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Abstract

CENTRIST (CENsus TRansform hISTogram), a new visual descriptor for recognizing topological

places or scene categories, is introduced in this paper. We show that place and scene recognition,

especially for indoor environments, require its visual descriptor to possess properties that are different

from other vision domains (e.g. object recognition). CENTRIST satisfy these properties and suits the

place and scene recognition task. It is a holistic representation and has strong generalizability for category

recognition. CENTRIST mainly encodes the structural properties within an image and suppresses detailed

textural information. Our experiments demonstrate that CENTRIST outperforms the current state-of-the-

art in several place and scene recognition datasets, compared with other descriptors such as SIFT and

Gist. Besides, it is easy to implement. It has nearly no parameter to tune, and evaluates extremely fast.

Index Terms

Place recognition, scene recognition, visual descriptor, Census Transform, SIFT, Gist

I. INTRODUCTION

Knowing “Where am I” has always being an important research topic in robotics and computer

vision. Various research problems have been studied in order to answer different facets of this

question. For example, the following three research themes aim at revealing the location of a

robot or determining where an image is taken.

• Place recognition, or global localization, which identifies the current position and orientation

of a robot [1], [2], seeks to find the exact parameterization of a robot’s pose in a global

reference frame. Place recognition is an inherent part of a Simultaneous Localization and

Map Building (SLAM) system [3], [4].

• Topological place recognition answers the same question as place recognition, but at a

coarser granularity [5]. In topological mapping, a robot is not required to determine its

3D location from the landmarks. It is enough to determine a rough location, e.g. corridor

or office 113. A place in topological maps does not necessarily coincide with the human

concept of rooms or regions [6]. Topological places are usually generated by a discretization

of the robot’s environment based on certain distinctive features or events in it.

• Scene recognition, or scene categorization, is a term that is usually used to refer to the

problem of recognizing the semantic label (e.g. bedroom, mountain, or coast) of a single
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image [7], [8], [9], [10], [11]. The input images in scene recognition are usually captured

by a person, and are ensured to be representative or characteristic of the underlying scene

category. It is usually easy for a person to look at an input image and determine its category

label. The learned scene recognizer is generalizable, i.e. it is able to recognize the category

of scene images acquired in places that are not present in the training set.

The input in scene recognition are images. Instead, laser range sensors are popular in robot

localization tasks. Recently, cameras are also frequently used [12], [13], [14] in robot localization.

In this paper we are interested in recognizing places or scene categories using images taken

by usual rectilinear camera lens. Furthermore, since the exact robot pose estimation problem

has been widely studied in SLAM systems, we focus on recognizing the topological location or

semantic category of a place. Recognizing the semantic category of places from a robot platform

is recently emerging as an interesting topic for both vision and robotics research, e.g. visual place

categorization [15].

We believe that an appropriate representation (or, more precisely, visual descriptor) is key to the

success of a scene recognition task. In the literature, SIFT and Gist are probably the most popular

feature descriptors in scene recognition [7], [8], [16], [17], [9], [18], [19], [10], [11], [4]. The

SIFT descriptor is originally designed for recognizing the same object appearing under different

conditions, and has strong discriminative power. Recognizing topological locations and scene

categories, however, poses different requirements for the feature descriptors. Images taken from

the same scene category may look very different, i.e. with huge intra-class variations. Similarly,

images taken from different part or view point of the same topological location (e.g. office

113) will also contain huge variations. Rather than capturing the detailed textural information

of objects in the scene, we would like to capture the the stable spatial structure within images

that reflects the functionality of the location [10].

Oliva and Torralba [10] proposed the Gist descriptor to represent such spatial structures.

Gist achieved high accuracy in recognizing natural scene categories, e.g. mountain and coast.

However, when categories of indoor environments are added, its performance drops dramatically

(c.f. Sec. IV-F).

The focus of this paper is CENTRIST (CENsus TRansform hISTogram), a visual descriptor

that is suitable for recognizing topological places and scene categories. We will analyze the

peculiarity of place images and list a few properties that are desirable for a place/scene recogni-
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tion representation. We then focus on exhibiting how CENTRIST satisfy these properties better

than competing visual descriptors, e.g. SIFT [20], HOG [21] or Gist [10]. We also show that

CENTRIST has several important advantages in comparison to state-of-the-art feature descriptors

for place/scene recognition and categorization:

• Superior recognition performance on multiple standard datasets;

• Significantly fewer parameters to tune;

• Extremely fast evaluation speed (> 50 fps);

• Very easy to implement, with source code publicly available.

The rest of the paper is organized as follows.1 Related methods are discussed in Sec. II. Sec. III

introduces CENTRIST and focuses on how this visual descriptor suits the place/scene recognition

domain. Experiments are shown in Sec. IV. Sec. V concludes this paper with discussions of

drawbacks of the proposed method and future research.

II. RELATED WORK

A. Representation of scene images

Histograms of various image properties (e.g. color [12], [23], [5], or image derivatives [12])

have been widely used in scene recognition. However, after the SIFT [20] feature and descriptor

are popularized in the vision community, it nearly dominates the visual descriptor choice in

place and scene recognition systems [7], [8], [17], [9], [18], [19], [11], [4], [24]. SIFT features

are invariant to scale and robust to orientation changes. The 128 dimensional SIFT descriptors

have high discriminative power, while at the same time are robust to local variations [25]. It has

been shown that SIFT descriptor significantly outperforms edge points [9], pixel intensities [7],

[8], and steerable pyramids [17] in recognizing places and scenes.

It is suggested in [10] that recognition of scenes could be accomplished by using global

configurations, without detailed object information. Oliva and Torralba argued for the use of

Shape of the Scene, an underlying similar and stable spatial structure that presumably exists

within scene images coming from the same function category, to recognize scene categories.

They proposed the Gist descriptor to represent such spatial structures. Gist computed the spectral

information in an image through Discrete Fourier Transform (DFT). The spectral signals are then

1Preliminary versions of portions of this work have been published in [22].
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compressed by the Karhunen-Loeve Transform (KLT), a continuous counterpart of the discrete

Principal Component Analysis (PCA) method. They showed that many scene signatures such

as the degree of naturalness and openness were reliably estimated from such spectral signals,

which in consequence resulted in satisfactory scene recognition results. Since spectral signals

were computed from the global image, Oliva and Torralba suggested recognizing scenes without

segmentation or recognizing local objects beforehand.

Gist achieved high accuracy in recognizing outdoor scene categories, e.g. mountain and coast.

However, when categories of indoor environments are added, the Gist descriptor’s performance

drops dramatically. We will show in Sec. IV-F that in a 15 class scene recognition dataset [9],

which includes the categories used in [10] and several other categories (mainly indoor categories),

the accuracy of Gist descriptor is much worse than its performance on outdoor images, and

is significantly lower than the proposed CENTRIST descriptor. Our conjecture is that those

properties that Gist is modeling are not effective discriminators in indoor environments. For

example, almost all indoor images have low degree of naturalness. Similarly, other spatial

structure properties modeled by Gist such as the degree of openness, roughness, and ruggedness

do not apply to indoor scene either.

However, the global configuration argument itself is accepted by many other researchers,

whom used the SIFT descriptor to describe the global configuration. Since the SIFT descriptor

is designed to recognize the same object instance, statistical analysis of the distribution of SIFT

descriptors are popular in scene recognition. Statistics of SIFT descriptors are more tolerant to

the huge variations in scene images. SIFT descriptors are first vector quantized to form the visual

codebook or visterms, e.g. by the k-means clustering algorithm. The hope here is that the cluster

centers will be meaningful and representative common sub-structures, similar to the codebook

in a communication system. We will compare SIFT and CENTRIST in Sec. IV-F.

A different representation was proposed by Vogel and Schiele [26]. They split each image into

10 by 10 cells. Each cell was given a semantic label from 9 categories (sky, water, grass, etc.).

