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CENTROID BODIES AND THE CONVEXITY OF AREA

FUNCTIONALS

Andreas Bernig

Abstract

We introduce a new volume definition on normed vector spaces.
We show that the induced k-area functionals are convex for all k.
In the particular case k = 2, our theorem implies that Busemann’s
2-volume density is convex, which was recently shown by Burago-
Ivanov. We also show how the new volume definition is related to
the centroid body and prove some affine isoperimetric inequalities.

1. Introduction and statement of main results

In a finite-dimensional Euclidean space, there is only one natural
way to measure volumes of k-dimensional manifolds. Similarly, there
is basically only one natural volume definition on a Riemannian mani-
fold. In contrast to this, measuring volumes of submanifolds in a finite-
dimensional normed space (or more generally on Finsler manifolds) is
a more subtle subject. Different aspects of the Euclidean volume give
rise to different volume measurements.

One natural way of defining volumes is to consider submanifolds in a
normed space as metric spaces and to take the corresponding Hausdorff
measure. This gives rise to Busemann’s definition of volume. Many
basic questions, like minimality of flat submanifolds, are still open. Re-
cently, some progress was made by Burago and Ivanov [11] who have
shown that flat 2-dimensional regions are minimal (see Corollary 1.4 for
the precise statement).

A second well-known volume measurement is Holmes-Thompson vol-
ume, which equals the symplectic volume of the disc bundle. The use
of symplectic geometry gives rise to a number of interesting results. It
was shown recently by Ludwig [23] that the Holmes-Thompson surface
area can be uniquely characterized by a valuation property. However,
Holmes-Thompson volume lacks some basic convexity properties.

In geometric measure theory it is common to use Gromov’s mass*,
which has very strong convexity properties, but seems less natural from
the point of view of convex geometry.
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In this paper, we propose a new natural definition of volume which
is based on a version of the well-known centroid body and was inspired
by a recent result of Burago-Ivanov [11]. We show that our definition
of volume has strong convexity properties. More precisely, it induces
convex k-densities for all k. Since the 2-volume density induced by our
definition of volume equals the Busemann 2-volume density, we obtain
as a corollary Burago-Ivanov’s theorem that 2-planes are minimal with
respect to Busemann volume.

Let us describe our results in more detail. References for this section
are [3] and [33]. We let ΛkV denote the k-th exterior power of V and
Λk
sV the cone of simple k-vectors.

Definition 1.1 (Definition of volume). A definition of volume µ as-
signs to each normed vector space (V, ‖ · ‖) a norm µV on ΛnV (where
n = dimV ) such that the following two conditions are satisfied:

i) If V is Euclidean, then µV is induced by the usual Lebesgue mea-
sure.

ii) If f : (V, ‖ · ‖) → (W, ‖ · ‖) is a linear map that does not increase
distances, then the induced map Λnf : (ΛnV, µV ) → (ΛnW,µW )
does not increase distances.

If we want to stress the dependence on the norm, we will write µB

instead of µV , where B is the unit ball in (V, ‖ · ‖).
From i) and ii) it follows that the map (V, ‖ · ‖) 7→ (ΛnV, µV ) is

continuous with respect to the Banach-Mazur distance.
An equivalent definition is as follows. Let Ks

0 be the space of centrally
symmetric compact convex bodies with non-empty interior.

Given a definition of volume definition µ on V , define the functional
V : Ks

0 → R+ by

V(B) := µB(B).

The functional V satisfies the following properties:

i) V is invariant under linear maps, i.e. V(gB) = V(B) for all g ∈
GL(V ).

ii) V(E) = ωn (the usual volume of the Euclidean unit ball) if E is an
ellipsoid.

iii) If B ⊂ B′, then

V(B)

volB
≥

V(B′)

volB′

where vol denotes any Lebesgue measure on V .

Conversely, any functional with these properties defines a definition of
volume.

We call V the associated affine invariant.
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Definition 1.2 (Main examples of definitions of volume).

i) The Busemann definition of volume [12] has the associated affine
invariant

Vb(B) ≡ ωn.

