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CENTROIDAL VORONOI TESSELLATION-BASED
REDUCED-ORDER MODELING OF COMPLEX SYSTEMS∗

JOHN BURKARDT† , MAX GUNZBURGER† , AND HYUNG-CHUN LEE‡

Abstract. A reduced-order modeling methodology based on centroidal Voronoi tessellations
(CVTs) is introduced. CVTs are special Voronoi tessellations for which the generators of the Voronoi
diagram are also the centers of mass (means) of the corresponding Voronoi cells. For discrete data
sets, CVTs are closely related to the h-means and k-means clustering techniques. A discussion of
reduced-order modeling for complex systems such as fluid flows is given to provide a context for the
application of reduced-order bases. Then, detailed descriptions of CVT-based reduced-order bases
and how they can be constructed from snapshot sets and how they can be applied to the low-cost
simulation of complex systems are given. Subsequently, some concrete incompressible flow examples
are used to illustrate the construction and use of CVT-based reduced-order bases. The CVT-based
reduced-order modeling methodology is shown to be effective for these examples.
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1. Introduction. Even with the use of good mesh generators, discretization
schemes, and solution algorithms, the computational simulation of complex, turbu-
lent, or chaotic systems still remains a formidable endeavor. For example, typical
finite element codes may require many thousands of degrees of freedom for the accu-
rate simulation of fluid flows. The situation is even worse for optimization problems
for which multiple solutions of the complex state system are usually required or in
feedback control problems for which real-time solutions of the complex state system
are needed. The need for so many degrees of freedom results from two causes. First,
phenomena occurring over very small spatial and temporal scales have to be resolved.
For example, flows at even moderate values of the Reynolds number are usually tur-
bulent. In a direct computational simulation, very small eddies have to be accurately
resolved, even if one is only interested in the large-scale features of the flow. Second,
the functions or grid stencils used to effect approximation have no direct relation to the
solution of the complex state system. For example, the standard, locally supported,
piecewise polynomial basis functions used to define a finite element approximation of
the flow solution are not specially designed for a particular flow or for flows in general.
Thus, in a typical finite element calculation for a turbulent flow, many thousands of
degrees of freedom are needed in order to properly resolve the small eddies.

The natural question to ask is whether or not it is really necessary to have thou-
sands of degrees of freedom in order to produce accurate approximations to solutions of
complex systems. For example, for turbulent flows, one would like to identify highly
persistent spatio-temporal structures using relatively inexpensive, low-dimensional
approaches instead of using expensive standard techniques in the numerical solution
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of partial differential equations.1 The feedback control of complex systems provides
another example; in this setting, low-dimensional state models are needed so that
actuation can be determined quickly from sensed data. As a result, there have been
many studies devoted to the development, testing, and use of reduced-order models
for complex systems such as unsteady fluid flows.

The types of reduced-order models that we study are those that attempt to deter-
mine accurate approximate solutions of a complex system using very few degrees of
freedom. To do so, such models have to use basis functions that are in some way inti-
mately connected to the problem being approximated. Once a very low-dimensional
reduced basis has been determined, one can employ it to solve the complex system by
applying, e.g., a Galerkin method. In general, reduced bases are globally supported
so that the discrete systems are dense; however, if the reduced basis is of very low
dimension, one does not care about the lack of sparsity in the discrete system. Of
course, the first natural question to ask is: How does one determine a reduced basis
of very low dimension?

There have been many reduced-order modeling techniques proposed. In the struc-
tural and fluid mechanics communities, Taylor polynomial and Lagrange polynomial
based methods were studied in, e.g., [23, 31] and were shown to be effective for
some specific problems. In the Lagrange polynomial approach, one determines a low-
dimensional basis by solving the complex system for several values of the parameters
that appear in the specification of the system or at several instants in time during the
evolution of the system. In the Taylor polynomial approach, the low-dimensional basis
consists of the solution of the complex system and of its derivatives with respect to the
parameters evaluated at fixed values of the parameters. In both cases, one uses the
reduced basis to determine the solution of the complex system at other values of the
parameters and, in both cases, the reduced basis is determined by employing high-
dimensional discretizations that are, of course, very costly. In simulation settings,
that cost is hopefully amortized over subsequent calculations for many other param-
eter values using the low-cost reduced basis approach. Likewise, in control settings,
the cost is amortized over the many state solves necessary to determine the controls.

Today, the most popular reduced-order modeling approach for complex systems
is based on proper orthogonal decomposition (POD) analysis. POD begins with a set
of m̃ snapshots; these could be generated by evaluating the computational solution
of a transient problem at several instants of time or by evaluating the computational
solution for several values of the parameters appearing in the problem description or
by a combination of the two. The snapshot set can even be determined, in princi-
ple, from experiments. The computational solutions that are used to determine the
snapshot set are determined using costly, large-scale, high-fidelity, e.g., finite element,
codes. The d̃-dimensional POD basis is then determined from the d̃ eigenvectors
corresponding to the d̃ most dominant eigenvalues of the correlation matrix for the
snapshots.2 The POD basis is then used, usually by applying a projection procedure,

1The whole field of turbulence modeling, e.g., k-ǫ and large-eddy simulation (LES) models, is
an attempt at reduced-order modeling. However, these approaches still result in complex systems of
partial differential equations that are usually solved by employing very high-dimensional approxima-
tion schemes. The approaches to reduced-order modeling considered here are different and result in
very low-dimensional models for complex systems.

2Perhaps more simply, a totally equivalent definition of the d̃-dimensional POD basis is the first
d̃ left singular vectors of the matrix whose columns are the snapshot vectors. In statistical analyses,
POD is known as the Karhunen–Loève analysis or the method of empirical orthogonal eigenfunctions
or principal component analysis.
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to determine an approximate solution for different values of the system parameters.
For example, in an optimal control or optimization setting, one would generate the
POD basis from snapshots that correspond to several sets of values of the optimiza-
tion or control parameters. These snapshots are determined using expensive, e.g.,
finite element, codes having many thousands of degrees of freedom. However, the
snapshots can be generated “off-line” and their costs can be hopefully amortized over
several optimization calculations. When one performs the optimization or control of
the system, one uses the small-dimensional POD basis to determine the multiple state
solutions and any sensitivity or adjoint equations solutions needed by the optimizer or
by the controller. The POD basis possesses a well-known optimization characteristic.
POD-based model reduction has been applied with some success to several problems,
most notably in fluid mechanics settings. For detailed discussions, one may consult
[1, 2, 3, 4, 5, 15, 17, 18, 20, 21, 22, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 41, 42].
A few more details about how snapshots are generated and how a POD basis is used
for model reduction are also given in section 1.1.