An SVM classifier (“concept classifier”) is then trained to assign labels to new cells. In other

words, instead of generating intermediate concepts from data without supervision, they specify a

small set of intermediate concepts and learn them in a supervised manner. Category of an image

was determined from the concept labels of its 100 cells. Their experiments corroborated the

observation that using intermediate concepts gave better performance than using crude image

July 23, 2009 DRAFT



SUBMITTED TO IEEE TRANS. PAMI 6

features. However, the concept classifiers’ accuracy was lower than 50% in 5 out of the 9

intermediate concepts.

B. Incorporating Spatial Information

SIFT based models usually represent images as bag of features, i.e. spatial arrangement

information among multiple features are completely ignored. However, it is long recognized that

spatial arrangements are essential for recognizing scenes. For example, Szummer and Picard

divided images into 4 × 4 sub-blocks. The K-nearest neighbor classifier was applied to these

sub-blocks. The final indoor-outdoor decision was then made based on classification results

from the 16 sub-blocks [23]. Their experiments showed that a simple strategy for the second

phase classification (majority vote, i.e. assigning the image label to the most common class label

among the sub-blocks) significantly improved recognition accuracy (approximately 10% higher

compared to the sub-block accuracy).

Advocating the global configuration approach, Oliva and Torralba [10] also implicitly used

spatial information. In their WDST (Windowed Discriminant Spectral Template, part of the Gist

descriptor), spectral information was calculated for 8 × 8 local patches, with a diameter of 64

pixels for each patch. The Gist descriptor computed from WDST usually outperformed that

computed from DST (global Discriminant Spectral Template), sometimes with a large margin.

It is natural to conjecture that the spatial arrangement information (implicitly coded in the local

WDST ordering) elicited such performance improvements.

Lazebnik, Schmid, and Ponce proposed Spatial Pyramid Matching to systematically incorpo-

rate spatial information [9]. Features are quantized into M discrete types using k-means clustering

with M centroids. They assume that only features of the same type can be matched. An image

is divided in a hierarchical fashion (of level L). The image is divided into 2l × 2l sub-blocks in

level l, with each dimension (horizontal or vertical) being divided into 2l evenly sized segments.

For a feature type m, Xm and Ym are sets of the coordinates of type m features. The histogram

intersection kernel can be used to compute a matching score for feature type m. The final spatial

pyramid matching kernel is then the sum of all such scores. Note that SPM with L = 0 reduces

to the standard bag of features model.
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(a) A partial image (b) The complete image

Fig. 1. A bathroom image is shown in Fig. 1b. Object in the scene (Fig. 1a) does not automatically reveal the room category.

This image is best viewed in color.

III. CENTRIST: AN VISUAL DESCRIPTOR FOR PLACE AND SCENE RECOGNITION

A. Desired properties

We believe that the central problem in place and scene recognition is a visual descriptor that

meets the requirements of this domain. In this section, we first discuss some desired properties

for a visual descriptor in place and scene recognition tasks. The CENTRIST (CENsus TRansform

hISTogram) descriptor is then proposed.

1) Holistic representation: We agree with the “global configurations” approach proposed by

Oliva and Torralba [10], which is also followed by quite a few other researchers. [10] recognized

outdoor scenes. They found that perceptual properties such as the degree of naturalness can be

reliably captured by their holistic representation Gist, and were successfully used to recognize

outdoor scene categories. They showed that scene categories can be estimated without explicit

recognize objects in the scene. These perceptual properties are not as useful in indoor envi-

ronments. For example, indoor environments all share low degree of naturalness. However, we

believe that a holistic approach should still be used.

As illustrated in Fig. 1, knowing the object in an image does not automatically tell us the place

category. Instead, the curtain object and the tiles on the wall altogether clearly show that this is

a bathroom image. Many useful information sources such as the tiles are usually contained in

those regions that are not objects. Furthermore, recognizing objects in cluttered environments is

not necessarily easier than scene recognition itself. Thus we prefer a holistic representation.

2) Capturing the structural properties: One property of the place categorization problem is

that huge variations exist within the same place category. As a consequence, we can not search

for a template pattern using the approaches applied in most object recognition tasks [27]. For

example, a bed will likely appear in an image taken from a bedroom. However, the picture can

be taken from any viewpoint, and the bed can appear in many variations (mattress, sofa bed,
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(a) An example kitchen image (b) Corresponding Sobel image

Fig. 2. Fig. 2a shows an example kitchen image. Fig. 2b shows its corresponding Sobel gradients. The Sobel gradients are

normalized to [0 255]. This image is best viewed in color.

water bed mattress, etc.). Bedrooms can be decorated in any possible color or style, with very

different furniture and illumination conditions. These variations pose difficulties for the local

patch based representations (e.g. SIFT).

To make the problem even more difficult, since we are interested in autonomous data collection,

the images may not be representative of the place category. In the bedroom example, a bed could

possibly be invisible in many frames. These difficulties suggest that we need a visual descriptor

that suppresses fine scale textural details and focuses on structural properties. For example, beds

provide the same function to people. Although they may show large visual differences, they are

mostly rectangular, with a relatively flat surface, and having pillows. These common properties

exist because they are necessary for providing a bed’s functionality. In turn, these properties

exhibit similar structural properties in bed images.

In other words, we want the descriptor to (implicitly or explicitly) capture more general

structural properties such as rectangular shapes, flat surfaces, tiles, etc., while suppressing detailed

textural information. In recognizing place categories, these fine-scaled textures will distract the

classifier. They can be noisy and harmful if the feature extraction method is not carefully

designed. Fig. 2 further illustrates this idea. As shown in Fig. 2b, the spatial structure is more

prominent in the Sobel image, e.g. the shape that reflects the sink and dishwasher. It is possible

to recognize the kitchen category from the Sobel image alone.

It is worth noting that most of the perceptual properties used for scene recognition in [10]

are well preserved in Sobel images too. For example, the degree of naturalness, defined by the

distribution of edges, was used to recognize scenes in [10]. In comparison to the original images,

it is easy to read out from the Sobel images that man-made environments have more horizontal

and vertical edges, thus they have lower degree of naturalness. Similarly, other spatial structure

properties such as the degree of openness, roughness, and ruggedness are also easy to capture
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(a) (b) (c)

Fig. 3. Place images do not exhibit strong geometry constraints among objects.

in Sobel images.

We are, however, not proposing to use Sobel images directly as a descriptor. On the one hand,

structural properties (mainly boundaries/edges) are crucial for recognizing place categories. On

the other hand, we need a better descriptor that summarizes such information efficiently. In

Fig. 2b we observe that such structural properties can be reflected by the distribution of local

structures. For example, the percentages of local structures that are local horizontal edge, vertical

edge, or junctions. Our CENTRIST descriptor will model the distribution of local structures.

3) Rough geometry is useful: Strong geometrical constraints (e.g. the constellation model [28]

or pictorial structures [29]) are very useful in object recognition. However, they are essentially not

applicable in place categorization due to the large variations. Different objects can be arranged

in any spatial configuration in a place image. As shown in Fig. 3, the furniture and objects in a

bedroom can be arranged in arbitrary configurations.

However, rough geometry constraints are very helpful in recognizing place categories [9]. For

example, a reading lamp is usually placed close to the bed in a bedroom as in Fig. 3a. While a

TV appears in a bedroom, it is often at the foot of the bed as shown in Fig. 3c. More general

constraints such as The sky should be on top of the ground will help reduce ambiguity, even

when the images are taken from random viewpoints;

4) Generalizability: The learned category concepts will be applied to new images. An ideal

situation is that the feature descriptors are compact within a category (even under large visual

variations), and are far apart when they belong to different categories.

Fig. 4 shows three images from the corridor environment. These images are taken from

approximately the same position in the same environment, and we already see large visual

variations. We would expect even larger variations from pictures taken in different corridor

environments. However, the visual descriptor must be able to capture these similar spatial

structures: open spaces in the middle, stairs, strips on the wall, etc.
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(a) Cloudy (b) Night (c) Sunny

Fig. 4. Example images from the KTH IDOL dataset. Images showed approximately the same location under different weather

conditions. Images were taken by a robot called Minnie.