It equals the Hausdorff measure of B with respect to the metric
induced by B.

ii) Holmes-Thompson definition of volume [20] has associated affine
invariant

Vht(B) :=
1

ωn
svol(B ×B◦).

Here svol denotes the symplectic volume on V × V ∗ and B◦ ⊂ V ∗

is the polar body of B.
iii) The Benson definition of volume (also called Gromov’s mass*, see

[6, 19]) has associated affine invariant

Vm∗(B) := 2n
volB

infP⊃B volP
.

Here P ranges over all parallelotopes circumscribed to B and vol is
any choice of Lebesgue measure on V .

iv) Ivanov’s definition of volume [22] has associated affine invariant

V i(B) := ωn
volB

volE
,

where E is the maximal volume ellipsoid inscribed in B (i.e. the
John ellipsoid).

Each definition of volume on V induces k-volume densities, i.e.
1-homogeneous, continuous, positive functions on the set of simple k-
vectors in V , where 0 ≤ k ≤ dimV . More precisely, given a simple
k-vector a, we put

µk(a) := µ〈a〉(a),

where 〈a〉 is the k-dimensional space spanned by a with the induced
norm.

Definition 1.3. A k-volume density µk is called extendibly convex if
it is the restriction of a norm on ΛkV .

There are other notions of convexity for k-volume densities. The k-
volume density µk is called totally convex if for each k-subspace in V ,
there exists a µk-decreasing linear projection onto that subspace. It
is called semi-elliptic, if a plane k-disc has minimal µk-area among all
Lipschitz chains with the same boundary. Semi-ellipticity depends in a
subtle way on the choice of the coefficient ring. Semi-ellipticity over R

is equivalent to extendible convexity [10]. This notion is important in
geometric measure theory, in particular in the solution of the Plateau
problem in normed or metric spaces [1, 4, 19, 34].
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In codimension 1, these notions coincide. In general, total convexity
implies extendible convexity. We refer to [3] for more details and other
notions of convexity.

The k-density induced by the Holmes-Thompson volume is extendibly
convex for k = dimV − 1. Busemann-Ewald-Shephard [14] and later
Burago and Ivanov [9] gave examples showing that for 1 < k < n − 1,
it is not necessarily extendibly convex.

Busemann’s volume is also convex in codimension 1, but this is more
difficult to show (in fact this is equivalent to Busemann’s intersection
theorem [13]). An open conjecture (which appears as problem num-
ber 10 on Busemann-Petty’s list [15] of problems in convex geometry)
states that Busemann’s definition of volume induces extendibly convex
k-volume densities for all k. The case k = 2 of this conjecture was
recently confirmed by Burago and Ivanov [11].

Gromov’s mass* and Ivanov’s definition of volume have the best con-
vexity properties, as the induced k-volume densities are totally convex
for all k [6, 19, 22].

For closely related results on the minimality of totally geodesic sub-
manifolds of Finsler manifolds we refer to [2, 7, 21, 31].

The aim of the present paper is to introduce a new definition of
volume which has strong convexity properties. For simplicity, we will
use a fixed Lebesgue measure vol on V . Let V (K1, . . . ,Kn) denote the
associated mixed volume of the compact convex bodies K1, . . . ,Kn. We
will follow the usual notation and write

Vi(K,L) := V (K[n− i], L[i]) = V (K, . . . ,K
︸ ︷︷ ︸

n−i

, L, . . . , L
︸ ︷︷ ︸

i

).

The projection body of a compact convex body K ⊂ V will be denoted
by ΠK ⊂ V ∗, see the next section for the definition and some properties.

Our main theorem is the following.

Theorem 1. Let

(1) V(B) :=
ωn−1
n

ωn
n−1

sup
L∈K(V )

{svol(B ×ΠL) |V1(L,B) = 1} .

Then V is the associated affine invariant of a definition of volume. The
induced k-volume densities are extendibly convex for all k. Moreover,

V(B) ≥ Vht(B)

for all unit balls B, with equality precisely for ellipsoids.

To the best of our knowledge, only two other definitions of volume
with extendibly convex densities were known previously, namely Gro-
mov’s mass* and Ivanov’s definition of volume.

