = 0,

γω4,0 = 0,

(5.8)

where dH = du∂u + dζ∂ + dζ̄∂̄. It follows that ω2,2 is a BRST cocycle modulo dH in

ghost number 2 and form degree 2. One way to show that this cocycle is non-trivial,

ω2,2 6= γη1,2 + dHη
2,1 is to show that ω4,0 is non trivial, ω4,0 6= γη3,0. This analysis will be

completed elsewhere.

6 Centrally extended BMS4 Lie algebroid

6.1 Realization on the two-punctured Riemann sphere

Provided the integral annihilates spatial boundary terms, the centrally extended Lie alge-

broid b̂ms4 is defined by the commutators given in (3.9). More explicitly, parametrizing

b̂ms4 through (T (ζ, ζ̄), Y (ζ), Ȳ (ζ̄), V ), with the understanding that the elements in each

– 6 –
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slot can be multiplied by functions of σ, σ̄ and their derivatives, the commutation rela-

tions (4.3) and (4.4) are completed by

V̂ = Kξ1,ξ2 . (6.1)

A concrete framework where multiplication is well defined and spatial boundary terms

can indeed be neglected is provided by vertex operator algebras where one considers either

polynomials with formal power series or Laurent series and the integral is defined to select

the residue separately in ζ and ζ̄. For instance, a set-up that accommodates singular

solutions with delta function singularities is to take for Y, Ȳ , T Laurent polynomials, while

∂nuσ are formal power series.

In terms of the following generators for Y, Ȳ , T ,

lm = −ζm+1∂, l̄m = −ζ̄m+1∂̄, Pk,l = ζk+ 1
2 ζ̄ l+

1
2 , (6.2)

the algebra reads

[lm, ln] = (m− n)lm+n, [l̄m, l̄n] = (m− n)l̄m+n,

[lm, Pk,l] =

(
1

2
m− k

)
Pm+k,l, [l̄m, Pk,l] =

(
1

2
m− l

)
Pk,m+l,

[lm, l̄n] = 0 = [Pk,l, Po,p].

(6.3)

It follows from (4.5), (4.7) that the conformal weights of σ, ∂uσ are (−1
2 ,

3
2) and (0, 2)

respectively, so that u is of conformal weights (−1
2 ,−

1
2). This leads to the expansions

∂nuσ(u, ζ, ζ̄) =
∑
k,l

(∂nuσ)k,l(u)ζ−k−
n−1
2 ζ̄−l−

n+3
2 ,

∂nu σ̄(u, ζ, ζ̄) =
∑
k,l

(∂nu σ̄)k,l(u)ζ−k−
n+3
2 ζ̄−l−

n−1
2 .

(6.4)

Equation (4.5), (4.7) and their higher order time derivatives become

[lm, (∂
n
uσ)k,l] =

(
n− 3

2
m− k

)
(∂nuσ)m+k,l +

m+ 1

2
u(∂n+1

u σ)m+k− 1
2
,l− 1

2
,

[l̄m, (∂
n
uσ)k,l] =

(
n+ 1

2
m− k

)
(∂nuσ)k,m+l +

m+ 1

2
u(∂n+1

u σ)k− 1
2
,m+l− 1

2

− 1

2
m(m2 − 1)

(
uδ0

nδ
0
k− 1

2

δ0
m+l− 1

2

+ δ1
nδ

0
kδ

0
m+l

)
,

[Pk,l, (∂
n
uσ)o,p] = −(∂n+1

u σ)k+o,l+p + δ0
n

(
l2 − 1

4

)
δ0
k+oδ

0
l+p.

(6.5)

In these expansions, m,n ∈ Z. One consistent choice, called (NS) below, which makes all

the inhomogeneous terms above non-vanishing, is k, l, o, p ∈ 1
2 +Z when carried by P or by

an even number of time derivatives of σ and k, l, o, p ∈ Z when carried by an odd number

of time derivatives of σ. This means that fields with odd conformal weights satisfy Neveu-

Schwarz boundary conditions and will be anti-periodic on the cylinder, while fields with
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even conformal weights will be periodic on the cylider. Another possibility (R) is to take

k, l, o, p ∈ Z in all cases. Other possibilities should of course be systematically explored.