We propose to use CENTRIST (CENsus TRansform hISTogram) as our visual descriptor for

the place category recognition task. CENTRIST is a holistic representation that captures structural

properties by modeling distribution of local structures. We capture rough geometrical information

by using a spatial CENTRIST representation. CENTRIST also has similar descriptor vectors for

images in the same place category. We will now introduce CENTRIST in the following sections,

and show how CENTRIST satisfy the desired properties we have just discussed.

B. Census Transform (CT) and CENTRIST

Census Transform (CT) is a non-parametric local transform originally designed for establishing

correspondence between local patches [30]. Census transform compares the intensity value of a

pixel with its eight neighboring pixels, as illustrated in Eqn. 1. If the center pixel is bigger than

(or equal to) one of its neighbors, a bit 1 is set in the corresponding location. Otherwise a bit

0 is set.

32 64 96

32 64 96

32 32 96

⇒

1 1 0

1 0

1 1 0

⇒ (11010110)2 ⇒ CT = 214 (1)

The eight bits generated from intensity comparisons can be put together in any order (we collect

bits from left to right, and from top to bottom), which is consequently converted to a base-10

number in [0 255]. This is value is the Census Transform value (CT value) for this center pixel.

Similar to other non-parametric local transforms which are based on intensity comparisons (e.g.

ordinal measures [31]), Census Transform is robust to illumination changes, gamma variations,

etc. Note that the Census Transform is equivalent (modulo a difference in bit ordering) to the

local binary pattern code LBP8,1 [32].

As a visualization method, we create a Census Transformed image by replacing a pixel with

its CT value. Shown by the example in Fig. 5, the Census Transform retains global structures
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(a) mountain image (b) Transformed image

Fig. 5. An example Census Transformed image.

39 40 41 42

35 36 37 38

31 32 33 34 1 1 1 1 0 0 0 0

1 1 1 1 0 0 0 0

bit 1 2 3 4 5 6 7 8

Fig. 6. Illustration of constraints between CT values of neighboring pixels. (This picture is best viewed in color.)

of the picture (especially discontinuities) besides capturing the local structures as it is designed

for.

Another important property of the transform is that CT values of neighboring pixels are highly

correlated. In the example of Fig. 6, we examine the direct constraint posed by the two center

pixels. The Census Transform for pixels valued 36 and 37 are depicted in right, and the two

circled bits are both comparing the two center pixels (but in different orders). Thus the two circled

bits are constrained to be strictly complement to each other if the two pixels are not equal. More

generally, bit 5 of CT(x, y) and bit 4 of CT(x + 1, y) must always be complementary to each

other, since they both compare the pixels at (x, y) and (x + 1, y) if these two pixels are not

equal. There exist many other such constraints. In fact, there are eight such constraints between

one pixel and its eight neighboring pixels.

Besides these deterministic constraints, there also exist indirect constraints that are more

complex. For example, in Fig. 6, the pixel valued 32 compares with both center pixels when

computing their CT values (bit 2 of CT(x, y) and bit 1 of CT(x + 1, y)). Depending on the

comparison results between the center pixels, there are probabilistic relationships between these

bits.

The transitive property of such constraints also make them propagate to pixels that are far

apart. For example, in Fig. 6, the pixels valued 31 and 42 can be compared using various paths

of comparisons, e.g. 31 < 35 < 39 < 40 < 41 < 42. Similarly, although no deterministic
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comparisons can be deduced between some pixels (e.g. 34 and 39), probabilistic relationships

still can be obtained. The propagated constraints make Census Transform values and Census

Transform histograms implicitly contain information for describing global structures, unlike the

histogram of pixel values.

Finally, the Census Transform operation transforms any 3 by 3 image region into one of 256

cases, each corresponding to a special type of local structure of pixel intensities. The CT value

acts as an index to these different local structures. No total ordering or partial ordering exists

among the CT values. It is important to refrain from comparing two CT values as comparing

two integers (like what we do when comparing two pixel intensity values).

A histogram of CT values for an image or image patch2 can be easily computed, and we

use CENTRIST (CENsus TRansform hISTogram) as our visual descriptor. CENTRIST can be

computed very efficiently. It only involves 16 operations to compute the CT value for a center

pixel (8 comparisons and 8 additional operations to set bits to 0 or 1). The cost to compute

CENTRIST is linear in the number of pixels of the region we are interested in. There is also

potential for further acceleration to the computation of CENTRIST, by using special hardware

(e.g. FPGA), because it mainly involves integer arithmetic that are highly parallel.

C. Constraints among CENTRIST components

Usually there is no obvious constraint among the components of a histogram. For example,

we would often treat the R, G, and B components of a color histogram independent to each

other. CENTRIST, however, exhibits strong constraints or dependencies among its components.

Take as example the direct constraint shown in Fig. 6, bit 5 of CT(x, y) and bit 4 of CT(x, y+1)

must be complementary to each other if they are not equal. Both bits are 1 if they are equal.

If we apply this constraint to all pixels in an image, we get to the conclusion that the number

of pixels whose CT value’s bit 5 is 1 must be equal to or greater than3 the number of pixels

whose CT value’s bit 4 is 0, if we ignore border pixels where such constraints break. Let h be

the CENTRIST descriptor of any image. The above statement is translated into the following

2In fact, it can be computed for an image region of arbitrary shape.

3These extra 1’s are caused by the special case when two neighboring pixels are equal to each other.
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equation:
∑

i & 0x08 = 0x08

h(i) ≥
∑

i & 0x10 = 0

h(i), (2)

where & is bitwise and, 0x08 is the number 08 in hexadecimal format, and 0 ≤ i ≤ 255. Thus the

left hand side of Eqn. 2 counts the number of pixels whose CT value’s bit 5 is 1. By switching

1 and 0, we get another equation:

∑

i & 0x08 = 0

h(i) ≤
∑

i & 0x10 = 0x10

h(i). (3)

Similarly, 6 other linear inequalities can be specified by comparing CT(x, y) with CT(x−1, y−1),

CT(x− 1, y), and CT(x− 1, y + 1). Thus, any CENTRIST feature vector resides in a subspace

that is defined by these linear inequalities.

We can not write down explicit equations for the indirect or transitive constraints in a CEN-

TRIST feature vector. However, we expect these constraints will further reduce the dimension of

the subspace of CENTRIST feature vectors. A CENTRIST feature vector, although having 256

bins, is living in a subspace whose dimension is much lower than 256. The constraints among

elements in a CENTRIST make PCA suitable for dimension reduction.

D. CENTRIST encodes image structures

In order to understand why CENTRIST efficiently captures the essence of a scene image, it

is worthwhile to further examine the distribution of CT values and CENTRIST feature vectors.

Using images from the 15 class scene dataset [9], we find that the 6 CT values with highest

frequencies are CT = 31, 248, 240, 232, 15, 23 (excluding 0 and 255). As shown in Fig. 7b-7g,

these CT values correspond to local 3 × 3 neighborhoods that have either horizontal or various

close-to-diagonal edge structures. It is counter-intuitive that vertical edge structures are not among

the top candidates. A possible explanation is that vertical structures are usually appearing to be

inclined in pictures because of the perspective nature of cameras.

CENTRIST of the example ellipse image (Fig. 7a) is shown in Fig. 7h. It summarizes

the distribution of various local structures in the image. Because of the strong correlation of

neighboring CT values, the histogram cells are not independent of each other. A CENTRIST

feature vector implicitly encodes strong constraints of the global structure of the image. For

example, if an image has a CENTRIST feature vector close to that of Fig. 7h, we would well
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(a) ellipse (b) CT = 31 (c) CT = 248 (d) CT = 240

(e) CT = 232 (f) CT = 15 (g) CT = 23

0 50 100 150 200 250
0
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10

15

20

25

30

35

(h) CENTRIST

Fig. 7. Illustration of Census transforms. Fig. 7a is an example image of ellipse. Fig. 7b-7g show pixels having the 6 highest

frequency CT values (shown in black). Fig. 7h is the CENTRIST feature vector of Fig. 7a. (This image is best viewed in color.)
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(d) CENTRIST

Fig. 8. Census Transform encodes shape in 1-d. The Census Transform values of (a)-(c) are shown in the caption. Sub-figure

(d) shows CENTRIST descriptors of figures (a)-(c), respectively. Both end points are ignored in compute CT. (This image is

best viewed in color.)

expect the image to exhibit an ellipse shape with a high probability (c.f. Sec. III-E for more

evidences.)