Theorem 1 implies a recent result by Burago and Ivanov.
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Corollary 1.4 (Burago-Ivanov, [11]). The 2-volume density induced
by Busemann’s definition of volume is extendibly convex.

We will also show (Proposition 6.4) that the stronger inequality
V(B) ≥ Vb(B) is equivalent to Petty’s conjectured projection inequality
(Conjecture 2.2).

Our second main theorem establishes a link between our new defini-
tion of volume, the centroid body and random simplices.

Recall that the support function of a convex body K ⊂ V is the
function h(K, ·) : V ∗ → R, ξ 7→ supx∈K〈ξ, x〉.

Theorem 2 (Alternative description of V). Let B ⊂ V be the unit
ball of some norm. Let ν be a probability measure on B◦. Define a
convex body ΓνB

◦ ⊂ V ∗ by

h(ΓνB
◦, u) :=

∫

B◦

|〈ξ, u〉|dν(ξ), u ∈ V.

i) We have

V(B) =
ωn−1
n

ωn
n−1

(n

2

)n

sup
ν∈Prob(B◦)

svol(B × ΓνB
◦).

ii) Let [0, ξ1, . . . , ξn] be the simplex spanned by ξ1, . . . , ξn ∈ V ∗. Then

vol(ΓνB
◦) = 2n

∫

B◦

· · ·

∫

B◦

vol[0, ξ1, . . . , ξn]dν(ξ1) . . . dν(ξn).

iii) There exists a unique even probability measure on B◦ which maxi-
mizes vol ΓνB

◦. It is supported in the set ExtB◦ of extremal points
of B◦.

Remark: if ν is the uniform measure on B◦, then ΓνB
◦ = ΓB◦, the

well-known centroid body [18, 24, 25]. In general, we call ΓνB
◦ the

centroid body with respect to ν.

Acknowledgements. Some parts of this paper were worked out during
a stay at the Université de Fribourg and I thank Stefan Wenger for very
fruitful discussions. I also would like to thank Monika Ludwig, Rolf
Schneider, Franz Schuster, Deane Yang and the anonymous referee for
useful remarks.

2. Notations and background

We refer to the books by Schneider [30] and Gardner [18] for infor-
mation on convexity and the Brunn-Minkowski theory. Let us recall
some notions and theorems which will be used later on.

Let V be a real vector space of dimension n. The space of compact
convex bodies in V is denoted by K(V ). The space of symmetric com-
pact convex bodies with non-empty interior will be denoted by Ks

0(V ).
The convex hull of a set X ⊂ V will be denoted by convX.
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A set B ⊂ Ks
0(V ) is the unit ball of some norm on V and vice versa.

If B = E is an ellipsoid, then the corresponding norm is Euclidean.
Each K ∈ K(V ) may be described by its support function h(K, ξ) :=

supx∈K ξ(x), ξ ∈ V ∗. For B ∈ Ks
0, the radial function is defined by

ρ(B, v) := sup{λ ≥ 0, λv ∈ B}, v ∈ V, v 6= 0. Note that h is 1-
homogeneous, while ρ is (−1)-homogeneous.

The polar body of B ∈ Ks
0(V ) is defined by

B◦ := {ξ ∈ V ∗ : ξ(x) ≤ 1,∀x ∈ B} ⊂ V ∗.

We have

h(B, ξ) =
1

ρ(B◦, ξ)
, ξ ∈ V ∗, ξ 6= 0.

The mixed volume of compact convex bodies will be denoted by
V (K1, . . . ,Kn) and we will abbreviate Vi(K,L) := V (K[n − i], L[i]).
We will use the following inequality of Minkowski, which is a special
case of the Alexandrov-Fenchel inequality:

V1(K,L)n ≥ vol(K)n−1 vol(L).

If K,L contain inner points, then equality holds if and only if K and L
are homothetic.

Let us also recall the Brunn-Minkowski inequality:

vol(λK + (1− λ)L)
1

n ≥ λ vol(K)
1

n + (1− λ) vol(L)
1

n , 0 ≤ λ ≤ 1.

If K and L contain interior points and 0 < λ < 1, then equality holds
if and only if K and L are homothetic.

