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Abstract

A new method for the simplification and the visualization of vector
fields is presented based on the notion of Centroidal Voronoi tessel-
lations (CVT’s). A CVT is a special Voronoi tessellation for which
the generators of the Voronoi regions in the tessellation are also the
centers of mass (or means) with respect to a prescribed density. A
distance function in both the spatial and vector spaces is introduced
to measure the similarity of the spatially distributed vector fields.
Based on such a distance, vector fields are naturally clustered and
their simplified representations are obtained. Our method combines
simple geometric intuitions with the rigorously established optimal-
ity properties of the CVTs. It is simple to describe, easy to under-
stand and implement. Numerical examples are also provided to
illustrate the effectiveness and competitiveness of the CVT-based
vector simplification and visualization methodology.

CR Categories: I.4.6 [Computing Methodologies]: Image Pro-
cessing and Computer Vision—Segmentation; I.3.3 [Computing
Methodologies]: Computer Graphics—Picture/Image Generation

Keywords: Flow Visualization, Vector Field, Simplification, Seg-
mentation, Clustering, Centroidal Voronoi tessellation

1 Introduction

Large and complex data sets are being generated at an enormously
fast speed with the advent of modern computing technology. Ef-
fective strategies for data mining that include the representation,
simplification, characterization and manipulation of data become
increasingly important.

The clustering and segmentation of spatially distributed data are
important tools for data mining and information retrieval. The for-
mat of the spatially distributed data may vary, ranging from color
intensity for images to various statistics for geographical regions.
In abstract terms, the spatially distributed data set may be viewed
as vector fields defined in a spatial domain. It has always been a
computational challenge to visualize large sets of vector fields in-
cluding those collected from various scientific and engineering dis-
ciplines. The vector fields we have in mind here include not only
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those typified by the velocities of wind on surfaces or flow currents
in the ocean, but also other distributed statistics representing a much
broader class of information.

Many vector data visualization methods have been developed in
the past. They may be roughly divided into three kinds. The
first kind of method uses arrows to help visualize the vector field,
among which the most ubiquitous method for flow visualization
uses hedgehogs. Although sub-sampling can be used to reduce the
arrow count, it may not provide the best arrow distribution of the
dataset. A recently proposed approach [Telea and vanWijk 1999]
is to cluster the dataset by a hierarchical clustering tree using a
bottom-up approach. In the beginning, every single point forms
a cluster, then cluster-merging takes place according to a measure
of the difference of their positions and orientations. However, this
kind of method requires the input of many parameters so that the
results may be very sensitive to the different choices.

Another kind of method is to display vector fields by texture synthe-
sis. Line integral convolution [Cabral and Leedom 1993; Shen et al.
1996] and spot noise [deLeeuw and vanWijk 1995] are two well
designed approaches in illustrating the direction of vector fields.
Line integral convolution stretches a given image along the paths
directed by a given vector fields to generate textures. Spot noise
creates noise like texture by distributing many replicas of a shape.
Texture based algorithms are very effective ways to display vector
fields. But it can not display the directions of vector fields and it is
very difficult to compress the vector field in an efficient way.

The third kind of method gaining popularity in recent years is the
PDE based methods. It is natural to think that streamlines, stream-
tubes or flow ribbons can be used to express the flow once they
can be conveniently calculated. In a recent work [Turk and Banks
1996], energy minimization is used to distribute the streamlines.
Another example is the work in [Garcke et al. 2001] where PDE
based phase field model is used to generate the continuous cluster-
ing of vector fields. The PDE based method has also been studied
by many authors in the context of image segmentation and image
inpainting. In general, the PDE based method has many great ad-
vantages such as the simple description of geometric quantities and
the easy handling of topological events, both are important issues
in the clustering of spatial statistics. Nevertheless, the good per-
formance of the PDE based method often comes with much more
time consuming computation and the results are often affected by
the different scaling parameters used in the models.

Here, we propose a clustering/segmentation method for the vec-
tor fields based on the notion of Centroidal Voronoi tessellations
(CVT’s) [Du et al. 1999]. CVTs are optimal tessellations of a given
domain and they also give rise to a global approach to cluster a
domain into Voronoi regions.