Equation (4.8) now implies the following explicit expression for the central extension

in terms of generators,

Klm,ln =
1

2
u(m+ 1)(n+ 1)σm+n− 1

2
,− 1

2
[n(n− 1)−m(m− 1)],

Klm,l̄n = −1

2
u(m+ 1)(n+ 1)

[
σm− 1

2
,n− 1

2
m(m− 1)− σ̄m− 1

2
,n− 1

2
n(n− 1)

]
,

Klm,Pk,l = σm+k,lm(m2 − 1),

Kl̄m,l̄n =
1

2
u(m+ 1)(n+ 1)σ̄− 1

2
,m+n− 1

2
[n(n− 1)−m(m− 1)],

Kl̄m,Pk,l
= σ̄k,m+lm(m2 − 1),

KPk,l,Po,p = 0.

(6.6)

In case (NS), all these terms may be non-vanishing, while in case (R) only Klm,Pk,l and

Kl̄m,Pk,l
may be.

Even though it is not directly necessary for the construction of the classical b̂ms4 Lie

algebroid, we note in case (NS) for instance, the bms4 Lie algebra itself may be encoded

through the series

J(ζ) =
∑
m∈Z

ζ−m−2lm, J̄(ζ̄) =
∑
m∈Z

ζ̄−m−2 l̄m,

P (ζ, ζ̄) =
∑

k,l∈ 1
2

+Z

ζ−k−
3
2 ζ̄−l−

3
2Pk,l,

(6.7)

the commutation relations (6.3) being equivalent to

[J(ζ), J(ω)] = (δ(ζ − ω)D + 2Dδ(ζ − ω))J(ω),

[J̄(ζ̄), J̄(ω̄)] = (δ(ζ̄ − ω̄)D̄ + 2D̄δ(ζ̄ − ω̄))J̄(ω̄),

[J(ζ), P (ω, ω̄)] =

(
δ(ζ − ω)D +

3

2
Dδ(ζ − ω)

)
P (ω, ω̄),

[J̄(ζ̄), P (ω, ω̄)] =

(
δ(ζ̄ − ω̄)D̄ +

3

2
D̄δ(ζ̄ − ω̄)

)
P (ω, ω̄),

[J(ζ), J̄(ω̄)] = 0 = [J(ζ, ζ̄), P (ω, ω̄)] ,

(6.8)

with Dk = 1
k!∂

k
ω and

Dkδ(ζ − ω) =
∑
n∈Z

(
n

k

)
ζ−n−1ωn−k. (6.9)

As usual, in the space of formal distributions with values in the universal enveloping algebra
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of bms4, one can write the singular parts as

J(ζ)J(ω) ∼ DJ(ω)

ζ − ω
+

2J(ω)

(ζ − ω)2
,

J̄(ζ̄)J̄(ω̄) ∼ D̄J̄(ω̄)

ζ̄ − ω̄
+

2J̄(ω̄)

(ζ̄ − ω̄)2
,

J(ζ)P (ω, ω̄) ∼ DP (ω, ω̄)

ζ − ω
+

3P (ω, ω̄)

2(ζ − ω)2
,

J̄(ζ̄)P (ω, ω̄) ∼ D̄P (ω, ω̄)

ζ̄ − ω̄
+

3P (ω, ω̄)

2(ζ̄ − ω̄)2
,

J(ζ)J̄(ω) ∼ 0 ∼ P (ζ, ζ̄)P (ω, ω̄) ,

(6.10)

while

[J(ζ), ∂nuσ(u, ω, ω̄)] =

(
δ(ζ − ω)D +Dδ(ζ − ω)

[
n− 1

2
+
u

2
∂u

])
∂nuσ(u, ω, ω̄),

[J̄(ζ̄), ∂nuσ(u, ω, ω̄)] =

(
δ(ζ̄ − ω̄)D̄ + D̄δ(ζ̄ − ω̄)

[
n+ 3

2
+
u

2
∂u

])
∂nuσ(u, ω, ω̄)

− 3(uδ0
n + δ1

n)D̄3δ(ζ̄ − ω̄),

[P (ζ, ζ̄), ∂nuσ(u, ω, ω̄)] = −δ(ζ − ω)δ(ζ̄ − ω̄)∂n+1
u σ(u, ω, ω̄)

+ 2δ0
nδ(ζ − ω)D̄2δ(ζ̄ − ω̄).