Now that we have discussed two approaches for generating reduced bases, another
natural question to ask is when can one expect a reduced-order model to “work,” i.e.,
to produce accurate, very low-dimensional approximations to a solution of a complex
system. Clearly, they can work only when the low-dimensional basis “contains” all of
the information needed to produce an accurate approximation, i.e., in an interpolatory
setting or in the very limited settings where extrapolation can work. In the POD
setting, the snapshots used to define the POD basis must contain all the information,
e.g., the dynamic behavior, of the solution one is trying to obtain. The beauty of POD,
when it works, is that it can reduce a set of hundreds of snapshots to a set of just a
handful of POD basis vectors that contain essentially the same information. However,
when the snapshot set does not contain the needed information, one has to generate
new snapshots and then generate a new POD basis, often in an adaptive manner.
This can happen when one uses a reduced-basis method in an optimization or control
setting. Initially, the snapshots, and therefore the POD basis, can be constructed
to contain the needed information, but as the optimizer or controller changes the
parameters in the problem, it is often the case that the original snapshot set does
not contain enough information to accurately approximate the solution at the new
values of the parameters, and thus the snapshot set has to be augmented with new
snapshots that reflect the new behavior. Even worse, it may be the case that the
POD basis, which included most of the information contained in the snapshot set for
the parameters used to generate the snapshots, ignored information in the snapshot
set that may be useful for other values of the parameters. Furthermore, redoing the
POD basis when the snapshot set changes requires the solution of a new eigenvalue
or singular value problem which is of the size of the cardinality of the snapshot set.

Centroidal Voronoi tessellations (CVTs) have been successfully used in several
data compression settings, e.g., in image processing and the clustering of data.3

Reduced-order modeling of complex systems is another data compression setting, i.e.,
replacing high-dimensional approximations with low-dimensional ones. Thus, one can

3CVTs are useful in many other settings, e.g., just to name some, optimal quadrature rules,
optimal representation and quantization, cell division, data compression, optimal distribution of
resources, territorial behavior of animals, optimal placement of sensors and actuators, grid generation
in two and three dimensions and on surfaces, and meshfree methods. For further discussions about
the applications of CVTs, see, e.g., [6, 7, 8, 9, 10, 11, 12, 13, 14, 19, 24]. Also, like POD, CVT
is closely related to well-known statistical techniques; in fact, for discrete data sets, CVT can be
identified with the h-means and k-means clustering methods.
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ask if CVTs can be used for the reduced-order modeling of complex systems. In CVT-
reduced order modeling, we start with a snapshot set just as is done in a POD-based
setting. However, instead of determining a POD basis from the snapshot set, we ap-
ply our CVT methodologies to determine the generators of a CVT of the snapshot
set; these generators constitute the reduced-order basis. We then use the CVT-based
basis in just the same way as one uses a POD-based basis to determine a very low-
dimensional approximation to the solution of a complex system. CVT also possesses
an optimality property, although it is different from that possessed by POD bases.

The efficiency of CVT- and POD-based reduced bases depends on the their dimen-
sion, i.e., if a CVT- or POD-based basis is low-dimensional and can still approximate
the state well, then approximations of the state of a complex system can be inexpen-
sively determined. However, the ability of a CVT- or POD-based basis to approximate
the state of a system is totally dependent on the information contained in the snap-
shot set used to generate the basis. Certainly, a CVT- or POD-based basis cannot
contain more information than that contained in the snapshot set.4 Thus, crucial to
the success of both the CVT- and POD-based approaches to model reduction is the
generation of “good” snapshot sets.

Unfortunately, at this time, the generation of snapshot sets is an art and not a
science; it is, in fact, a rather primitive art. One recognizes that the generation of
snapshot sets is an exercise in the design of experiments. For example, for stationary
systems, how does one choose the sets of parameters at which the state and perhaps
sensitivities are calculated using expensive, high-fidelity computations in order to gen-
erate the snapshot set? Clearly, some a priori knowledge about the types of states to
be simulated or optimized using the reduced-order model is very useful in this regard.
The large body of statistics literature on the design of experiments has not been used
in a systematic manner. For time-dependent systems, many ad hoc measures have
been invoked in the hope that they will lead to good snapshot sets. Time-dependent
parameters, e.g., appearing in boundary conditions, are used to generate states that
are “rich” in transients, even if the state of interest depends only on time-independent
parameters. Moreover, in order to generate even “richer” dynamics, impulsive forc-
ing is commonly used, e.g., starting the evolution impulsively with different strength
impulses or introducing impulses in the midst of a simulation. In section 3, we adopt
some of these strategies for the generation of snapshot sets in the concrete examples
we consider. However, generating snapshot sets is not a main focus of this paper. It
is clear, though, that in the future, a great deal of effort needs to be directed towards
developing and justifying methodologies for generating good snapshot sets. After all,
a POD or CVT basis can only be as good as the snapshot set used to generate it.

1.1. Schematic of POD- or CVT-based model reduction for simulation
problems. For the sake of concreteness, we suppose that we wish to solve the prob-
lem:

given θ ∈ Θ, find u(t, x) ∈ U such that N(u; θ; v) = 0 ∀ v ∈ U, a.e. t ∈ (0, T ) ,(1.1)

where U and Θ are given solution5 and parameter function spaces, respectively, and

4Recall that the goal of invoking POD or CVT is merely to determine a low-dimensional basis
that “contains” almost all the information contained in the snapshot set.

5In general, the spaces of test and trial functions are not the same, i.e., in (1.1) the test functions
v do not, in general, belong to the same space as do the trial functions u. For the sake of simplicity
of exposition, we here assume that they are the same.