Roughly speaking, for the spatially distributed vector fields of in-
terests to us here, they can be thought as some vector bundles (or
fibers) defined in a spatial domain. However, it is more natural and
more convenient to treat such vector bundles and the spatial domain
together as elements of a higher dimensional manifold equipped
with a suitably defined distance (metric). Then, one may obtain,
from the higher dimensional distance, a centroidal Voronoi tessel-
lation that defines the clusters of the spatial domain. Then a lifting
operation can be applied to obtain the vector representations of the
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vector fields distributed in each spatial clusters.

Our approach belongs to the class of methods to visualize vector
field by arrows. For a given number of arrows, this method gives
an ideal distribution of the arrows. The optimization properties of
CVT’s ensures that the results of our method are superior from a
global perspective. This method can be easily generalized to some
sophisticate algorithms. Meanwhile, the method is very fast, and
easy to implement.

In section 2, the basic concept of CVTs is described. New vector
field clustering algorithms are presented in section 3. Applications
and numerical examples are given in section 4, together with some
discussion on the performance of the algorithms. Some conclusions
are made in section 5. Some technical details concerning the algo-
rithms for CVTs and the mathematical background are given in the
appendix (section 6).

2 Centroidal Voronoi Tessellations

Given an open setΩ⊆RN, the set{Vi}k
i=1 is called a tessellation of

Ω if Vi ∩Vj = /0 for i 6= j and
⋃k

i=1V i = Ω whereV i andΩ denote
the closures ofVi andΩ. Let d denote a distance defined onRN.
Given points{zi}k

i=1 belonging toΩ, the Voronoi region (or cluster)
V̂i corresponding to the pointzi is defined by

V̂i = {x∈Ω|d(x,zi) < d(x,zj ) for j = 1, ...,k, j 6= i} .

The points{zi}k
i=1 are called generators. The set{V̂i}k

i=1 is a
Voronoi tessellation or Voronoi diagram ofΩ, and eacĥVi is re-
ferred to as the Voronoi region corresponding tozi . In [Du and
Wang 2004a], the above definitions have been generalized to allow
the use of a one-sided distance function, that is, the Voronoi region
V̂i is defined by

V̂i = {x∈Ω|dx(x,zi) < dx(x,zj ) for j = 1, ...,k, j 6= i}

wheredx(x,y) is a distance function defined according to some local
Riemannian metric at the pointx.

Given a regionV ⊆ RN, a one-sided distance functiondx(x, ·), the
mass centroidz∗ of V is a unique point inRN to minimize the en-
ergy defined by the summation of distance square:

E(z,V) =
∫

V
d2

x(x,z) dx . (1)

The conventional mass center can be defined as the minimizer of
E(·,V) with d2

x(x,y) = d2(x,y)ρ(x) whereρ is the density function
andd is the standard Euclidean distance. In caseρ = 1 is a constant
density, thenz∗ is just the mean of each cluster, i.e.

z∗ =
1
|V|

∫
V

x dx. (2)

Thus givenk points {zi}k
i=1, we have the Voronoi tessellation

formed by the Voronoi regions{V̂i}k
i=1, and givenk regions{V̂i}k

i=1,
we have their mass centroids{z∗i }k

i=1. A Voronoi tessellation is a
Centroidal Voronoi tessellation if the generators are themselves the
mass centroids of the respective Voronoi regions.

For any set ofk points{zi}k
i=1 and a tessellation made ofk regions

{Vi}k
i=1, we define the total energy by

E({zi}k
i=1,{Vi}k

i=1) =
k

∑
i=1

E(zi ,Vi) =
k

∑
i=1

∫
Vi

d2
x(x,zi) dx . (3)

The CVTs enjoy an optimality property that can be rigorous proved
(see [Du and Wang 2004a]):

Theorem. The minimizer of the total energy (3) leads to a CVT.

For more detailed discussions, we refer to [Du et al. 1999; Du and
Gunzburger 2002; Du et al. 2003; Du and Wang 2002]. If the dis-
tance is truly a one-sided distance function, then the corresponding
CVT should in principle be called an anisotropic CVT as defined in
[Du and Wang 2004a].

CVTs are very special and elegant tessellations. In figure 1, a 2D
example using the standard Euclidean distance and the constant
density is shown.

Figure 1: Illustration of a 2d CVT with 10 clusters.