The space V × V ∗ admits a symplectic volume form svol [17]. If vol
is any choice of Lebesgue measure on V and vol∗ is the dual Lebesgue
measure on V ∗, then svol = vol× vol∗.

Let V be a vector space, Ω ∈ ΛnV ∗ a volume form and K ∈ K(V ).
The projection body [18] ΠK ∈ K(V ∗) is defined as follows. Let v ∈
V, v 6= 0. Then ivΩ := Ω(v, ·) is a volume form on the quotient space
V/R · v and h(ΠK, v) := vol(πvK, ivΩ), where πv : V → V/R · v is
the quotient map, defines the support function of ΠK. We will write
Π◦K := (ΠK)◦ for the polar body of ΠK.

Let us recall a well-known geometric inequality related to the projec-
tion body.

Theorem 2.1 (Petty’s projection inequality, [29]). Let K ⊂ V be a
compact convex body and E ⊂ V an ellipsoid. Then

vol(K)n−1 vol Π◦K ≤ vol(E)n−1 vol Π◦E

with equality precisely for ellipsoids.

The following conjecture is a strengthening of Petty’s projection in-
equality. We refer to [16, 26, 28, 29] for more information and equiva-
lent formulations.
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Conjecture 2.2 (Petty’s conjectured projection inequality). Let K
be a compact convex body in V and E ⊂ V an ellipsoid. Then

vol(ΠK) vol(K)1−n ≥ vol(ΠE) vol(E)1−n

with equality precisely for ellipsoids.

The centroid body ΓK ∈ K(V ) of a compact convexK with non-empty
interior is defined by

h(ΓK, ξ) =
1

volK

∫

K

|〈ξ, u〉|du, ξ ∈ V ∗.

It satisfies the Busemann-Petty centroid inequality [18, 27, 32]

(2) vol(ΓK) ≥

(
2ωn−1

(n+ 1)ωn

)n

volK,

with equality precisely for ellipsoids centered at the origin.
Let V be a Euclidean vector space with unit sphere Sn−1. The cosine

transform is defined by

Cf(v) :=

∫

Sn−1

|〈u, v〉|f(u)dσ(u), f ∈ C(Sn−1).

where dσ denotes the spherical Lebesgue measure. On the space of
even, smooth functions, the cosine transform is a bijection. The cosine
transform extends to measures on the sphere by

Cν(v) :=

∫

Sn−1

|〈u, v〉|dν(u).

The cosine transform is injective on the space of even measures on Sn−1

([18], Appendix C.2).
The space of probability measures on a topological space X will be

denoted by Prob(X).

3. Proof of Theorem 2

Let B ⊂ V be the unit ball of some norm. By ([30], 5.3.38),

(3) vol(ΓνB
◦) = 2n

∫

B◦

· · ·

∫

B◦

vol[0, ξ1, . . . , ξn]dν(ξ1) . . . dν(ξn).

Proposition 3.1. There exists a unique even probability measure ν
on B◦ which maximizes vol(ΓνB

◦).

Proof. By Prokhorov’s theorem (see e.g. [8], Thm. 5.1), the space
of probability measures on B◦ is sequentially compact with respect to
weak convergence. Since the functional ν 7→ vol(ΓνB

◦) is continuous
with respect to weak topology, it follows that the supremum is attained.

If the measure of the interior of B◦ is positive, then radial projection
from B◦ onto ∂B◦ (with the origin mapped to an arbitrary boundary
point) of ν will increase our functional, hence each optimal measure ν
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must be concentrated on the boundary. Moreover, replacing ν by its
even part νev does not change Γν , hence we may assume that ν is even,
i.e. invariant under central symmetry.

Let ν, τ ∈ Prob(∂B◦) be even measures and 0 < λ < 1. Then
Γ(1−λ)ν+λτB

◦ = (1 − λ)ΓνB
◦ + λΓτB

◦. By the Brunn-Minkowski in-
equality, it follows that

(
vol Γ(1−λ)ν+λτB

◦
) 1

n ≥ (1− λ) vol(ΓνB
◦)

1

n + λ vol(ΓτB
◦)

1

n .