CVT-BASED REDUCED-ORDER MODELING 463

(0, T ) is a specified time interval.6 If (1.1) represents a time-dependent problem, then
it should be supplemented with initial conditions.7 The mapping N : U × Θ × V
is linear in its third argument and is generally nonlinear in its first two arguments;
N(·; ·; ·) in general involves space and time derivatives and integrals of combinations of
its arguments. In (1.1), θ denotes a set of parameters that serve to specify the problem,
u denotes the desired solution, and v denotes a suitable test function. Thus, (1.1)
implicitly defines a solution mapping u(θ) : Θ → U . The object of a computational
simulation is to find approximations of this mapping.

For the sake of even further concreteness, we consider finite element methods for
the approximation of solutions of (1.1). To this end, one chooses a finite-dimensional
subspace8 Uh ⊂ U parameterized by a parameter h tending to zero (e.g., the grid
size) and then one poses the approximate problem:

given θ ∈ Θ, find uh(t, x) ∈ Uh such that
N(uh; θ; vh) = 0 ∀ vh ∈ Uh, a.e. t ∈ (0, T ) .

(1.2)

The approximate solution is computed by choosing a basis {φk(x)}j̃k=1
, then writing

uh(t, x) =
∑j̃

k=1
Uk(t)φk(x), and then solving the problem:9

given θ ∈ Θ, find Uk(t), k = 1 . . . , j̃, such that

N
(∑j̃

k=1
Ukφk; θ;φj

)
= 0 for j = 1, 2, . . . , j̃, t ∈ (0, T ) .

(1.3)

In general, for complex systems of practical interest, the dimension j̃ of the ap-
proximating space Uh may be in the many thousands. As a result, it may be very
expensive to solve (1.3) for a single set θ of parameter values and it may be pro-
hibitively expensive to solve (1.3) for many sets of parameter values. The latter is
exactly the situation which causes the interest in reduced-order modeling so that we
assume that we want to find approximations of the solutions of (1.1) for many sets of
parameter values. We now describe the steps that go into defining and using POD- or
CVT-type reduced-order models for finding approximations to the solutions of (1.1).

1.1.1. Generating snapshots. We begin by choosing several parameter sets
θ1, θ2, . . . , θℓ̃ and then solving (1.3) for each set, i.e., we solve the ℓ̃ problems:

for ℓ = 1, . . . , ℓ̃, find U ℓ
k, k = 1 . . . , j̃, such that

N
(∑j̃

k=1
U ℓ
kφk; θℓ;φj

)
= 0 for j = 1, 2, . . . , j̃ .

(1.4)

Note that, in general, for each ℓ, (1.4) represents the solution of a large nonlinear
system of ordinary differential equations, or in the stationary case, a large system of

6Using (1.1) as our prototype complex system prejudices our discussion towards Galerkin-finite
element and Galerkin-spectral methods. However, one could easily extend our discussion to other
methods, including finite difference and finite volume methods.

7If (1.1) represents a stationary problem, we simply suppress all dependencies on t; for the sake
of concreteness, we will assume that (1.1) represents a time-dependent problem.

8One may also need to approximate the parameter space in which case one also has to choose an
approximating parameter subspace Θh ⊂ Θ. However, for the sake of simplicity of the exposition, we
assume that this is not necessary for the problem we consider. It is also possible that the mapping
N has to be replaced by an approximate mapping Nh, but we ignore that possibility as well. We
note that there is no difficulty extending our discussion to the more general cases.

9So far, we have only effected spatial discretization. If the mapping N involves time derivatives of
u, then the problem (1.3) is a system of nonlinear ordinary differential equations (ordinary differential

equations) for Uk(t), k = 1 . . . , j̃. Thus, further discretization in time is usually needed to solve (1.3).
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discrete nonlinear equations. Therefore, generating snapshots is an expensive propo-
sition.

Next, we choose several time values t1, t2, . . . , tq̃ within the interval [0, T ] and we

evaluate the coefficients U ℓ
k(t), k = 1 . . . , j̃ and ℓ = 1, . . . , ℓ̃, at these time values.

Using this information, we define the m̃ = q̃ℓ̃ snapshot vectors

�Um =

⎛
⎜⎜⎜⎜⎝

U ℓ
1(tq)

U ℓ
2(tq)
...

U ℓ

j̃
(tq)

⎞
⎟⎟⎟⎟⎠

, m = (ℓ− 1)q̃ + q, q = 1 . . . , q̃, and ℓ = 1, . . . , ℓ̃.(1.5)

Note that the snapshot vectors �Um ∈ R
j̃ , where j̃ is the dimension of the finite element

space being employed which may be in the many thousands. On the other hand, the
number of snapshots m̃ = q̃ℓ̃ is usually taken to be of the order of hundreds.

The process just described for generating snapshots is a well defined recipe ex-
cept that it requires the choosing of ℓ̃ parameter sets θ1, . . . , θℓ̃ and q̃ values of time
t1, . . . , tq̃. As has already been mentioned, how these choices are made is not some-
thing that is a systematic science. In section 3, we provide some examples of how
these choices are made.

There are definitions other than (1.5) that have been used to define snapshot
sets. For example, one could add to the snapshots in (1.5) approximations to the time
derivatives of the coefficients U ℓ

k(t), i.e., in addition to (1.5), we have the snapshot
vectors

�Um ≈

⎛
⎜⎜⎜⎜⎜⎝

dUℓ
1

dt

∣∣∣
tq

...
dUℓ

j̃

dt

∣∣∣∣
tq

⎞
⎟⎟⎟⎟⎟⎠

, m = ℓ̃q̃ + (ℓ− 1)q̃ + q, q = 1 . . . , q̃, and ℓ = 1, . . . , ℓ̃

so that now we have a set of snapshots of cardinality m̃ = 2ℓ̃q̃. The approximation to
the time derivatives may be effected, e.g., by using finite difference quotients.