Two algorithms (Algorithms 1 and 2) for generating CVTs are dis-
cussed in the appendix along with suggestions for their improve-
ment. Based these algorithms, new vector field clustering algo-
rithms can be developed using a proper definition of the distance
between vectors in a flow field.

3 Vector Fields Visualization

3.1 Vector fields clustering

First some notations are given here. Let a vector fieldV be defined
on a domainΩ ⊆ RN, such that for every pointx∈ Ω, V(x) ∈ RM .
We use| · | to denote the standard vector norm. Viewing(x,V(x)) as
a point in a higher dimensional spaceRN+M , we can just think that
the region of each cluster, a subset ofΩ, is the projection of a sub-
set defined inRN+M back toRN. Let a pointp, denoted as(xp,yp)
whereyp = V(xp), be called degenerate ifyp = 0. As nearby de-
generate points can be grouped into the same cluster as their closest
non-degenerate points, all points may be viewed as non-degenerate
without loss of generality.

Given a positive scaling constantw, define the (one-sided) distance
betweenp = (xp,yp) andm= (xm,ym) as

dp(p,m) =
√
|yp|2−|yp|yp ·ym+w|yp|2|xp−xm|2 . (4)

(For more detailed discussions ofdp, see the appendix).

Then, given a set ofk generators{mi}k
i=1 under the constraint

|ymi |= 1, the Voronoi regions{Ĉi} corresponding to the point{mi}
are defined by

Ĉi = {xp ∈Ω|dp(p,mi) < dp(p,mj ) for j = 1, ...,k, j 6= i} . (5)

It is obvious thatĈi ∩ Ĉj = /0 if i 6= j. For somep that satisfying
dp(p,mi) = dp(p,mj ) for two distinct generatorsmi 6= mj , we then

assignp to the Voronoi region̂Ci if |xp−xmi |< |xp−xmj |.
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Now, some discussions on the cluster centers are in order. Given a
clusterC, the centroidm∗ is obtained as the minimizer of the energy
defined in (1). Using the definition ofdp, we have

E(m,C) =
∫

C
|yp|2−|yp|yp ·ym+w|yp|2|xp−xm|2 dxp .

By minimizing this energy, the following two algorithms come
from the Algorithm 1 and Algorithm 2.

Algorithm 3: Vector field CVT clustering. Given a positive
integer k, a weight w and a domainΩ, choose anyk points
{mi = (xi ,yi)}k

i=1 and determine the associated Voronoi clustering
{Ci}k

i=1.

1. For each clusterCi , i = 1, . . . ,k, determine the centroids by

xi =

∫
Ci
|V(x)|2x dx∫

Ci
|V(x)|2 dx

, yi =

∫
Ci
|V(x)|V(x) dxp

|
∫
Ci
|V(x)|V(x) dx|

. (6)

2. Determine the Voronoi clusters associated with{(xi ,yi)}k
i=1.

3. If the Voronoi clusters corresponding to{(xi ,yi)}k
i=1 and

{(xi ,yi)}k
i=1 are the same, or some tolerance condition is met,

exit the loop; otherwise, set(xi ,yi) = (xi ,yi) for i = 1, . . .k,
determine the new Voronoi clustering and return to Step 1.

Algorithm 4: Vector field CVT clustering.Given an integerk, a
weight w and a domainΩ, choose anyk points{mi = (xi ,yi)}k

i=1
and determine the associated Voronoi clustering{Ci}k

i=1.

1. For every pointp = (x,y),
(a) evaluate all the distancesdp(p,mi) for i = 1, . . . ,k;
(b) For the shortest distancedp(p,mt),

i. move the pointx from old groups into groupt;
ii. replace the centroidms and mt by the means of

the newly modified clustersVs andVt respectively
via the formula (6).

2. Exit when some tolerance is met; otherwise, go to Step 1.

The tolerance choices are similar to that in Algorithms 1 and 2 given
in the appendix. A derivation of (6) is also given there.

To end this section, we note that the above clustering relies on the
input of the number of clustersk. The practical choice ofk will be
discussed later.

3.2 Non-uniformly distributed fields clustering

Non-uniformly distributed vector field is a vector field whose vec-
tor density is non-uniformly distributed. In the real world, we can
always met this kind of vector fields. For example, the flow in the
atmosphere is non-uniformly distributed because the densities of
the air are different at different heights. Another example is the
crowd out from a cinema where every people is associated with a
vector and the density of this vector field is very high at the door or
inside of the cinema, and it comes to be thinner and thinner at the
place further and further from the door.