A simplification to the one dimensional world better explains the intuition behind our state-

ment. In 1-d there are only 4 possible CT values, and the semantic interpretation of these CT

values are obvious. As shown in Fig. 8a, the four CT values are CT = 0 (valley), CT = 1

(downhill), CT = 2 (uphill), and CT = 3 (peak). For simple shapes in 1-d, CENTRIST encodes

shape information and constraints. Downhill shapes and uphill shapes can only be connected
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by a valley, and uphill shapes require a peak to transit to downhill shapes. Because of these

constraints, the only other shapes that have the same CENTRIST descriptor as that of Fig. 8a

are those shapes that cut a small portion of the left part of Fig. 8a and move it to the right.

Images that are different but keep the shapes (e.g. Fig. 8b) also are similar in their CENTRIST

descriptors (Fig. 8d). On the contrary, a huge number of possible curves have the same intensity

histogram as that of Fig. 8a. Even if we impose smoothness constraints between neighboring

pixel intensities, the shape ambiguity is still large (e.g. Fig. 8c is smooth and has the same

intensity histogram as that of Figs. 8a and 8b, but it has different shape and a very different

CENTRIST descriptor).

E. Reconstructing image patches from CENTRIST descriptors

It is well known that spatial information is totally lost in the histogram of pixel intensities.

CENTRIST, however, implicitly retains the global spatial structure of an image patch through the

constraints we have discussed. We performed some reconstruction experiments to further illustrate

this idea. When we randomly shuffle the pixels of an input image, the original structure of the

image is completely lost. Using the shuffled image as an initial state, we repeatedly change two

pixels at one time, until the current state has the same CENTRIST descriptor as the input image.

This optimization is guided by the Simulated Annealing algorithm, and the algorithm terminates

when the current state has the same CENTRIST descriptor as the input image. If structure of

the original image is observed in the reconstruction result (i.e. the termination state), this is an

evidence that structure of an image is (at least partially) encoded in its CENTRIST descriptor.

In the reconstruction results in Fig. 9, the left image in each subfigure is the input image. A

pair of pixels in the input images are randomly chosen and exchanged. The exchange operation

is repeated multiple times (equal to the number of pixels in the input image), which gives the

initial state for the reconstruction. Our goal is to find an image that has the same CENTRIST

descriptor as the input. Thus the cost function is set to the Euclidean distance between CENTRIST

descriptors of the current state and the input. The terminating state is output of the reconstruction

(right image in each subfigure of Fig. 9). Note that our reconstruction experiments are analogous

to the histogram matching approach for texture synthesis of Heeger and Bergen [33].

Although the initial states look like random collection of pixels, many of the reconstruction

results perfectly match the input images subfigure (a)-(g) in Fig. 9). More examples are recon-
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(a) ’0’ (b) ’1’ (c) ’4’ (d) ’b’ (e) ’c’ (f) ’f’ (g) ’h’

(h) ’5’ (i) ’6’ (j) ’7’ (k) ’8’ (l) ’9’ (m) ’a’ (n) ’d’

(o) ’g’ (p) ’j’ (q) ’2’ (r) ’3’ (s) ’e’ (t) ’i’

Fig. 9. Reconstruct images from CENTRIST descriptors. In each group of images, the left image is the input image. The

image in the middle is the initial starting point that is generated by randomly exchanging pairs of pixels in the input. The

reconstruction result is shown in the right of each group, which has the same CENTRIST descriptor as the input image.

structed with minor discrepancies (subfigure (h)-(p) in Fig. 9). Large scale structures of the input

digits and characters are successfully reconstructed in these images, with small errors. In the rest

examples, e.g. ‘2’ and ‘e’, major structures of the original input images are still partially revealed.

These results empirically validated that CENTRIST descriptors have the ability to encode the

shape of an image.

An analogy to these results is the jigsaw puzzle. The CT value in each pixel location is

analogous to a puzzle piece of certain type. Pieces can be put next to each other only if their

shapes satisfy certain constraints (similar to the constraints between neighboring CT values).

After breaking a puzzle into pieces, there are only a very limited number of ways to assemble

the pieces together, and we would expect the assembled version to resemble the original one

with a high probability.

Similarly, there are a huge number of ways to shuffle pixels of an input image (possibly

exponential in the number of pixels). However, if we add an additional constraint that the

CENTRIST descriptor should be same as the input image, there is only a small number of

possibilities. For example, at least 2 images have the same CENTRIST descriptor as the digit

‘9’ (the original input digit ‘9’ and the slightly different reconstruction). As shown in Fig. 9,

these remaining reconstructions have a large chance to share same or similar structure as the

input image.

Two points are worth pointing out about the reconstruction results. First, in larger images a

CENTRIST descriptor is not enough to reconstruct the original image.4 However, as a feature

4Note that the images in Fig. 9 are black-and-white images instead of gray-scale ones.
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Fig. 10. Illustration of the level 2, 1, and 0 split of an image.

descriptor, it has the ability to distinguish between images with different structural properties.

Second, it is essentially impossible to reconstruct even a small image using other descriptors

(e.g. SIFT, HOG [21], or Gist).

F. Spatial representations

Because CENTRIST can only encode global shape structure in a small image patch, in order

to capture the global structure of an image in larger scale, we propose a spatial representation

based on the Spatial Pyramid Matching scheme [9]. A spatial pyramid (dividing an image

into subregions and integrating correspondence results in these regions) encodes rough global

structure of an image and usually improves recognition. It is straightforward to build a spatial

pyramid for the proposed CENTRIST representation.

As shown in Fig. 10, the level 2 split in a spatial pyramid divides the image into 22×22 = 16

blocks. We also shift the division (dash line blocks) in order to avoid artifacts created by the

non-overlapping division, which makes a total of 25 blocks in level 2, which is different from

the spatial hierarchy proposed in [9]. Similarly, level 1 and 0 have 5 and 1 blocks respectively.

The image is resized between different levels so that all blocks contain the same number of

pixels. CENTRIST in all blocks are then concatenated to form an overall feature vector. For

example, we use PCA to reduce the dimensionality of CENTRIST to 40, a level 2 pyramid will

then result in a feature vector which has 40 × (25 + 5 + 1) = 1240 dimensions.

We want to emphasize that this spatial representation is independent of the descriptor used for

each sub-window. In this paper, we use two different representations. In the first we use PCA to

reduce the CENTRIST descriptor to 40 dimensions, which we call PACT (Principal component

Analysis of Census Transform histograms). In the second approach we use a bag of visual words

model with CENTRIST as the base visual descriptor. Details of both approaches are described

in Sec. IV. Note that other visual descriptors can also be used with the spatial representation.
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G. Limitations of CENTRIST

As we have stated from the very beginning, CENTRIST is designed to be a representation that

suits place recognition and categorization problems. This design choice renders limitations that

prevent it from being applied in some applications. We list the limitations below, and explain

how these limitations affect the place and scene recognition performance.

• CENTRIST is sensitive to rotations. Thus it is not suitable for 3-D or multiview object

recognition, e.g. the Caltech 101 dataset [34]. In scene recognition, images are always taken

in the upright view and we usually pay attention to the overall structure of the scene, which

is not prone to rotational variances. Furthermore, CENTRIST is invariant to translation and

robust against scale changes;

• CENTRIST is not a precise shape descriptor. It is designed to recognize shape categories

(c.f. Sec. IV-A), but not for exact shape registration applications, e.g. the shape retrieval

task in [35], [36].

• CENTRIST ignores color information.