1.1.2. Generating reduced bases from the snapshot set. Snapshot sets
by themselves are not always directly useful for reduced-order modeling. First, in
order to include “enough” useful information about solutions of complex systems, one
usually has on the order of hundreds of snapshot vectors which is too high a number
for practicality. Second, snapshot sets may be linearly dependent or may be poorly
conditioned as a basis so that, again, they may not be practical. On the other hand,
snapshot sets often contain much redundant information so that it should be possible
to define smaller basis sets of much lower cardinality that are well conditioned and
that have nearly the same information content as the snapshot set. POD and CVT
analyses can be applied for this purpose.

Before applying POD or CVT analyses, the snapshot set is usually modified. For
example, one usually subtracts the mean of the snapshot set before further processing,
e.g., instead of using (1.5), one uses the modified snapshots in which the mean of the
snapshots is subtracted from every snapshot:

�Vm = �Um − U for m = 1, . . . , m̃, where U =
1

m̃

m̃∑

m=1

�Um .
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In addition, snapshot vectors are sometimes manipulated so as to efficiently account
for inhomogeneous boundary conditions. In any case, we assume that we now have
in hand a satisfactory snapshot set V = {�Vm}m̃m=1 from which we want to define a
low-dimensional reduced basis.

Let us briefly consider POD-based reduced bases. There are many equivalent
ways to define POD bases corresponding to a given snapshot set. Perhaps the simplest
definition is as follows. First, we form the snapshot matrix

S = (�V1, �V2, · · · , �Vm̃) ,

i.e., the matrix whose columns are the snapshot vectors; the ordering does not matter.
Note that S is a j̃×m̃ matrix so that, in practice, it has many more rows than columns.
Then, the d̃-dimensional POD basis consists of the first d̃ left singular vectors of S.

Note that the POD basis vectors belong to R
j̃ and that the POD basis is perfectly

conditioned since, by definition, it is an orthonormal basis. It has also been found in
many settings that POD bases of low dimension, i.e., of the order of ten or so, contain
almost all the information present in snapshot sets consisting of hundreds of vectors.

Instead of POD, in this paper we consider using CVT analyses to generate a low-
dimensional reduced basis from a given set of snapshots. This process is described in
detail in section 2.

1.1.3. Using a reduced basis to solve a simulation problem. Suppose now

that we have in hand a d̃-dimensional reduced basis Z = {�Zi}
d̃
i=1

, be it POD-based

or CVT-based. The basis vectors �Zi belong to R
j̃ and consist of the coefficients of

particular (globally supported) functions belonging to the finite element trial space
Uh. In fact, if we write

�Zi =

⎛
⎜⎜⎜⎝

Zi,1

Zi,2

...
Zi,j̃

⎞
⎟⎟⎟⎠ for i = 1, . . . , d̃,

the corresponding finite element functions are given by

zi(x) =

j̃∑

j=1

Zi,jφj(x) for i = 1, . . . , d̃,(1.6)

where {φj(x)}j̃j=1
is the basis for the finite element space Uh, and the d̃-dimensional

reduced basis can be written in the form {zi(x)}d̃i=1
. The reduced-order space Zh =

span {z1(x), . . . , z
d̃
(s)} ⊂ Uh. Note that dimZh = d̃ which is very small compared to

the dimension j̃ of the finite element space used to define the discrete problem (1.2).
Having obtained a reduced basis, we now want to use it to determine an approxi-

mate solution of (1.1) for new parameter sets θ. We use exactly the same process that
led to (1.2) and (1.3). Since we now seek an approximate solution uh

ro(t, x) belonging
to the reduced-order space Zh for all t ∈ (0, T ), we solve the problem:

given θ ∈ Θ, find uh
ro(t, x) ∈ Zh such that

N(uh
ro; θ; v

h) = 0 ∀ vh ∈ Zh, a.e. t ∈ (0, T ) .
(1.7)
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Since uh
ro(t, x) ∈ Zh, we can write uh

ro(t, x) =
∑d̃

i=1
ci(t)zi(x) for some time-dependent

coefficients ci, i = 1, . . . , d̃. Then, (1.7) is equivalent to the problem of finding the

coefficients ci(t), i = 1, . . . , d̃, from the nonlinear system of ordinary differential equa-
tions:

given θ ∈ Θ, find ci(t), i = 1 . . . , d̃, such that

N
(∑d̃

i=1
cizi; θ; zj

)
= 0 for j = 1, 2, . . . , d̃, t ∈ (0, T ) .

(1.8)

The reduction in size between (1.3) and (1.8) is now explicitly evident. The former

is a system of j̃ nonlinear ordinary differential equations for the j̃ unknowns Uk(t),

k = 1, . . . , j̃, while (1.8) is a system of d̃ ordinary differential equations for the d̃

unknowns ci(t), i = 1, . . . , d̃. Thus, having produced the reduced basis {zi(x)}d̃i=1
,

we can now solve (1.8) for any given parameter set θ much more cheaply than if we
resorted to solving (1.3).

Using (1.6), we see that the solution of (1.7) or, equivalently, of (1.8) can be
written as

uh
ro(t, x) =

j̃∑

k=1

⎛
⎝

d̃∑

i=1

ci(t)Zi,k

⎞
⎠φk(x)(1.9)

so that clearly uh
ro ∈ Uh, i.e., the solution of (1.7) lives in the finite element space.

However, only d̃ degrees of freedom (the ci’s) completely determine uh
ro ∈ Uh. If we

substitute (1.9) into (1.7) or, equivalently, if we substitute (1.6) into (1.8), we arrive
at another equivalent form for the reduced-order problem:

given θ ∈ Θ, find ci(t), i = 1 . . . , d̃, such that

N
(∑j̃

k=1

(∑d̃
i=1

ciZi,k

)
φk(x); θ;

∑j̃
j=1

Zm,jφj(x)
)

= 0

for m = 1, 2, . . . , d̃, t ∈ (0, T ) .

(1.10)

This form of the reduced-order problem is written in terms of the standard finite
element functions φj and the components of the reduced basis vectors Zi,j ; it is the

form that is actually used in practice to assemble the d̃ ordinary differential equations
corresponding to the reduced-order problem.

To complete the definition of the reduced-order problem, one must choose a so-
lution method for the system of ordinary differential equations (1.10).