Algorithms 3 and 4 can be generalized to the non-uniformly dis-
tributed vector fields clustering with a density distributionρ(xp).
The energy for a clusterC with a centroidm is given by

E(m,C) =
∫

C
ρ(xp)d2

xp
(xp,m) dxp

=
∫

C
ρ(xp)(|yp|2−|yp|yp ·ym+w|yp|2|xp−xm|2) dxp .

Algorithm 5: Non-uniformly distributed vector field CVT cluster-
ing. Given a density distributionρ, a positive integerk, a weightw
and a domainΩ, choose anyk points{mi = (xi ,yi)}k

i=1 and deter-
mine the associated Voronoi clustering{Ci}k

i=1.

1. For each clusterCi , i = 1, . . . ,k, determine the centroids by

xi =

∫
Ci

ρ(x)|V(x)|2xdx∫
Ci

ρ(x)|V(x)|2dx
, yi =

∫
Ci

ρ(x)|V(x)|V(x)dxp

|
∫
Ci

ρ(x)|V(x)|V(x)dx|
. (7)

2. Determine the Voronoi clusters associated with{(xi ,yi)}k
i=1.

3. If the Voronoi clusterings corresponding to{(xi ,yi)}k
i=1 and

{(xi ,yi)}k
i=1 are the same, or any tolerance condition met, exit

the loop; otherwise, set(xi ,yi) = (xi ,yi) for i = 1, . . .k, find
the new Voronoi clustering and return to Step 1.

Algorithm 4 can also be easily generalized to non-uniformly dis-
tributed vector fields. We omit the details.

The examples of non-uniformly distributed vector fields clustering
is given in section 4.

3.3 Visualization strategies

The algorithms for the vector field clustering are given in section
3.1 and section 3.2, with each cluster represented by a unit vector
ym at pointxm. Some visualization strategies can be taken into the
visualization process.

First, we can set the length of the representation vector as the aver-
age of the lengths of all the vector in the same Voronoi regionCi .
For instance, we can take

Lyi =
1
|Ci |

∫
Ci

|V(x)| dx , (8)

or

Lyi =
1
|Ci |

(
∫

Ci

|V(x)|2 dx)1/2. (9)

And define the new representation vectorzi = Lyi yi .

For a non-uniformly distributed vector field, after the clustering, we
can also set the length of the representation vector as

Lyi =
(
∫
Ci

ρ(x)|V(x)|2 dx)1/2∫
Ci

ρ(x) dx
, (10)

which is a generalized form of (9).

Second, the color of the representation vector can be used to rep-
resent the vector variance or the energy of each cluster. The vector
variance is defined as

Var(Ci) =

∫
Ci
|yp|2−|yp|yp ·ymi dxp

|Ci |
, (11)

or, for non-uniformly distributed vector field,

Var(Ci) =

∫
Ci

(|yp|2−|yp|yp ·ymi )ρ(x) dxp∫
Ci

ρ(x) dx
. (12)

Alternatively, to display the vector field, instead of plain arrows,
curved arrows may also be used which are computed along stream-
lines from every cluster’s centerxi , with their length and the color
determined in the same way as for the plain arrows.

Finally, all the above strategies may be combined for different prob-
lems. Some illustrations will be given in the next section.
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4 Applications and Numerical Examples

This section gives some 2D and 3D vector field visualization ex-
amples. We use some 2D examples to illustrate the parameters se-
lection, such as the cluster numberk and weightw, and the perfor-
mance of our algorithms. A 3D example is given in the end.

Though our theory is applicable to much more general settings, as
an illustration, the two dimensional vector fields to which we ap-
ply the CVT based vector fields clustering algorithms mostly dis-
tributed in a two dimensional squareΩ = [−1,1]2 ⊆ R2, and the
three dimensional vector fields are distributed in a three dimen-
sional squareΩ = [−1,1]3 ⊆ R3.

Figure 3 shows the vector CVT for the vector field with a center
vortex depicted in the Figure 2 on a 300×300 Cartesian mesh. 6
clusters are used. The red color indicates higher variance while
the blue color indicates less variance. Another example is given in
figure 4 where a vector field with non-uniform lengths is clustered
into 15 clusters.