This shows that the function ν 7→ vol(ΓνB
◦)

1

n is concave on the
space of even measures on ∂B◦. If vol ΓνB

◦ > 0, then equality in the
above inequality holds if and only if ΓνB

◦ is homothetic to ΓτB
◦, i.e.

ΓνB
◦ = tΓτB

◦ + v for t > 0, v ∈ V .
We claim that this is possible only if ν = τ . Indeed, since ΓνB

◦

and ΓτB
◦ are centrally symmetric, v = 0. Choose a Euclidean scalar

product on V ∗ with unit sphere Sn−1. Let ν̃, τ̃ be the push-forwards of
ν and τ under the radial projection ∂B◦ → Sn−1. From ΓνB

◦ = tΓτB
◦

and from the injectivity of the cosine transform on even measures we
deduce that dν̃ = tdτ̃ and hence ν = tτ . Since ν and τ are probability
measures, t = 1.

From this the uniqueness of the maximum follows easily. q.e.d.

Recall that a point x in a compact convex bodyK is called an extreme
point if it cannot be written as x = a+b

2 with a, b ∈ K,a 6= b. The
set of extremal points is denoted by ExtK. We refer to [5] for more
information.

Proposition 3.2. Let B be a unit ball. The even measure ν such
that vol ΓνB

◦ is maximal is concentrated in the set ExtB◦ of extremal
points.

Proof. Let

∆ :=

{

(λ1, . . . , λn+1) ∈ R
n+1|λi ≥ 0,

∑

i

λi = 1

}

be the standard simplex. By Minkowski’s theorem ([5], Thm. II.3.3),
B◦ = conv ExtB◦. Carathéodory’s theorem ([5], Thm. I.2.3) implies
that the continuous map

(ExtB◦)n+1 ×∆ → B◦

(η1, . . . , ηn+1, λ1, . . . , λn+1) 7→
∑

i

λiηi

is onto.
We fix a measurable right inverse ξ 7→ (η1(ξ), . . . , ηn+1(ξ), λ1(ξ), . . . ,

λn+1(ξ)) of this map. Then each λi : B
◦ → R is a non-negative mea-

surable function and each ηi : B
◦ → ExtB◦ is a measurable map.
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Let νi := νxλi be the measure on B◦ with density function λi with
respect to ν. Define a probability measure ν̃ on ExtB◦ ⊂ B◦ by

ν̃ :=

n+1∑

i=1

(ηi)∗νi,

where (ηi)∗ denotes the push-forward.
If f : B◦ → R is a convex function, then

∫

B◦

f(ξ)dν(ξ) =

∫

B◦

f

(
∑

i

λi(ξ)ηi(ξ)

)

dν(ξ)

≤

∫

B◦

∑

i

λi(ξ)f(ηi(ξ))dν(ξ)

=

∫

B◦

∑

i

f(ηi(ξ))dνi(ξ)

=

∫

B◦

f(ξ)dν̃(ξ).

Since the function vol[0, ξ1, . . . , ξn] is convex in each variable ξi, it
follows from (3) that

vol ΓνB
◦ ≤ vol Γν̃B

◦.

By the uniqueness of the optimal measure, ν equals the even part of ν̃
and is therefore concentrated on ExtB◦. q.e.d.

Proposition 3.3. We have

sup
ν∈Prob(B◦)

vol ΓνB
◦ =

(
2

n

)n

sup {vol ΠL : L ∈ K(V ), V1(L,B) = 1} .

Proof. We will use an auxiliary scalar product on V , which allows us
to identify V and V ∗. Let ν ∈ Prob(B◦) maximize vol ΓνB

◦. We may
assume that ν is concentrated on the boundary of B◦ and even.

Let ν̃ be the push-forward of ν under the radial projection ∂K◦ →
Sn−1.

By the solution of Minkowski’s problem applied to ν̃, ΓνB
◦ is a pro-

jection body, say ΓνB
◦ = ΠL̃ for some centrally symmetric convex body

L̃ ⊂ V .
Then for u ∈ V

h(ΓνB
◦, u) =

∫

∂B◦

|〈ξ, u〉|dν(ξ)

=

∫

Sn−1

ρ(B◦, ξ)|〈ξ, u〉|dν̃(ξ).