We have now given an almost complete recipe for how a reduced basis is deter-
mined and used to find low-order approximations of complex systems; the missing
step is how a reduced basis is determined from the snapshot set. We briefly described
how this step is carried out in the POD setting, and in the next section, we describe
how it is done in the CVT setting.

2. Centroidal Voronoi tessellation-based reduced bases. The generation
of a CVT-based reduced-order basis is the intermediate step of the model reduction
algorithm. It follows the generation of the snapshot set, creating a set of basis vectors
which are used in the subsequent step to determine approximations of the solution
of the complex system for new physical states, i.e., new sets of parameters. We now
provide a definition of a CVT-based reduced basis and then discuss how they are
constructed.
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2.1. Definition of centroidal Voronoi tessellations for discrete data sets.
The definition of centroidal Voronoi tessellations (CVTs) for discrete data sets begins

with a set V = {�Vm}m̃m=1 consisting of m̃ vectors belonging to R
j̃ . Of course, V

can also be viewed as a set of m̃ points in R
j̃ . The definition also requires us to

introduce the notion of clustering or tessellation, which in our context is defined to
be a subdivision of the set V into d̃ ≤ m̃ subsets Vi, i = 1, . . . d̃, such that Vi ∩Vj = ∅

for i 
= j and ∪d̃
i=1

Vi = V. The set of subsets {Vi}
d̃
i=1

is called a clustering or a
tessellation of the set V. One way to determine a clustering is to first choose a set

Z = {�Zi}
d̃
i=1

consisting of d̃ ≤ m̃ distinct vectors,10 also belonging to R
j̃ , and then

choose a function C(�V ) = �Z that assigns each �Vm ∈ V to a particular �Zi ∈ Z, and then

letting Vi = {�Vm ∈ V such that C(�Vm) = �Zi} for i = 1, . . . , d̃. We call the collection

(V, C,Z) a cluster configuration. The vectors �Zi are called cluster generators and the
subsets Vi are called clusters. The cardinality of cluster Vi is denoted by mi; clearly,∑d̃

i=1
mi = m̃, the cardinality of the set V. The vectors

Zi =
1

mi

∑

�Vm∈Vi

�Vm for i = 1, . . . , d̃

are called the cluster means or cluster centroids.
For a given set V, a Voronoi tessellation or Voronoi clustering of V is a particular

type of cluster configuration for which the cluster generators {�Zi}
d̃
i=1

may be chosen

arbitrarily and for which the clustering rule C assigns each �Vm ∈ V to the nearest11

�Zi ∈ Z:

C(�Vm) = �Zi =⇒ |�Vm − �Zi| = min
�Zj∈Z

|�Vm − �Zj | .(2.1)

Given a given set V of m̃ vectors in R
j̃ and a positive integer d̃ ≤ m̃, a centroidal

Voronoi tessellation (CVT) or centroidal Voronoi clustering of V is a special Voronoi
tessellation satisfying

�Zi = Zi ,(2.2)

i.e., the generators of the Voronoi tessellation coincide with the centroids of the corre-
sponding Voronoi clusters. It is important to note that general Voronoi tessellations
do not satisfy the CVT property (2.2) so that, for given a set V and positive integer d̃,
a CVT must be constructed. Algorithms for this purpose are discussed in section 2.2.

CVTs possess an optimization property that can be used as a basis for an alternate

definition. Given a given set V of m̃ vectors in R
j̃ , a positive integer d̃ ≤ j̃, and a

clustering configuration (V, C,Z), let

E(V, C,Z) ≡
m̃∑

m=1

|�Vm − C(�Vm)|2 =

d̃∑

m=1

∑

�Vm∈Vi

|�Vm − �Zi|
2(2.3)

10The vectors in the data set V need not be distinct.
11Of course, there may be more than one vector in Z that is nearest a �Vm so that a tie-breaking

rule has to be appended to (2.1). For example, among all vectors in Z that satisfy (2.1), we could
choose the one with the smallest index value.
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denote cluster “energy.” Then, it can be shown (see [6]) that among all possible as-

signment rules C(·) and all possible cluster generators {�Zi}
d̃
i=1

, i.e., among all possible
cluster configurations, cluster energy minimizers are CVT cluster configurations.

One easily recognizes that (2.3) defines the variance of the clustering so that, as
described here, CVTs are minimum variance clusterings of discrete point sets. Thus,
in the context discussed here, CVTs are well known in the statistical literature under
names like k-means clustering. However, CVTs can be generalized in many ways,
e.g., to continuous sets, to other metrics, to weighted energy functionals, etc. Since
the latter generalization can be useful in the model reduction setting, we will briefly
discuss it in section 4.

The connection between CVTs and reduced bases is now easily made. The set V
is obviously the set of (possibly modified) snapshots. Then, the CVT reduced basis

set is the set of generators Z = {�Zi}
d̃
i=1

of a CVT of V.

2.2. Algorithms for constructing discrete CVTs. Even for moderate values
of m̃ and d̃, the number of possible clusterings of the data is enormous, meaning
that an exhaustive search for minimizers of the cluster energy cannot be carried out.
Fortunately, there do exist good algorithms for determining CVTs of discrete point
sets. We use the h-means and k-means methods (see, e.g., [16, 39, 40]) which are
described in section 2.2.1. The h-means method is cheaper to use than k-means, but
does not minimize the cluster energy function directly, and so it is not completely
reliable. Since the two methods are compatible, an efficient hybrid technique consists
of applying h-means until it can achieve no further energy reduction, followed by
(presumably few) steps of k-means to drive the energy down.

The h-means and k-means algorithms have the attractive property of being de-
scent methods with respect to the cluster energy. Given any cluster configuration
(V, C,Z), both algorithms consider a series of modifications to the cluster assignment
function C. However, a modification is only made if it is guaranteed to reduce the
cluster energy E(V, C,Z). Thus, an algorithm based on taking h-means or k-means
steps cannot diverge or produce a final clustering having higher energy than the initial
clustering. Also, since the set V is finite dimensional, the algorithms are guaranteed
to terminate in finitely many steps. By virtue of the nearest neighbor and centroidal
generator features, the resulting clusters will be discretely convex and will tend to
correspond to natural clusterings of the data.