Figure 2: A vector field for a degree one vortex.

Figure 3: A clustering in 6 clusters (cluster boundaries are shown
on the left).

Figure 4: A vector field and the clustering with 15 clusters.

The performance of the algorithm in general depends on the choice
of the parameters used in our algorithms, including the number of
clustersk and the weight parameterw, and the initial distribution of
the generators. For our numerical examples, we have found that the
uniformly sampled and randomly distributed initial generators both
lead to satisfactory convergent results.

As for the parameter tuning, it is obvious that the number of clusters
k is very important in this process. If we further take 30 clusters for
the vector field in figure 4, the result is showed in figure 5.

Figure 5: Clustering of the figure in Fig.4 into 30 clusters.

In general, the larger thek is, the more details the simplified graph
shows, accompanied by more computations involved and smaller
compression ratios. On the other hand, if thek is too small, impor-
tant details of the original field may be lost. Thus, automatically
choosing a goodk is very important. Obviously, for a goodk, the
vector at the centroid should well represent the flow directions in
each cluster, that is, the angleθ between each vectorV(x) and its
centroid vectorym should be small. We thus choose the following
quantity to measure the goodness ofk.

G(k) =
1
|Ω|

∫
Ω

V(x) ·ym(x)
|V(x)|

dx (13)

whereym(x) is the vector centroid of the clusterx belongs. It is
obvious that|G(k)| ≤ 1, and the closerG(k) is to to 1, the more
details the simplified graph gives.

Figure 6: The original field (left) and the measure curve in k (right).

Figure 7: Visualized with 24 (left) and 60 (right) clusters.

Based on our experience, it is better to choosek such thatG(k)
is above 0.98 and the slope ofG(k) is getting small. The right
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picture of figure 6 shows the graph ofG(k) for a vector field (left
picture) having vortices. Figure 7 shows the visualization of this
vector field with 24 clusters and 60 clusters withG(24) = 0.9667
andG(60) = 0.9861 respectively with the 60 clusters giving a clear
presentation of the vortices. In practice, an adaptive estimations of
k may also be developed. Relevant discussions in the context of
CVT clusterings have been studied in [Du and Wang 2004b].

Figure 8: Visualized with weightsw= 0.5 (left) andw= 0.1 (right).

We now discuss the choice of the weightw in the distance formula
(note thatw = 1/L2 is sufficient for most applications, whereL is
the size/diameter of the domain). A smallerw decreases the weight
in space, making the simplified graph much more likely to distribute
the clusters along the flow directions represented by the vector field.
However, for some fields, a smallerw may result in very irregular or
even disconnected clusters, thus, it would then be more appropriate
to choose a largerw to regularize the clusters. Figure 8 shows two
examples of 15 clusters with different values ofw for the field in
figure 4.

Figure 9: Top: original fluid fields (left) and 8×8 uniformly sam-
pled arrows (right); bottom: clustering in 60 clusters (left) and the
60-arrows visualization (right) based on our method.

For a more practical example, the result of our method applied to a
fluid vector field is given in Figure 9. The field is obtained from the
simulation of the deformation of two bubbles in a Newtonian fluid
[Du et al. 2005]. Clearly, an efficient visualization of the fluid field
is obtained by our method which reveals the main characteristics of
the flow field.

Figure 10: Vector field of ants going through a gate; the right graph
is the simplified graph by 36 arrows .

We now turn to some non-uniformly distributed vector fields. Fig-
ure 10 shows a vector fields of many ants moving through a chan-
nel of different widths with the same speed. The right graph is the
simplified presentation with 36 vectors. Figure 10 reveals only the
vector fields, but not the distribution of the ants. As the ants move
into the narrower region, they get more crowded. Assuming that
they move with a constant speed, the densityρ is then inversely
proportional to the width of the channel. Thus, the distribution of
arrows like that in figure 10 does not provide a realistic view of the
ants distribution. Figure 11 gives the graph by algorithm 5 using
the densityρ with the clustering showing on the right, illustrating
a good balance of the vector simplification between the flow direc-
tions and the underline density distribution.

Figure 11: Visualization of the non-uniformly distributed vector
fields; the right one is the clustering.