IV. EXPERIMENTS

The CENTRIST visual descriptor is tested on 4 datasets: Swedish leaf [37], KTH IDOL [12],

15 class scene category [9], and the 8 class sports event dataset [18]. In each dataset, the available

data are randomly split into a training set and a testing set following published protocols on

these datasets. The random splitting is repeated 5 times, and the average accuracy is reported.

Although color images are available in 3 datasets (leaf, IDOL, and events), we only use the

intensity values and ignore color information.

Our first approach to apply CENTRIST uses PCA (Principal Component Analysis) to reduce

its dimensionality to 40. In computing CENTRIST descriptors and PCA eigenvectors, we remove

two bins with CT = 0, 255 and normalize the CENTRIST descriptors and PCA eigenvectors such

that they have zero mean and unit norm. Also, we do not subtract mean in PCA for computational

efficiency. Our experiments show that this does not cause significant difference in recognition

results.5 CENTRIST will also be used in a Bag of Visual words framework in Sec. IV-E.

5PACT Code is available at http://www.cc.gatech.edu/˜wujx/PACT/PACT.htm. Please refer to the code for

details.
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Fig. 11. Example images from the Swedish Leaf dataset. The first 15 images are chosen from the 15 leaf species, one per

species. The last image is the contour of the first leaf image.

After the spatial PACT feature vectors are extracted from images, we choose different classi-

fiers for recognizing place instances and categories, in order to find the right tradeoff between

discriminative power and invariance for both problems. In recognizing topological places, we use

the Nearest Neighbor classifier (1-NN, to be precise). Thus we are looking for places that have not

only similar local patches, but also exact spatial arrangements of these patches. SVM classifiers

are used for scene category recognition. In category recognition we are only expecting loose

spatial information. We rely on the generalization ability of SVM to capture such relationships,

while avoiding overfitting.

Since the CT values are based solely on pixel intensity comparisons, it might be helpful to

include a few image statistics, e.g. average value and standard deviation of pixels in a block.

We append these statistics to spatial PACT in the input to SVM classifiers for scene recognition

problem. The feature vector of a level 2 spatial PACT then becomes (40+2)×(25+5+1) = 1302

dimensional. However, both image statistics are not used in the 1-NN classifiers, since the large

variation of illumination in place instance recognition tasks will cause these global statistics to

be unreliable.

A. Swedish Leaf

The Swedish leaf dataset [37] collects pictures of 15 species of Swedish leaves (c.f. Fig. 11).

There are 75 images in each class. Following the protocol of [37], 25 images from each class

are used for training and the rest 50 for testing. This dataset has been used to evaluate shape

matching methods [35], [36], in which the contour of leaves (instead of the gray-scale or color

leaf picture) were used as input (e.g. the last picture in Fig. 11). In the contour image, no other

information is available (e.g. color, texture) besides shape or structure of the leaf. We use the

contour input to further verify our statement that the visual descriptor encodes such information.

The first 25 images from each class are used to train the PCA eigenvectors. 10 and 40
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TABLE I

RESULTS ON THE SWEDISH LEAF DATASET.

Method Input Rates

Shape-Tree [35] Contour only 96.28%

IDSC+DP [36] Contour only 94.13%

spatial PACT Contour only 90.77%

SC+DP [36] Contour only 88.12%

Söderkvist [37] Contour only 82.40%

spatial PACT Gray-scale image 97.92%

SPTC+DP [36] Gray-scale image 95.33%

eigenvectors are used when the inputs are contour and intensity images, respectively. Results

on this dataset are shown in Table I. Although not specifically designed for matching shapes,

spatial PACT can achieve 90.77% accuracy on leaf contours, better than Shape Context+Dynamic

Programming (SC+DP). When pictures instead of contours are used as input, spatial PACT can

recognize 97.92% leaves, which outperforms other methods by a large margin.

B. KTH IDOL and INDECS

The KTH IDOL (Image Database for rObot Localization) dataset [38] was captured in a five-

room office environment, including a one-person office, a two-person office, a kitchen, a corridor,

and a printer area. Images were taken by two Robots: Minnie and Dumbo. The purpose of this

dataset is to recognize which room the robot is in based on a single image, i.e. a topological

place instance recognition problem.

Cameras were mounted at different heights on the robots, which made the pictures taken by the

two robots quite different. Image resolution was 320×240. A complete image sequence contained

all the images captured by a robot when it was driven through all five rooms. Images were

taken under 3 weather conditions: Cloudy, Night, and Sunny. For each robot and each weather

condition, 4 runs of robot driving were taken on different days. Thus, there are in total 2×3×4 =

24 image sequences. Various changes during different robot runs (e.g. moving persons, changing

weather and illumination conditions, relocated/added/removed furniture make this dataset both

realistic and challenging. Fig. 4 in page 10 shows images taken by the Minnie robot under

3 different weather conditions at approximately the same location, but with substantial visual
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TABLE II

AVERAGE ACCURACIES ON RECOGNIZING PLACE INSTANCES USING THE KTH-IDOL DATASET AND THE KTH-INDECS

DATASET. LEVEL 2 PYRAMIDS ARE USED FOR SPATIAL PACT. “ROBOTS” MEANS BOTH MINNIE AND DUMBO.

Train Test Condition spatial PACT+1-NN spatial PACT+SVM [12]

Minnie Minnie Same 95.35% 94.79% 95.51%

Dumbo Dumbo Same 97.62% 96.35% 97.26%

Minnie Minnie Different 90.17% 83.10% 71.90%

Dumbo Dumbo Different 94.98% 89.35% 80.55%

Minnie Dumbo Same 77.78% 70.15% 66.63%

Dumbo Minnie Same 72.44% 65.18% 62.20%

Camera Camera Different 90.01% 78.39% 75.67%

Camera Robots Same 64.39% 42.16% 50.56%

changes.

In our experiments we use the run 1 and 2 in each robot and weather condition. We perform 3

types of experiments as those in [12]. First we train and test using the same robot, same weather

condition. Run 1 is used for training and run 2 for testing, and vice versa. Second we use the

same robot for training and testing, but with different weather conditions. These experiments

test the ability of spatial PACT to generalize over variations caused by person, furniture, and

illumination. The third type of experiment uses training and testing set under the same weather

conditions, but captured by different robots. Note that images taken by the two robots are quite

different.

The KTH-INDECS dataset [39] was collected in the same environment with IDOL. Instead

of using robots, cameras were mounted in several fixed locations inside each room. Pictures

of multiple viewing angles were taken in each location. In the last type of experiment we use

INDECS images as training examples, and test on both INDECS images under different weather

conditions and on images taken by robots. Results using level 2 pyramid spatial PACT and 1-NN

are shown in Table II, compared against results in [12].

In the first type of experiments, both spatial PACT and the method in [12] attain high accuracy

(> 95%), and the two methods are performing roughly equally well. However, in the second

type of experiments spatial PACT has significantly higher accuracies (18% higher in Minnie and

14% higher in Dumbo). The superior performance of our CENTRIST based representation shows
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TABLE III

AVERAGE ACCURACIES ON THE KTH-IDOL DATASET AND THE KTH-INDECS DATASET USING DIFFERENT LEVELS OF

SPATIAL PYRAMID. “ROBOTS” MEANS BOTH MINNIE AND DUMBO.

Train Test Condition L = 3 L = 2 L = 1 L = 0

Minnie Minnie Same 95.01% 95.35% 95.08% 86.08%

Dumbo Dumbo Same 95.51% 97.62% 96.87% 88.26%

Minnie Minnie Different 90.30% 90.17% 85.75% 60.51%

Dumbo Dumbo Different 94.67% 94.98% 91.75% 74.67%

Minnie Dumbo Same 74.96% 77.78% 75.56% 62.34%

Dumbo Minnie Same 68.59% 72.44% 71.36% 53.74%

Camera Camera Different 92.37% 90.01% 84.80% 71.45%

Camera Robots Same 60.73% 64.39% 57.87% 41.55%

that it is robust to illumination changes and other minor variations (e.g. moving persons, moved

objects in an image, etc). The Dumbo robot achieves a 94.57% accuracy using a single input

image without knowing any image histories (a “kidnapped robot” [13]). Thus, after walking a

robot in an environment, spatial PACT enables the robot to robustly answer the question “Whare

am I?” based on a single image, a capacity that is very attractive to indoor robot applications.