On the other hand,

h(ΠL̃, u) =
1

2

∫

Sn−1

|〈ξ, u〉|dSn−1(L̃, ξ),
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where Sn−1(L̃, ·) is the surface area measure of L̃.
Using the injectivity of the cosine transform on even measures on the

sphere, we find

dν̃ =
1

2
ρ(B◦, ·)−1 · dSn−1(L̃, ·) =

1

2
h(B, ·)dSn−1(L̃, ·).

Since ν̃ is a probability measure, we must have

1 =

∫

Sn−1

dν̃(ξ) =
1

2

∫

Sn−1

h(B, ξ)dSn−1(L̃, ξ) =
n

2
V1(L̃, B).

Let L :=
(
n
2

) 1

n−1 L̃. Then V1(L,B) = 1 and vol ΓνB
◦ = volΠL̃ =

(
2
n

)n
vol ΠL. Thus we have the inequality

sup
ν∈Prob(B◦)

vol ΓνB
◦ ≤

(
2

n

)n

sup {vol ΠL : L ∈ K(V ), V1(L,B) = 1} .

To prove the inverse inequality, take L with V1(L,B) = 1 and set

L̃ :=
(
2
n

) 1

n−1 L. We define dν̃ := 1
2h(B, ·)dS(L̃, ·), which is a probabil-

ity measure on Sn−1. If ν is the push-forward of ν̃ under the radial
projection Sn−1 → ∂B◦, then ΓνB

◦ = ΠL̃ and vol ΓνB
◦ =

(
2
n

)n
vol ΠL.
q.e.d.

4. Proof of Theorem 1

Lemma 4.1. The functional V defined by (1) satisfies the conditions
(i)-(iii), hence it is an associated affine invariant of a definition of vol-
ume.

Proof. It is easy to check that V is invariant under GL(V ). Let us
compute V(B) for an ellipsoid B. Since we already know that V is
invariant under GL(V ), we may choose a Euclidean scalar product and
take B as its unit ball. By Proposition 3.1, the optimal body L in
Theorem 1 is SO(n)-invariant, hence a multiple of B, say L = λB.
The condition on the mixed volumes translates to λn−1ωn = 1. The
projection body operator is homogeneous of degree n − 1, and ΠB =
ωn−1B

◦ hence

V(B)=
ωn−1
n

ωn
n−1

λn(n−1) svol(B ×ΠB)=
ωn−1
n

ωn
n−1

1

ωn
n

vol(B)ωn
n−1 vol(B

◦)=ωn.

Next, suppose that B ⊂ B′, which implies that B′◦ ⊂ B◦. Any
probability measure ν on B′◦ can be considered as a probability measure
on B◦ and ΓνB

◦ = ΓνB
′◦. Taking the maximum over such measures
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gives

V(B)

volB
=

ωn−1
n

ωn
n−1

(n

2

)n

max
ν∈Prob(B◦)

vol ΓνB
◦

≥
ωn−1
n

ωn
n−1

(n

2

)n

max
ν∈Prob(B′◦)

vol ΓνB
′◦

=
V(B′)

volB′
.

q.e.d.

In order to finish the proof of Theorem 1, it remains to show that the
corresponding definition of volume is convex.

Proposition 4.2. The definition of volume µ with associated affine
functional V defined by (1) is extendibly convex.

Proof. Recall first that the definition of volume µ induces on each
normed vector space (V,B) a k-volume density µk : Λk

sV → R by the
formula

µk(v1 ∧ . . . ∧ vk) := µW (v1 ∧ . . . ∧ vk),

where W ⊂ V is the k-plane spanned by v1, . . . , vk, endowed with the
induced norm.

Using Theorem 2, we obtain the following explicit formula for µk:

µk(v1 ∧ . . . ∧ vk) =
ωk−1
k

ωk
k−1

kk

k!
max

ν∈Prob((W∩B)◦)
{
∫

(W∩B)◦
· · ·

∫

(W∩B)◦
|〈η1 ∧ . . . ∧ ηk, v1 ∧ . . . ∧ vk〉| dν(η1) . . . dν(ηk)

}

.