We can also use 3D curved vectors for 2D and 3D visualization.
Figure 12 shows the result for the vector field in Figure 9. Clearly,
the curved vectors reveal more details of the vector field, and they
are more efficient for the vector visualization.

Finally, Figure 13 shows the visualization of a 3D vector field
formed by two vortices pointing to different directions.

In all of the 2D experiments, a 300×300 grid is used except figure 9
which uses a 384×384 grid. The 3D experiment uses a 60×60×60
grid. For the non-optimized algorithm 3, most of these examples
can be done in less than a minute on a Pentium M 1.3GHz laptop
except ones with more than 60 clusters in figures 7, 9 and 13 which
take no more than 5 minutes. The most time consuming step is
the step 2 in algorithm 3 and the step 1.(b) for algorithm 4. We
note that the total operations needed isO(kn) for a fixed number
of iterations, wherek is the number of clusters,n is the number of
total grid points.
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Figure 12: Visualization of the field in Figure 9: 30 (left) and 60
(right) curved arrows.

5 Conclusion

We have presented a new vector field clustering approach which is
based on the technique of Centroidal Voronoi tessellations. After
assigning a well defined distance, the vector field has a very natural
Centroidal Voronoi tessellations. Based on the Centroidal Voronoi
tessellation of the vector field, we can give simplified and elegant
visualization of the vector field.

Comparing to other visualization methods, the merits of the new
method are its global view, easy understanding and its efficient im-
plementation and realization. It can be used for both uniformly
distributed vector fields (say at lattice points) and non-uniformly
scattered vector fields.

The set up of the vector field clustering considered is limited to
distributed vector fields defined in a subset of the Euclidean space,
however, it is obvious that our approach has a lot of potential to
be generalized. One of such generalizations can be used to cluster
and segment vector fields defined on complex surfaces and mani-
folds. In some of our earlier works [Du et al. 2003], we have con-
sidered the constrained Centroidal Voronoi tessellations which are
the generalizations of Centroidal Voronoi tessellations in the Eu-
clidean space to surfaces and manifolds. In the same spirit, we can
extend our CVT based clustering/segmentation to vector fields de-
fined on a compact and continuous surface/manifoldS⊂ RN given
by S= {x∈ RN : g0(x) = 0 and g j (x) ≤ 0 for j = 1, . . . ,m} for
some continuous functionsg0 and{g j}m

j=1, and given a set of vec-

tor fields{~vi}k
i=1, defined on a point set{zi}k

i=1∈S, one may define
their corresponding Voronoi regions onS by

Vi = {x∈ S : dx(x,zi) < dx(x,zj ) for j = 1, . . . ,k, j 6= i }

for i = 1, . . . ,k. Notice that the one-sided distance is independent
of the surfaceS, thus,Vi ’s are simply the restrictions of the Voronoi
regions (5) defined in a subset ofRN ontoS.

Since the mass centroids{z∗i }k
i=1 of {Vi}k

i=1 as defined by (2) do
not in general belong toS, then, a constrained mass centroidzc

i on
the surface is defined as a solution of the following problem:

min
z∈S

Ei(z) , where Ei(z) =
∫

Vi

dx(x,z)2dx.

The integral over{Vi} is understood as standard surface integration
on S. Then, we can get theconstrained centroidal Voronoi tessel-
lation (CCVT) for the vector fields defined on the surfaceS if and
only if the points{zi}k

i=1 which serve as the generators associated
with the Voronoi regions{Vi}k

i=1 are the constrained mass centroids
of those regions. Thus, we expect that the notion of constrained
CVT can also lead us to new clustering and segmentation methods
for vector fields defined on manifolds and surfaces.

Figure 13: The 5× 5× 5 uniformly sampled curved arrows (top)
of the original field, visualizations with 30 (second) and 60 curved
arrows (the last two, with different viewing angles).

It should be noted that in [Du et al. 2005], we have also developed
a theory for retrieving some useful topological information of the
deformable interface based on the phase field description. As for
most of applications, getting correct statistics is very important, we
anticipate that such topological information retrieval tools may also
be useful to vector field simplification and visualization.