When the training and testing data come from different robots, the performance of both methods

drop significantly. This is expected, since the camera heights are quite different. However, spatial

PACT still outperforms the SVM classifier in [12] by about 10%. In the last type of experiment

involving camera images, spatial PACT achieved about 14% higher accuracies than those reported

in [12].

We also tested the effects of using different pyramid levels. As shown in Table III, applying

a spatial pyramid matching scheme greatly improves system performances (L > 0 vs. L = 0).

However, the improvement after L > 2 is negligible. L = 3 performance is even worse than

that of L = 2 in most cases. Our observation corroborates that of Lazebnik, Schmid and Ponce

in [9], which used a scene recognition dataset. In the remainder of this paper, we will use L = 2

in spatial PACT.

CENTRIST can be computed and evaluated quickly, and so is spatial PACT. The IDOL dataset

has around 1000 images in each image sequence, and spatial PACT processes at about 50 frames

per second on an Intel Pentium 4 2GHz computer for computing the features, and finding the
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(a) images from 15 scene categories (b) corresponding Sobel images

Fig. 12. Images from 15 different scene categories. Fig. 12a shows one image from each of the 15 categories from [9]. The

categories are bedroom, coast, forest, highway, industrial, inside city, kitchen, living room, mountain, office, open country, store,

street, suburb, and tall building, respectively (from top to bottom, and from left to right). Fig. 12b shows their corresponding

Sobel gradient images. The Sobel gradients are normalized to [0 255].

1-NN match.6

Finally, we have discussed in Sec. III-F that 1-NN is chosen for the KTH IDOL dataset

because we want to match the global geometric structure among image regions in addition to

local image patches. Table II confirms that in this dataset the 1-NN classifier outperforms SVM

with a large margin.

C. The 15 class scene category dataset

The 15 class scene recognition dataset was built gradually by Oliva and Torralba ([10], 8

classes), Fei-Fei and Perona ([8], 13 classes), and Lazebnik, Schmid and Ponce ([9], 15 classes).

This is a scene category dataset (scene classes including office, store, coast, etc. Please refer

to Fig. 12 for example images and category names.) Images are about 300 × 250 in resolution,

with 210 to 410 images in each category. This dataset contains a wide range of scene categories

in both indoor and outdoor environments. Unlike the KTH IDOL images which are taken by

robots, images in this datasets are taken by people and representative of the scene category. We

use SVM and spatial PACT in this dataset. The first 100 images in each category were used

to perform PCA. Same as previous research on this dataset, 100 images in each category are

used for training, and the remaining images constitute the testing set. The results are shown in

6Or 20 fps if including the time for loading the test image from hard drive.
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TABLE IV

RECOGNITION RATES ON THE 15 CLASS SCENE DATASET.

L Method Feature type Rates

0 SPM [9] 16 channel weak features 45.3 ± 0.5

0 SPM [9] SIFT, 200 cluster centers 72.2 ± 0.6

0 SPM [9] SIFT, 400 cluster centers 74.8 ± 0.3

0 spatial PACT CENTRIST, 40 eigenvectors 73.29 ± 0.96

3 SPM [9] 16 channel weak features 66.8 ± 0.6

2 SPM [9] SIFT, 200 cluster centers 81.1 ± 0.3

2 SPM [9] SIFT, 400 cluster centers 81.4 ± 0.5

3 SPM [19] SIFT, 400 intermediate concepts 83.3

2 spatial PACT CENTRIST, 40 eigenvectors 83.10 ± 0.60

2 SP-pLSA [7] SIFT, 1200 pLSA topics 83.7

2 spatial PACT with Sobel image CENTRIST, 40 eigenvectors 84.96 ± 0.34

Table IV, where our level 2 pyramid spatial PACT achieves the highest accuracy7.

In [9], low level features were divided into weak features (computed from local 3 × 3

neighborhoods) and strong features (SIFT descriptors computed from 16 × 16 image patches).

Strong features were shown to have much higher accuracy than weak features (c.f. Table IV).

The Census Transform is computed from 3 × 3 local neighborhoods, and falls into the weak

feature category. However, when L = 0 (not using spatial pyramid), CENTRIST substantially

outperforms the weak features and the strong features with 200 codebook size in [9], and is only

inferior to the strong features with 400 codebook size. When a spatial pyramid is used, spatial

PACT outperforms most existing methods. Spatial PACT is inferior to the strong SIFT features

with 400 “intermediate concepts” in [19] and the SIFT features with 1200 pLSA topics in [7].

Note that length of the spatial PACT feature vector is only about 5% of the SP-pLSA feature

vector length in [7]. By integrating more information into the spatial PACT feature vector,

the recognition accuracy can be further improved. As shown in Fig. 12b, the Sobel gradient

images contain information that emphasizes image discontinuities. By observing these Sobel

7The results reported here is slighted different from those in [40] in which the accuracy was computed as total number of

correct predictions divided by total number of testing images. In Table IV the average accuracy in all categories are reported

(i.e., average of diagonal entries in the confusion matrix).
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Fig. 13. Confusion matrix of the 15 class scene dataset. Only rates higher than 0.1 are shown in the figure.

gradient images, a person can gain confidence in predicting many scene category types. By

generating spatial PACT feature vectors on Sobel images and concatenate them to the feature

vectors generated from original images, spatial PACT (with Sobel) achieved a 84.96% accuracy,

significantly higher than all other methods.

Confusion matrix from one run on this dataset (L = 2 spatial PACT) is shown in Fig. 13,

where row and column names are true and predicted labels respectively. The biggest confusion

happens between category pairs such as bedroom/living room, industrial/store, and coast/open

country, which coincides well with the confusion distribution in [9].

More experiments were also carried out to compare our CENTRIST based descriptor with

other descriptors, and to examine various aspects of the scene recognition problem.

Orientation Histogram. Orientation histogram [41] is a representation that uses histogram of

quantities computed from 3×3 neighborhoods. We implemented this method with 40 bins. Com-

bined with a level 2 spatial pyramid, Orientation Histogram achieves 76.78± 0.90% recognition

rate, which is significantly worse than spatial PACT (83.10 ± 0.60%).

Indoor-outdoor classification. We also distinguish indoor and outdoor scenes in this dataset.

The industrial category contains both indoor and outdoor images, and is thus ignored. The

remaining 14 categories are separated as 5 indoor categories and 9 outdoor categories. Using

L = 2 and L = 0, spatial PACT successfully predicts labels for 98.02% and 95.31% of the
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Fig. 14. Images from 8 different sports event categories.

images, respectively. These recognition rates are much higher than previous results on indoor-

outdoor classification datasets (e.g. [23], [10]).

Linear classifiers. Linear SVM classifiers are also applied to the scene dataset. They achieve

accuracy of 81.78% and 73.59%, using spatial PACT with L = 2 and L = 0, respectively. The

implication of these results are two fold. First, the difference in performance of RBF kernels

and linear kernels are quite small. In all the datasets we experimented with, the difference in

recognition rates between these two kernel types are smaller than 2%. This observation suggests

that images from the same category are compact in the spatial PACT descriptor space. Second,

because of the fast testing speed of linear classifiers and small performance difference, linear

SVM classifiers could be used to ensure real-time classification. A further observation is that

linear SVM classifiers get 94.18% accuracy on indoor-outdoor classification, without using a

spatial pyramid. In other words, CENTRIST could reliably distinguish the man-made indoor

structures and the outdoor natural scenes.

Speed and classifier analysis. The time to extract CENTRIST is proportional to the input

image size. However, large images can be down-sampled to ensure high speed. Our experiments

observed only slight (usually < 1%) performance drop. Also, spatial PACT is not sensitive to

SVM parameters. (C, γ) = (8, 2−7) is recommended for RBF kernels with probability output,

and C = 2−5 for linear SVM.