We define a function µ̃k on ΛkV by

µ̃k(τ) :=
ωk−1
k

ωk
k−1

kk

k!

max
ν∈Prob(B◦)

{∫

B◦

· · ·

∫

B◦

|〈ξ1 ∧ . . . ∧ ξk, τ〉| dν(ξ1) . . . dν(ξk)

}

,

(4)

where τ ∈ ΛkV. Clearly it is convex. It remains to show that the
restriction of µ̃k to the Grassmann cone of simple k-vectors equals µk.

Let 0 6= τ := v1 ∧ . . . ∧ vk ∈ Λk
sV and W := 〈v1, . . . , vk〉. Let

ι : W → V be the inclusion. The dual map ι∗ : V ∗ → W ∗ is onto. Let
B′ := W ∩B ⊂ W and B′◦ ⊂ W ∗ its polar. Then

B′◦ = ι∗(B◦).
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We may consider τ as an element of ΛkW . Then

µ̃k(τ) =
ωk−1
k

ωk
k−1

kk

k!

max
ν∈Prob(B◦)

{∫

B◦

· · ·

∫

B◦

|〈ξ1 ∧ . . . ∧ ξk, ι∗(τ)〉| dν(ξ1) . . . dν(ξk)

}

=
ωk−1
k

ωk
k−1

kk

k!

max
ν∈Prob(B◦)

{∫

B◦

· · ·

∫

B◦

|〈ι∗ξ1 ∧ . . . ∧ ι∗ξk, τ〉| dν(ξ1) . . . dν(ξk)

}

=
ωk−1
k

ωk
k−1

kk

k!

max
ν∈Prob(B◦)

{∫

B′◦

· · ·

∫

B′◦

|〈η1 ∧ . . . ∧ ηk, τ〉| d(ι
∗)∗ν(η1) . . . d(ι

∗)∗ν(ηk)

}

=
ωk−1
k

ωk
k−1

kk

k!

max
ν∈Prob(B′◦)

{∫

B′◦

· · ·

∫

B′◦

|〈η1 ∧ . . . ∧ ηk, τ〉| dν(η1) . . . dν(ηk)

}

= µk(τ),

where the equality in the second to last line follows from the fact that
the push-forward map (ι∗)∗ : Prob(B

◦) → Prob(B′◦) is onto. q.e.d.

5. The isoperimetrix

In this section, we will describe the isoperimetrix for the new defini-
tion of volume µ. Let us first recall the definition and construction of
the isoperimetrix in general, referring to [3, 33] for more information.

Let µ be a definition of volume, (V,B) a normed vector space of
dimension n and suppose that the induced (n− 1)-volume density µn−1

is convex. We can integrate µn−1 over (n−1)-dimensional submanifolds
in V , in particular over the boundary of a compact convex body K
(this makes sense even if ∂K is not smooth). In this way we obtain
the surface area Aµ(K) with respect to µ. The isoperimetrix IµB is the
unique centrally symmetric compact convex body in V such that

Aµ(K) = nV1(K, IµB)

for all K.
Let us recall the construction of the isoperimetrix. The function

µn−1 : Λn−1V → R is convex and 1-homogeneous by assumption. The
volume form on V induces an isomorphism Λn−1V ∼= V ∗. We thus
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get a convex and 1-homogeneous function on V ∗, which is the support
function of the isoperimetrix.

In the case of Busemann’s definition of volume, the isoperimetrix is
(up to a scalar) the polar of the intersection body of B. The isoperime-
trix of the Holmes-Thompson definition of volume is (again up to a
scalar) the projection body of the polar of the unit ball.

For a finite positive measure τ on a vector space V , we define the
convex body Γτ ⊂ V by

h(Γτ, ξ) :=

∫

V

|〈ξ, u〉|dτ(u)

and call it the centroid body of τ . If τ is the normalized volume measure
of a compact convex body K, then Γτ = ΓK is the usual centroid body
of K.