6 Appendix

Algorithms for CVTs . To construct the CVT’s with a given pos-
itive integerk and a domainΩ, a set of points{zi}k

i=1 are to be
determined that are at the same time the generators of a Voronoi
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clustering of the regions and the mass centroids of the associated
clusters. The following algorithm can be used to construct CVT’s;
see, e.g., [Hartigan and Wong 1979; Späth 1985; Sparks 1973] for
details.

Algorithm 1.Given a positive integerk and a domainΩ, choose an
initial distribution of k distinct points{zi}k

i=1 in Ω and determine
the associated Voronoi clustering{Vi}k

i=1.

1. For each clusterVi , i = 1, . . . ,k, determine the centroids, or
the cluster means{zi}k

i=1, in the Euclidean distance case (or
for more general distances).

2. Determine the Voronoi clustering (or anisotropic Voronoi
clustering [Du and Wang 2004a]) associated with{zi}k

i=1.

3. If the (possibly anisotropic) Voronoi clusterings correspond-
ing to {zi}k

i=1 and {zi}k
i=1 are the same, or some tolerance

condition is met, exit the loop; otherwise, setzi = zi for
i = 1, . . .k, determine the new Voronoi clustering and return
to Step 1.

It is easy to see that steps 1 and 2 result in a decrease in the en-
ergy defined in (1), which guarantees the convergence to a local
minimizer of the energy. For a discrete data set, the algorithm ter-
minates in a finite number of steps. However, it is often the case
that a very good approximation to the final CVT configuration can
be obtained in substantially fewer steps. For this reason, at each
iteration, one may calculate the energy of the current configura-
tion and terminate the construction steps when the energy is within
some prescribed tolerance of the energy of the previous configura-
tion. Since the Voronoi clusterings and their centroids are uniquely
determined by each other, another tolerance in the last step is to
calculate the distance between{zi}k

i=1 and{zi}k
i=1 instead of com-

paring their Voronoi regions.

Algorithm 1 does not transfer the elements from one cluster to an-
other until the end of each iteration, i.e., it does not account for
the change in the cluster means until all means are computed. The
following algorithm is an accelerated version of Algorithm 1 that
takes into account the changes in cluster means as soon as they are
determined.

Algorithm 2. Given a positive integerk and a domainΩ, choose
an initial distribution ofk points{zi}k

i=1 in Ω and determine the
associated Voronoi clustering{Vi}k

i=1.

1. For every pointx,
(a) evaluate all the distancesdx(x,zi) for i = 1, . . . ,k;
(b) For the shortest distancedx(x,zt),

i. move the pointx from old groups into groupt;
ii. replace the centroidzs and zt by the means of

the newly modified clustersVs andVt , respectively.
2. Exit when some tolerance is met; otherwise, go to Step 1.

Algorithms 1 and 2 both result in a k-means clustering or a CVT
tessellation corresponding to the CVT-energy (1). Numerical ex-
periments indicate that Algorithm 2 is often more reliable than Al-
gorithm 1 even though the former is more costly per iteration since
one must examine the effect of each potential transfer on the en-
ergy. The gain lies in the fact that an iteration of Algorithm 2 leads
to a larger decrease in the energy than that of Algorithm 1, and thus
requires a much smaller number of iterations. A hybrid approach
is also possible in which one starts with the Algorithm 1 and then
switches to Algorithm 2. Presumably, after several iterations of
Algorithm 1, only a very few of the more expensive iterations of
Algorithm 2 are needed to obtain accurate results.

The costs of both Algorithms 1 and 2 may be reduced at the price of
increased storage [Kanungo et al. 2002]. Another improvement to
Algorithm 2 is possible by avoiding the comparison of reductions
in the CVT-energy for possible transfers to far away clusters. We
note that Algorithm 1 is easier to parallelize while Algorithm 2
is easier to be generalized to more general CVT’s. There are
many other algorithms for the computation of CVTs, including
more recent works on the fully parallelizable probabilistic methods
[Ju et al. 2002]. In [Du and Wang 2004b], generalizations of
such probabilistic approaches are made for general mixture
model based clusterings. Though the algorithmic details are
more involved, the near perfect speed up does give the new algo-
rithms significant advantage in clustering large data sets. We refer
to [Ju et al. 2002] and [Du and Wang 2004b] for further discussions.

Mathematical Discussions. We here present some mathematical
background for the vector fields clustering algorithms discussed in
the paper.