SVM vs. 1-NN. Finally, we want to point out that choosing the right classifier for a specific

application is very important for scene recognition, too. If we use 1-NN for this scene recognition

task, the level 2 spatial PACT features achieved a recognition rate of 63.84± 1, 21%, far below

the SVM result (83.10%) with the same features.
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Fig. 15. Confusion matrix of the event dataset. Only rates higher than 0.1 are shown in the figure.

D. The 8 class event dataset

The event dataset [18] contains images of eight sports: badminton, bocce, croquet, polo,

rock climbing, rowing, sailing, and snowboarding (see Fig. 14 for example images from each

category). In [18], Li and Fei-Fei used this dataset in their attempt to classify these events by

integrating scene and object categorizations (i.e. deduce what from where and who). We use

this dataset for scene classification purpose only. That is, we classify events by classifying the

scenes, and do not attempt to recognize objects or persons.

The images are high resolution ones (from 800x600 to thousands of pixels per dimension).

The number of images in each category ranges from 137 to 250. Following [18], we use 70

images per class for training, and 60 for testing. The first 50 images in each category are used

to compute the eigenvectors. We use RBF kernel SVM classifiers with level 2 pyramid spatial

PACT features in this dataset.

Overall we achieve 78.50 ± 0.99% accuracy on this dataset. In [18], the scene only model

achieved approximately 60% accuracy, which is significant lower than the spatial PACT result.

When both scene and object categorization were used, the method in [18] had an accuracy

of 73.4%, still inferior to our result. Note that this scene+object categorization used manual

segmentation and object labels as additional inputs.

The scene only model of spatial PACT exhibits different behaviors than the scene+object

model in [18], as shown in the confusion matrix in Fig. 15. The most confusing pairs of our

method are bocce/croquet, and rowing/sailing. These results are intuitive because these two

pairs of events share very similar scene or background. In [18], the most confusing pairs are

bocce/croquet, polo/bocce, and snowboarding/badminton. The object categorization helped in
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distinguishing rowing and sailing. However, it seems that it also confused events that have

distinct backgrounds, such as snowboarding and badminton.

Observations similar to those on the scene categorization dataset, are also present in the sports

event dataset:

• Linear kernel SVM achieved almost indistinguishable accuracies as the RBF kernel SVM

(78.50 ± 0.85%).

• A level 2 spatial PACT greatly improves a level 0 one, which has accuracy 64.67± 1.71%.

• Adding the Sobel image improves the recognition accuracy to 80.54 ± 0.64%.

E. Bag of Visual words with CENTRIST

Since CENTRIST can be extracted for any rectangle image patches, we can also apply the

Bag of Visual words framework with CENTRIST being the base visual descriptor. This is the

second approach to use CENTRIST in this paper.8. Following [9], we use image patches of

size 16 by 16, and sample over a grid with a spacing of 8 pixels. In every training/testing

splitting, one fourth of the image patches sampled from the training set are used to generate

a codebook which contain 200 codewords. Since CENTRIST is only 256 dimensions, PCA

operations are not performed (i.e. CENTRIST is directly used for each 16 by 16 image patch).

The k-means algorithm is used to cluster CENTRIST vectors into 200 codewords. For a level

2 spatial hierarchy, the final feature vector has a length of 200 × (25 + 4 + 1) = 6200. SVM

classifiers with histogram intersection kernel are used.

On the 15 class scene recognition dataset, codebook of CENTRIST correctly recognize 80.73±

0.59% of the testing images, which is similar to the result of codebook with 200 SIFT codewords

in [9] (81.1 ± 0.3%), but inferior to the spatial PACT result (83.10 ± 0.60%). Similarly, on the

8 sports event dataset, codebook of CENTRIST achieved an accuracy of 75.21± 1.06%, which

is lower than the spatial PACT accuracy, but higher than those reported in [18].

Although the CENTRIST visual codebook’s performance is not as good as spatial PACT, it

provides a way to visualize the behavior of the CENTRIST descriptor, and consequently improve

our understanding of CENTRIST. We build a visual codebook with 256 visual code words using

the 15 class scene recognition dataset. Given an input image, an image patch with coordinates

8Source code is available at http://www.cc.gatech.edu/cpl/projects/libHIK

July 23, 2009 DRAFT



SUBMITTED TO IEEE TRANS. PAMI 29

(a) coast (b) CENTRIST (c) SIFT

(d) tall building (e) CENTRIST (f) SIFT

Fig. 16. Visualization of images mapped to codewords. In each row, the first image is an input image, with the second and

third being visualization for CENTRIST and SIFT codebooks, respectively. (This picture needs to be viewed in color.)

[x − 8, x + 8) × [y − 8, y + 8) can be mapped to a single integer by the following procedure.

We first extract the CENTRIST descriptor from this window (whose size is 16 by 16). This

CENTRIST vector is compared to all codewords, and the index of the nearest neighbor is the

mapping result for pixel position (x, y). By choosing a random RGB tuple for each codeword

index, a gray scale image can be transformed into a visualization of corresponding codeword

indexes.

Fig. 16 are examples of the codebook visualization results for a coast and a tall building

image. The SIFT code words tend to emphasize discontinuities in the images. Edges (especially

straight lines) usually are mapped to the same codeword (i.e. displayed in the same color in the

visualization). The visualization also suggests that SIFT pays more attention to detailed textural

information, because the visualization is fragmented (connected component of the same color is

small). Image patches with similar visual structure and semantics are mapped to different visual

code words, e.g. the tall building in the right half of Fig. 16d.

Instead, CENTRIST visualizations tend to group image regions with similar visual structure

into the same code word. The connected component in CENTRIST visualizations are larger than

those in the SIFT visualizations. For example, the sky in the coast image share similar semantics

and visual structures. This region is mostly mapped to the same color (i.e. same code word)

using CENTRIST, which is desirable for the scene category recognition task. Instead, the SIFT
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Fig. 17. Difference vector of visual descriptors for Fig. 4b and Fig. 4c.

descriptor maps this region to different colors.

The different behaviors of CENTRIST and SIFT might be explained by the way local image

measurements are accumulated. In CENTRIST, we only concern whether a center pixel’s intensity

is higher or lower than its neighbors. The magnitude of difference of pixel intensities is ignored.

On the contrary, visual descriptors like SIFT and HOG accumulate orientation gradients of

pixel intensities. The magnitude of pixel intensity differences has strong effect of histogram of

orientation gradients. Thus, we conjecture that SIFT and HOG are more sensitive to smaller

changes of visual contents than CENTRIST. In scene recognition we want our descriptors to be

insensitive to small variations in images.

This conjecture is illustrated in Fig. 17. We examine two pictures that have similar structures:

Image 1 as shown in Fig. 4b, and Image 2 as shown in Fig. 4c (in page 10). We compute the

CENTRIST descriptors for h1 and h2 both images. The difference vector h1 − h2 is shown

in Fig. 17a. We repeat the same procedure for the SIFT descriptor and the result is shown in

Fig. 17b.

We require all feature vectors to have the same l1 norm (i.e. all dimensions in a feature

vector sum to the same constant). Thus the heights of bars in Fig. 17a and Fig. 17b are directly

comparable. Although Image 1 and Image 2 have very similar image structures, their SIFT

descriptors are quite different. A lot of bins have different values, i.e. having a non-zero value

in the difference vector. The magnitude of the difference vector components are also big (some

larger than 15). CENTRIST descriptors, however, are very similar in these two images. These

differences are summarized in Table V, in which sum of absolute difference means
∑

i |h1i−h2i|.
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TABLE V

DIFFERENCE OF VISUAL DESCRIPTORS FOR TWO SIMILAR IMAGES.

Percent of changed cells Sum of absolute difference

CENTRIST 21% 63

SIFT 67% 307

TABLE VI

COMPARING RECOGNITION ACCURACIES OF CENTRIST AND GIST IN SCENE RECOGNITION DATASETS.

Dataset Environment CENTRIST Gist

8 class outdoor 85.65± 0.73% 82.60± 0.86%

15 class outdoor + indoor 83.10± 0.60% 73.28± 0.67%

F. Comparing CENTRIST, SIFT, and Gist

In this section we further compare the CENTRIST descriptor to the SIFT and Gist descriptors.