The single step approach of the h-means and k-means methods, i.e., the fact that
the methods consider one member of the data set V at a time, has the disadvantage
of making the methods vulnerable to “local minima.”12 The k-means algorithm will
never allow a one-point modification that increases the cluster energy, and so it is
guaranteed to halt if it reaches a local minimum. However, for a given problem, there
can be many local minima that are not global minimizers of the cluster energy. To
deal with the problem of local minima, one can simply apply the CVT construction
algorithm several times, using different initial configurations, and then take the final
configuration having the lowest cluster energy to be the best estimate of the optimal
configuration. One should also note that in other applications of CVT it has been
found the local minima determined by, say, the k-means method yield very good

12Given a nearest-neighbor, i.e., a Voronoi, cluster configuration (V, C,Z), define a one point

change as a change, for a single data point �Vm, in the value of the cluster assignment function from
C(�Vm) = �Zi to C(�Vm) = �Zj , followed by the replacement of �Zi and �Zj by the centroids of their new
associated clusters. A local minimum is then a cluster configuration (V, C,Z) with the property that
every one-point change results in an increase in the cluster energy.
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results; this is borne out by the computational results of this paper which show that
CVT reduced-order modeling can provide effective low-dimensional approximations.

2.2.1. The h-means and k-means algorithms. The h-means algorithm be-
gins with an initial cluster configuration (V, C,Z). Then, for each point �Vm ∈ V, the

algorithm finds the nearest cluster generator �Zi ∈ Z; if that is not the cluster to which
the data point is currently assigned, the data point is “transferred” to the cluster as-
sociated with its nearest generator. When all data points have been considered, the
cluster generators �Z are replaced by the centroids of the newly formed clusters. If at
least one point was transferred during this process, a new sweep of all the points is
carried out, and this continues until a sweep is made in which no point is transferred.

Recall that:
V = {�Vm}m̃m=1 denotes the fixed set of points to be clustered into a CVT consisting

of d̃ clusters, where d̃ is also fixed;

Z = {�Zi}
d̃
i=1

denotes the cluster generators which can possibly change at each
step of the algorithm;

{Vi}
d̃
i=1

denotes the clustering of V which can also possibly change at each step of
the algorithm; and

di denotes the cardinality of the cluster Vi which can also possibly change at each
step of the algorithm.

Then, the h-means algorithm may be formalized as follows:

do
for each �Vm ∈ V

determine �Zi ∈ Z that minimizes |�Vm − �Zj |

if �Vm 
∈ Vi, then
reassign �Vm to Vi

end if
end for
if no transfers occurred, exit the loop
for each i = 1, . . . , d̃

�Zi = 1

di
Σ�Vm∈�Zi

�Vm

end for
end do

The k-means algorithm is a sophisticated version of h-means. The h-means transfer
test is based on the distance from a point to a cluster center. However, if a point
is transferred to a new cluster, the cluster center, when it is recomputed, will move
closer to the point, something that h-means misses until the step is complete, i.e.,
until all points in V are treated. Within each iteration, the k-means algorithm works
with a transfer test that directly measures the change in energy that occurs when
a point moves from one cluster to another and then immediately redetermines the
cluster centroids before moving to the next point in V. A single k-means sweep is
computationally more expensive than a single h-means sweep. This added expense
is the reason why the h-means algorithm is employed first to perform the “easy”
transfers.13 The k-means algorithm may be formalized as follows:

13How much more expensive is k-mean compared to h-mean depends on exactly how one carries
out the steps in the two methods, e.g., how one calculates nearest neighbors. Our limited experience
has indicated that it is more efficient to use k-means, especially near the end of the CVT construction
process.



470 JOHN BURKARDT, MAX GUNZBURGER, AND HYUNG-CHUN LEE

do
for each �Vm ∈ V

evaluate the cluster energy for all possible transfers of �Vm from its
current cluster Vi to any of the other clusters Vj , j = 1, . . . , d̃,
j 
= i

if moving �Vm from its current cluster Vi to the cluster Vk will most
reduce the cluster energy, then

reassign �Vm to cluster Vk

replace the cluster generators �Zi and �Zk by the centroids of
the newly modified clusters Vi and Vk, respectively

end if
end for
if no transfers occurred, exit the loop

end do
The main lines of a hybrid algorithm can now be made clear. Starting with a randomly
initialized cluster configuration, one applies the h-means iteration (presumably many
times) and the k-means iteration (hopefully a few times) to produce a locally optimal
cluster configuration. One repeats the process several times, each time starting with
a different random initial cluster configuration. The generators of the locally optimal
configuration having the lowest cluster energy are then output as the approximation
to the desired CVT reduced-order basis.

We note that there are several ancillary processing issues that arise in the im-
plementation of CVT construction algorithms. For example, one may wish to thin,
shift, or scale the snapshots so that clustering patterns are more readily exposed. One
may also want to use, instead of the Euclidean one, metrics that do not differentiate
between snapshot vectors which point in nearly the same direction but which have
different magnitudes. Additionally, the choice of the initial set of generators can affect
the efficiency of a CVT construction algorithm.

3. Computational experiments. To demonstrate the use, efficiency, and ac-
curacy of the CVT-based reduced-order modeling technique, two examples are consid-
ered, which we denote the In/Out and T-cell problems. Both are incompressible flow
problems having boundary conditions that include an inflow shape function containing
a multiplicative parameter α that controls the strength of the inflow.

3.1. In/Out problem. The governing equations of two-dimensional incom-
pressible viscous flow in a square region Ω = (0, 1) × (0, 1) are the Navier–Stokes
system

∂u

∂t
− ν Δu + u · ∇u + ∇p = 0 in (0, T ) × Ω,(3.1)

∇ · u = 0 in (0, T ) × Ω(3.2)

along with, for the specific problem we considered here, the initial and boundary
conditions

u(0,x) = u0(x) in Ω,(3.3)

u = 100α(t) y (0.2 − y) on (0, T ) × Γi,(3.4)

(n · ∇)u = 0 on (0, T ) × Γo,(3.5)

u = 0 on (0, T ) × Γd,(3.6)
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Fig. 3.1. The flow regions for the In/Out (left) and T-cell (right) examples.

where x = (x, y), Γi = {x = 0 ; 0 < y < 0.2}, and Γo = {x = 1 ; 0.8 < y < 1} are the
inflow and outflow parts of the boundary, respectively, and Γd = ∂Ω\(Γi ∪ Γo). See
Figure 3.1. In (3.4), α(t) is a parameter that determines the strength of the parabolic
inflow velocity profile. We choose ν = 1 and T = 0.08.