Given a positive scaling constantw, a distance between two non-
degenerate pointsp = (xp,yp) andq = (xq,yq) can be defined as

d(p,q) =
√

1−cos(θ)+w|xp−xq|2 (14)

where θ is the angle between the vectoryp and yq, that is,
cos(θ)|yp||yq| = yT

pyq. The constantw may be chosen to be de-
pendent onL, the size of the spatial domain, so that it can be used
to provide a scaling effect of different spatial domain sizes. For
example,w = 1/L2.

Obviously the above distance satisfies the following properties:

1. d(p,q) = d(q, p);

2. d(p,q) = 0⇔ p = q;

3. d(p,q)+d(q, r)≥ d(p, r).

The last inequality follows from 2(1− cos(θ)) = |yp/|yp| −
yq/|yq||. We now give a remark here for the distance formula (14).
First of all, in some sense, if we measure the closeness of two vec-
tors in the vector field by the difference of their directions only, then
d(·, ·) is the most natural distance in the spaceRN ×SM−1 where
SM−1 means the unit sphere inRM . Moreover, it is also easy to
see that the distance increases with a larger angleθ and a larger
Euclidean distance betweenx1 andx2.

For a cluster inΩ, motivated by the geometric intuition that most
of the vectors distributed in the cluster are desired to align in the
direction and that the corresponding vector representation (sim-
plification, or generator) should first be consistent with such an
orientation, we first assign a constraint|ym| = 1 to the generator
m = (xm,ym). Then by incorporating the idea that vectors in the
cluster with larger magnitudes tend to affect the flow orientation
more, into the consideration, we take the magnitudeyp as a weight-
ing factor, and define the (one-sided) distance betweenp andm as

dp(p,m) = |yp|
√

1−cos(θ)+w|xp−xm|2

or simply equation (4). Of course, since the constraint|ym| = 1 is
enforced, effectively we havedp(p,m) = |yp||ym|d(p,m).

Then, given a set ofk generators{mi}k
i=1, the non-overlapping

Voronoi regions{Ĉi} corresponding to the points{mi} are de-
fined by the equation (5). For somep that satisfyingdp(p,mi) =
dp(p,mj ) for two distinct generatorsmi 6= mj , we then assignp to

the Voronoi regionĈi if |xp− xmi | < |xp− xmj |. Since the set of
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points with bothdp(p,mi) = dp(p,mj ) and|xp−xmi | = |xp−xmj |
has zero measure (a set in a lower dimensional space), this tie-
breaking rule guarantees that the Voronoi regions form a valid tes-
sellation of the spatial domainΩ.

We note that the Voronoi tessellations defined above belong to the
general class ofanisotropic Voronoi tessellationsstudied in [Du
and Wang 2004a]. The particular form of the distance definition
is, however, unique as it pertains to our specific application. The
tessellations (clusterings) ofΩ are determined through generators
and distances which live more naturally in a higher dimensional
spaceRN ×SM−1 associated with both the spatial domain and the
vector fields defined onΩ. Once the generators (and cluster cen-
troids) in RN ×SM−1 are specified, some lifting operations are to
be conducted to find suitable representations of the clusters and the
vector fields back in the spaceRN+M .

Now, some discussions on the cluster centers are in order. Given a
clusterC, the centroidm∗ is obtained as the minimizer of the energy
defined in (1). Using the definition ofdp, we have

E(m) =
∫

C
|yp|2−|yp|yp ·ym+w|yp|2|xp−xm|2 dxp .

To find such a minimizerm∗ of E(m) under the constraint|ym|= 1,
we need

∂E
∂xm

|m∗ = 2w
∫

C
|yp|2(xp−xm∗) dxp = 0 , (15)

∂E
∂ym

|m∗ =
∫

C
−|yp|yp dxp = λym∗ , (16)

whereλ is the Lagrange multiplier and|ym∗ |= 1.

From (15), (16) and|ym∗ |= 1. we get

xm∗ =
∫
C |yp|2xp dxp∫

C |yp|2 dxp
, ym∗ =

∫
C |yp|yp dxp

|
∫
C |yp|yp dxp|

. (17)

In the context of spatially distributed vector fields, we haveyp =
V(xp). Thus, based on the formula (17), together with (5), we have
the algorithm 3 from the algorithm 1, and the algorithm 4 from the
algorithm 2.
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