As mentioned in Sec. II, we observe that the perceptual properties Gist is modeling are

mainly valid for outdoor environments. Our experiments on the 8 outdoor scene categories [10]

and the 15 scene categories (which is a super set of the 8 category dataset) further corroborated

this observations. Using the Gist descriptor9 and SVM classifier, the recognition accuracy was

82.60 ± 0.86% on the 8 outdoor categories, which is worse than 85.65 ± 0.73, the accuracy

using CENTRIST on this dataset. However, on the 15 class dataset which include several indoor

categories, the accuracy using Gist dramatically dropped to 73.28±0.67%, which is significantly

lower than CENTRIST’s accuracy, 83.10± 0.60%. Our conjecture is that the frequency domain

features in the Gist descriptor is not discriminative enough to distinguish between the subtle

differences between indoor categories, e.g. bedroom vs. living room. The same procedures and

parameters are used in all experiments, except that CENTRIST and Gist are used in different

experiments. Table VI summarizes these results.

On the contrary, SIFT is originally designed to have high discriminative power. Thus it may

not be able to cope with the huge intra-class variation in scene images. For any two feature

vectors, we can compute their Histogram Intersection Kernel (HIK) value [42] as a simple

measure for the similarity between them. By observing the similarity distribution between- and

within- categories, which are shown in Fig. 18 for both SIFT and CENTRIST, we can have an

9http://people.csail.mit.edu/torralba/code/spatialenvelope/
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Fig. 18. Histogram comparing similarity values of best in-category nearest neighbor with best out-of-category nearest neighbor

of an image. (This figure is best viewed in color.)

estimate of their capability in place and scene recognition.

For any image, we can find its nearest neighbor in the same category and the nearest neighbor

in a different category. If the out-of-category nearest neighbor has a higher similarity value

than the in-category nearest neighbor, the simple nearest neighbor classifier will make a wrong

decision for this image. In Fig. 18 the x-axis shows the difference of these two similarity values.

In other words, a value in the left hand side of 0 (the black line) means an error. For any given

curve, if we find area of the part that is at the left hand side of the black dashed line, and

divide it by area of the entire curve, we get the leave one out estimation of the classification

error of a nearest neighbor rule. Thus Fig. 18 is an indication of the discriminative power of the

descriptors. CENTRIST has a clear advantage in recognizing place and scene images (35.83%

error, compared to 57.24% for SIFT), while SIFT is suitable for object recognition (67.39%

error, compared to 83.80% for CENTRIST).

V. CONCLUSIONS

In this paper we propose CENTRIST, CENsus TRansform hISTogram, as a visual descriptor

for recognizing places and scene categories. We first show that place and scene recognition pose

different requirement for a visual descriptor, especially for such tasks in indoor environments.

Thus we need a visual descriptor that is different from commonly used ones (e.g. SIFT in

object recognition). We analyze these tasks and show that the descriptor needs to be holistic

and generalizable. It also needs to acquire structural properties in the image while suppressing
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textural details, and contain rough geometrical information in the scene.

We then focus on understanding the properties of CENTRIST, and show how CENTRIST suits

the place and scene recognition domain. CENTRIST is a holistic representation that captures

the structural properties of an image. Through the strong constraints among neighbors Census

Transform values, CENTRIST is able to capture the structural characteristic within a small

image patch. In larger scale, spatial hierarchy of CENTRIST is used to catch rough geometrical

information. CENTRIST also shows high generalizability, exhibiting similar visual descriptors

for images with similar structures.

On four datasets including both place and scene category recognition tasks, CENTRIST

achieves higher accuracies than previous state-of-the-art methods. Comparing with SIFT and

Gist, CENTRIST not only exhibits superior performance. It has nearly no parameter to tune and

is easy to implement. It also evaluates extremely fast. Implementation of methods proposed in this

paper is publicly available at http://www.cc.gatech.edu/˜wujx/PACT/PACT.htm

and http://www.cc.gatech.edu/cpl/projects/libHIK.

In this paper we also analyzed several limitations of CENTRIST and there are research

directions that may improve it. First, CENTRIST is not invariant to rotations. Although robot

acquired images and scene images are usually upright, making it rotational invariant will enlarge

its application area. Second, we want to recognize place categories in more realistic settings, i.e.

learning the category concepts using images acquired without human effort in acquiring canonic

views. Third, CENTRIST now only utilize the gray scale information in images. As shown

in [43], different channels in the color space contain useful information for object and place

recognition. The performance of CENTRIST should improve if color channels are incorporated

appropriately.
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[14] Z. Zivkovic and B. J. A. Kröse, “From sensors to human spatial concepts,” Robotics and Autonomous Systems, vol. 55,

no. 5, pp. 357–358, 2007.

[15] J. Wu, H. I. Christensen, and J. M. Rehg, “Visual Place Categorization: Problem, Dataset, and Algorithm,” in Proc.

IEEE/RSJ Int’l Conf. Intelligent Robots and Systems, 2009.

[16] J. Hays and A. A. Efros, “IM2GPS: estimating geographic information from a single image,” in Proc. IEEE Conf. on

Computer Vision and Pattern Recognition, 2008.

[17] J. J. Kivinen, E. B. Sudderth, and M. I. Jordan, “Learning multiscale representaiton of natural scenes using dirichlet

processes,” in The IEEE Conf. on Computer Vision, 2007.

[18] L.-J. Li and L. Fei-Fei, “What, where and who? Classifying events by scene and object recognition,” in The IEEE Conf.

on Computer Vision, 2007.

[19] J. Liu and M. Shah, “Scene modeling using Co-Clustering,” in The IEEE Conf. on Computer Vision, 2007.

[20] D. Lowe, “Distinctive image features from scale-invariant keypoints,” International Journal of Computer Vision, vol. 60,

no. 2, pp. 91–110, 2004.

[21] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in Proc. IEEE Conf. on Computer Vision

and Pattern Recognition, vol. 1, 2005, pp. 886–893.

July 23, 2009 DRAFT



SUBMITTED TO IEEE TRANS. PAMI 35

[22] J. Wu and J. M. Rehg, “Where am I: Place instance and category recognition using spatial PACT,” in Proc. IEEE Conf.

on Computer Vision and Pattern Recognition, 2008.

[23] M. Szummer and R. W. Picard, “Indoor-outdoor image classification,” in CAIVD, 1998, pp. 42–51.

[24] J. C. van Gemert, J.-M. Geusebroek, C. J. Veenman, and A. W. Smeulders, “Kernel codebooks for scene categorization,”

in European Conf. Computer Vision, 2008.

[25] K. Mikolajczyk and C. Schmid, “A performance evaluation of local descriptors,” IEEE Trans. on Pattern Analysis and

Machine Intelligence, vol. 27, no. 10, pp. 1615–1630, 2005.

[26] J. Vogel and B. Schiele, “Semantic modeling of natural scenes for content-based image retrieval,” International Journal

of Computer Vision, vol. 72, no. 2, pp. 133–157, 2007.

[27] P. Viola and M. Jones, “Robust real-time face detection,” International Journal of Computer Vision, vol. 57, no. 2, pp.

137–154, 2004.

[28] R. Fergus, P. Perona, and A. Zisserman, “Object class recognition by unsupervised scale-invariant learning,” in Proc. IEEE

Conf. on Computer Vision and Pattern Recognition, vol. II, 2003, pp. 264–271.

[29] P. Felzenszwalb and D. Huttenlocher, “Pictorial structures for object recognition,” International Journal of Computer Vision,

vol. 61, no. 1, pp. 55–79, 2005.

[30] R. Zabih and J. Woodfill, “Non-parametric local transforms for computing visual correspondence,” in European Conf.

Computer Vision, vol. 2, 1994, pp. 151–158.

[31] D. Bhat and S. Nayar, “Ordinal measures for image correspondence,” IEEE Trans. on Pattern Analysis and Machine

Intelligence, vol. 20, no. 4, pp. 415–423, 1998.
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