Proposition 5.1. The isoperimetrix of the definition of volume µ
from Theorem 1 is given by the following: for each probability measure
ν on V ∗, let ν# ∈ Prob(V ) be the push-forward of ν× · · · × ν under the
map

V ∗ × · · · × V ∗
︸ ︷︷ ︸

n−1

→ Λn−1V ∗ ∼= V,

ξ1, . . . , ξn−1 7→ ξ1 ∧ . . . ∧ ξn−1.

Then the isoperimetrix of B with respect to µ is given by

IµB = cn conv
⋃

ν∈Prob(B◦)

Γν#,

where

cn :=
ωn−2
n−1

ωn−1
n−2

(n− 1)n−1

(n− 1)!
.

Proof. By (4), µn−1 = µ̃n−1 is cn times the maximum of the support
functions of the Γν̂, where ν̂ is the push-forward of ν ∈ Prob(B◦) under
the map (V ∗)n−1 → Λn−1V ∗.

Using the identification Λn−1V ∗ ∼= V , we get that the support func-
tion of IµB is cn times the maximum of the support functions of the

Γν#, where ν ∈ Prob(B◦). The proof is finished by noting that the
support function of the convex hull of a union of compact convex sets
is the supremum of the support functions. q.e.d.

6. Affine inequalities

Proposition 6.1. Let A be a compact convex body. Then

V(ΠA) ≤
ωn−1
n

ωn
n−1

vol ΠA(volA)1−n.

Equality holds if and only if A is homothetic to a projection body.



370 A. BERNIG

Proof. For each L with V1(L,ΠA) = 1 we find, using a well-known
symmetry property of the projection body operator ([24], Lemma 6)

vol(ΠL) vol(A)n−1 ≤ V1(A,ΠL)
n = V1(L,ΠA)

n = 1.

Equality holds if and only if ΠL and A are homothetic. Taking the
supremum (which is actually a maximum by Theorem 2) over all such
L gives

V(ΠA) ≤
ωn−1
n

ωn
n−1

vol(ΠA)(volA)1−n

with equality if and only if A is homothetic to a projection body. q.e.d.

Corollary 6.2. If n = 2, then

V(B) = ω2 = π

for all unit balls B. In particular, the 2-volume density induced by V is
Busemann’s 2-density.

Proof. In the two-dimensional case, every centrally symmetric body
is the projection body of some compact convex body. We may thus
write B = ΠA with A centrally symmetric. Since ΠA = 2JA, where J
is rotation by π

2 , it follows that

V(B) =
π

4

vol(2JA)

volA
= π.

q.e.d.

Proposition 6.3. For all unit balls B,

V(B) ≥ Vht(B)

with equality precisely for ellipsoids.

Proof. Recall that the curvature image of B is the unique (up to
translations) compact convex body ΛB with surface area measure

dSn−1(ΛB, ·) =
vol(B)

vol(B◦)
h(B, ·)−n−1dσ,

where σ is the spherical Lebesgue measure.
Let

L :=
1

(volB)
1

n−1

ΛB.

Using ([24], Lemmas 3 and 5),

V1(L,B) =
1

volB
V1(ΛB,B) = 1

and

ΠL =
1

volB
ΠΛB =

n+ 1

2
ΓB◦.
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Using the Busemann-Petty centroid inequality (2) we get

V(B) ≥
ωn−1
n

ωn
n−1

svol(B ×ΠL) ≥
1

ωn
svol(B ×B◦) = Vht(B).

q.e.d.

Proposition 6.4. The assertion V(B) ≥ Vb(B) = ωn for all B is
equivalent to Petty’s conjectured projection inequality 2.2.

Proof. Set L := (volB)−
1

n−1B. Then V1(L,B) = 1 and hence

V(B) ≥
ωn−1
n

ωn
n−1

svol(B ×ΠL) =
ωn−1
n

ωn
n−1

(volB)1−n vol ΠB.

Assuming Petty’s conjectured projection inequality, the right hand side
is bounded from below by ωn.

Conversely, let A be a compact convex body. Assuming V(ΠA) ≥ ωn,
Proposition 6.1 implies that

ωn−1
n

ωn
n−1

vol(ΠA)

(volA)n−1
≥ V(ΠA) ≥ ωn,

with equality for ellipsoids. This is Petty’s conjectured projection in-
equality. q.e.d.
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