Accurate Galerkin-mixed method finite element approximations of the solutions
of (3.1)–(3.6) are obtained using the P2–P1 Taylor–Hood finite element pair on a grid
of 1681 nodes. Finite element solutions are used for the generation of snapshots and
later for comparison with CVT-based reduced-order solutions.

For the generation of snapshots, we will also solve, by the finite element method,
stationary versions of (3.1)–(3.6) for which the time derivative term in (3.1) and the
initial condition (3.3) are omitted and α in (3.4) is chosen independent of t.

3.1.1. Generating snapshots. We use the procedure given in section 1.1.1 to
determine a set of snapshot vectors. First, the finite element approximation to the
stationary version of (3.1)–(3.6) with α = 1 is obtained. Using that steady-state
solution as the initial data u0 in (3.3) and using α = 5 for 0 < t < T/2 = 0.04 and
α = 1 for 0.04 < t < T = 0.08 in the boundary condition (3.4), we then determine a

finite element approximation
∑j̃

k=1
Uk(t)φk(x) of the solution of (3.1)–(3.6), where j̃

denotes the dimension of the finite element space used for the velocity and φx denotes
the basis functions for that space. This is the flow we use to generate the snapshots; it
can be viewed as one for which the steady-state solution for α = 1 is suddenly jolted,
at t = 0, by increasing the value of α to five, and jolted again at t = T/2 = 0.04 by
decreasing the value of α back to one. The 800 snapshot vectors

�Um =

⎛
⎜⎜⎜⎜⎝

U1(tm)

U2(tm)
...

Uj̃(tm)

⎞
⎟⎟⎟⎟⎠

, m = 1, . . . , 800

are then determined by evaluating the solution of this impulsively started problem at
800 equally spaced time values tm, m = 1, . . . , 800, ranging from t = 0 to t = T = 0.08.

For subsequent use, it is convenient to modify the 800 snapshots so that they
satisfy homogeneous boundary conditions. To this end, we first obtain the reference

finite element approximation v(x) =
∑j̃

k=1
Vkφk(x) of the stationary version of (3.1)–

(3.6) with α = 3. We then modify the first 400 snapshots by

�Um ←

(
�Um −

5

3
�V

)
for m = 1, . . . , 400
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and, in the same way, the second 250 snapshots are modified

�Um ←

(
�Um −

1

3
�V

)
for m = 401, . . . , 800,

where

�V =

⎛
⎜⎜⎜⎜⎝

V1

V2

...
Vj̃

⎞
⎟⎟⎟⎟⎠

.

In this way, all the snapshots satisfy homogeneous boundary conditions.
The snapshots we have generated by the above processes we will refer to as the

nonnormalized snapshots. This is to contrast them with a second set of snapshots
we will use, referred to as the normalized snapshots which are obtained from the
nonnormalized snapshots by dividing by their respective length, i.e., the normalized
snapshots are given by

�Um ←
�Um

|�Um|
.

We will also used a reduced snapshot set that is determined from the nonnormalized
snapshots by deleting every other snapshot from the latter, i.e., the 250 reduced
snapshots are given by

�Um for m = 2, 4, 6, . . . , 800.

3.1.2. Generating CVT reduced basis. We next apply the algorithms of
section 2.2 to determine the generators of a CVT of each of the snapshot sets; a
set of generators is to be used as a reduced basis. CVTs having d̃ = 4, 8, and
16 generators are determined. Figure 3.2 displays, for the 4-generator case, the CVT
basis computed from the normalized snapshots. Note that since the original boundary
conditions have been “subtracted away,” each basis function satisfies a zero Dirichlet
boundary condition at the inlet, and a zero Neumann condition at the outlet. In the
interior of the region, each basis function satisfies (discretized) continuity equation.

Figure 3.3 displays the system of 8 CVT basis functions computed from the same
data. It is important to note that the set of size 8 is not built by augmenting the set
of size 4; most of the elements of the larger set seem significantly different from any
of those of the smaller set.

Each generator �Zi ∈ R
j̃ of a CVT defines a finite element function, i.e., if

�Zi =

⎛
⎜⎜⎜⎜⎝

Zi
1

Zi
2

...
Zi

j̃

⎞
⎟⎟⎟⎟⎠

for i = 1, . . . , d̃,

we then have the corresponding finite element functions

zi =

j̃∑

k=1

Zi
1φj(x) for i = 1, . . . , d̃.
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Fig. 3.2. The CVT basis of dimension 4 determined from normalized snapshots.

3.1.3. Determining CVT-based reduced-order approximations. We now
use the Galerkin procedure discussed in section 1.1.3 to determine a CVT-based
reduced-order approximation of the velocity field. The approximate velocity field
u(x, t) is represented as a linear combination of the CVT basis functions as follows:

ucvt = β(t)v +

d̃∑

i=1

ai(t)zi(x),(3.7)

where zi denotes the ith CVT basis function, ai(t) is the corresponding coefficient, v

is the reference solution defined in section 3.1.1, β(t) ≡ α(t)/αr, αr = 3, and d̃ is the

total number of CVT basis functions. In our computations, d̃ = 4, 8, or 16. The first
term in (3.7) is included so that u satisfies the boundary conditions in (3.1)–(3.6).

Applying the Galerkin principle which forces the residual to be orthogonal to each
of the basis functions, we obtain

∫

Ω

∂

∂t
ucvt · zj dΩ + ν

∫

Ω

∇ucvt : ∇zj dΩ

+

∫

Ω

(ucvt · ∇)ucvt · zj dΩ = 0 for j = 1, . . . , d̃.