(6.11)

In the case of a suitable (free-field) representation of bms4 with locality conditions so that

the various series can be multiplied, one would write

J(ζ)∂nuσ(u, ω, ω̄) ∼
(

1

ζ − ω
D +

1

(ζ − ω)2

[
n− 1

2
+
u

2
∂u

])
∂nuσ(u, ω, ω̄),

J̄(ζ̄)∂nuσ(u, ω, ω̄) ∼
(

1

ζ̄ − ω̄
D̄ +

1

(ζ̄ − ω̄)2

[
n+ 3

2
+
u

2
∂u

])
∂nuσ(u, ω, ω̄)

− 3(uδ0
n + δ1

n)
1

(ζ̄ − ω̄)4
,

P (ζ, ζ̄)∂nuσ(u, ω, ω̄) ∼ − 1

ζ − ω
1

ζ̄ − ω̄
∂n+1
u σ(u, ω, ω̄)

+ 2δ0
n

1

ζ − ω
1

(ζ̄ − ω̄)3
.

(6.12)

6.2 Realization on the cylinder

Alternatively, one may map I + to a cylinder times a line and consider Fourier series that

can simply be multiplied under standard assumptions.

As defined in [22, 28], the transformation laws of the bms4 algebra under finite super-

rotations are

Y ′(ζ ′) = Y (ζ(ζ ′))
∂ζ′

∂ζ
, Ȳ ′(ζ̄ ′) = Ȳ (ζ̄(ζ̄ ′))

∂ζ̄′

∂ζ̄
,

T ′(ζ ′, ζ̄ ′) = J−
1
2T (ζ(ζ ′), ζ̄(ζ̄ ′)), J =

∂ζ

∂ζ′
∂ζ̄

∂ζ̄′
,

(6.13)
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while for the asymptotic part of the shear and its time derivatives, equation (6.104) of [18]

implies that

∂nu′σ
′(u′, ζ ′, ζ̄ ′) =

(
∂ζ

∂ζ′

)n−1
2

(
∂ζ̄

∂ζ̄′

)3+n
2
[
∂nuσ +

1

2
(uδ0

n + δ1
n){ζ̄ ′, ζ̄}

]
, u′ = J−

1
2u. (6.14)

The standard mapping from the cylinder to the 2-punctured Riemann sphere is de-

scribed by ζ = e
2π
L
ω with ω = x1 + ix2, x2 ∼ x2 + L, coordinates on the cylinder.

Taking ζ ′ = ω, ζ̄ ′ = ω̄ in the above then gives lm = − L
2πe

2π
L
mω∂ω, l̄m = − L

2πe
2π
L
mω̄∂ω̄,

u′ = L
2π (ζζ̄)−

1
2u, Pkl = L

2πe
2π
L
kωe

2π
L
lω̄, and the mode expansion

∂nu′σ
′(u′, ω, ω̄) =

(
2π

L

)n+1 [
(∂nuσ)k,l(u)e−

2π
L
kwe−

2π
L
lw̄
]

+

(
2π

L

)2 1

4
(δ0
nu
′ + δ1

n). (6.15)

7 Conclusion

In this work, we have explicitly constructed a centrally extended Lie algebroid associated

to bms4 on the two-punctured Riemann sphere and the cylinder by suitably adapting the

integration rules and allowing for formal distributions.

Note that one could also have worked with appropriate distributions directly on the

celestial sphere (see e.g. [48–53]). The point of view taken here consists in first using

transformation rules and invariance properties of various quantities such as the Bondi

mass aspect under conformal rescalings [54, 55] to transpose everything to the Riemann

sphere before considering distributions.

Working out the details when starting from the celestial sphere provides one with the

normalizations for mass and angular momentum. In this context, note that we have put the

coefficient of the central charge in (4.8) to one. One should keep in mind however that the

correct normalization coming from the Einstein-Hilbert action is (16πG)−1 when integrated

over the celestial sphere. For instance, for asymptotically anti-de Sitter spacetimes in three

dimensions, it is this normalization that determines the precise values c± = 3l/2G [1].

The correct normalization is thus liable to play an important role in applications such

as Cardyology [4, 5, 10, 11, 56–58] at null infinity where iu becomes a coordinate on the

thermal circle, and so is the shift in (6.15) since the asymptotic part of the shear for the

Kerr black hole vanishes on the celestial sphere.

Apart from the concrete application considered in this work, the current set-up paves

the way for analyzing what happens to gravitational solutions when replacing the celestial

sphere by a generic Riemann surface.
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