(3.8)

Note that due to the fact that the CVT basis functions zj , j = 1, . . . , d̃, are discretely
solenoidal, the pressure does not appear in this system. Using (3.7), it is easy to see
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Fig. 3.3. The CVT basis of dimension 8 function determined from normalized snapshots.
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that (3.8) is equivalent to the system of nonlinear ordinary differential equations

d̃∑

i=1

d

dt
ai(t)

(
zi, zj

)
+ ν

d̃∑

i=1

ai(t)
(
∇zi,∇zj

)

+

⎛
⎝

d̃∑

i=1

ai(t)zi · ∇
d̃∑

k=1

ak(t)zk, zj

⎞
⎠ + β(t)

d̃∑

i=1

ai(t)
(
zi · ∇v + v · ∇zi, zj

)

+
d

dt
β(t)

(
v, zj

)
+ β(t)

(
β(t) − 1

)(
v · ∇v, zj

)
= 0, j = 1, . . . , d̃,

(3.9)

along with the initial conditions

d̃∑

i=1

ai(0)
(
zi, zj

)
=

(
u0 − β(0)v, zj

)
,(3.10)

where (·, ·) denotes the L2(Ω) inner product. The set of ordinary differential equations
(3.9)–(3.10) is solved by using a 4th order Runge–Kutta method.

To demonstrate robustness, the low-dimensional, CVT-based dynamic model was
solved using several shapes for the inlet velocity factor α(t) and several different
choices for the CVT basis set. The two choices for the inlet velocity function for
which we present results are given by:

• Case 1: a hat function with respect to time (see Figure 3.4);
• Case 2: a sinusoid with respect to time (see Figure 3.5).

Nine different CVT bases were used: for d̃ = 4, 8, and 16,
• a set of d̃ CVT basis functions derived from the nonnormalized snapshot set;
• a set of d̃ CVT basis functions derived from the normalized snapshot set;
• a set of d̃ CVT basis functions derived from the reduced snapshot set.

In addition, for both Cases 1 and 2, solutions of the system (3.1)–(3.6) were also
approximated using the full finite element discretization employing thousands of un-
knowns.

Computing the CVT-based reduced-order solution for basis function sets of size
d̃ = 4, 8, and 16 allowed for some study of the approximation error behavior. The
CVT-based solutions are compared to the corresponding solutions of the full finite
element system. The relative L2 error was computed at each time step, based on
the difference between the full finite element and CVT-based reduced-order solutions.
The plots of these L2 errors versus time are displayed in Figures 3.4 and 3.5 for Cases
1 and 2, respectively. Note that, for each case and for every time step, the overall L2

error decreases as the size of the CVT basis set is increased.
Further comparisons are provided in Figures 3.6 and 3.7 where we display, side

by side, the full finite element and CVT-based reduced-order solutions using 8 basis
functions at selected time steps. Visually, the two solutions seem indistinguishable;
however, the CVT-based solution was constructed from a system of 8 ordinary differ-
ential equations, while the corresponding finite element solution is derived by solving
1681 ordinary differential equations. The total running time was reduced by a factor
of several thousand.

3.2. The T-cell problem. The CVT-based reduced-order modeling methodol-
ogy was also applied to a second example of flow in a t-shaped region; see Figure 3.1.
The flow enters from the left and exits on the right. We choose ν = 1 and T = 0.05. A
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Fig. 3.4. Multiplicative inflow strength parameter α for Case 1 (top left) and L2-norm of
difference between CVT-based reduced-order solutions and a full finite element simulation vs. time
for the In/Out problem based on the normalized snapshot set (top right), the nonnormalized snapshot
set (bottom left), and the reduced snapshot set (bottom right).

grid of 4961 nodes was used for all finite element computations. Again, a multiplica-
tive parameter α controls the strength of the inflow. For 0 < t < 0.025, α = 5 was
used which represents an abrupt change at t = 0 from the value 1 used to generate the
steady-state initial condition. For 0.025 < t < 0.05, α = 1 was used which represents
another abrupt change at t = 0.025. The abrupt changes in the value of α cause sharp
transient effects. This single finite element solution of (3.1)–(3.6) was sampled at 500
equally spaced time intervals to generate 500 snapshot vectors.

As for the In/Out problem, computations were performed for CVT bases of size
4 (displayed in Figure 3.8), 8 (displayed in Figure 3.9), and 16. Also, nonnormalized,
normalized, and reduced snapshot sets were considered. The nine basis sets were then
used to approximate the solution of a time-dependent flow in the T-shaped region.
The multiplicative flow strength factor α(t) was chosen to be

α(t) =

{
160t + 1 (0 ≤ t ≤ 0.025)
−160(t− 0.05) + 1 (0.025 ≤ t ≤ 0.05).

A finite element solution of the same problem (using 4961 nodes) was also computed
for comparison purposes. In Figure 3.10, the time histories of the differences between
the CVT-based reduced-order solutions and the full finite element solutions, measured
in the L2(Ω)-norm, are provided for the nine basis sets.
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Fig. 3.5. Multiplicative inflow strength parameter α for Case 2 (top left) and L2-norm of
difference between CVT-based reduced-order solutions and a full finite element simulation vs. time
for the In/Out problem based on the normalized snapshot set (top right), the nonnormalized snapshot
set (bottom left), and the reduced snapshot set (bottom right).

3.3. Some information about CVT bases. It is of interest to mention some
details about the CVT basis generation process; this discussion will consider the case
of 8 CVT generators, based on nonnormalized snapshots, for the T-cell problem.

The basis generation algorithm preprocessed the data by subtracting an appro-
priate multiple of a steady-state solution that satisfies the boundary conditions and
which had been computed with the parameter value α = 1. The overall computation
was repeated with 15 random initial generator configurations. The inner h-means and
k-means algorithms were limited to a maximum of 30 iterations but always concluded
before that limit was reached. The initial cluster energy of the random configurations
was generally about 50,000; the final cluster energy of the 15 cases varied from 2,879.5
to 3,212.5.

For a “typical” random initial configuration, Table 3.1 shows how the cluster
energy drops. Of course, the huge energy at the initial random configuration is slightly
misleading. It drops tremendously after the first h-means step, as each data point is
assigned to its nearest cluster center.

There was an interesting feature observed about the final cluster generators. For
each cluster, the cluster elements tended to comprise all the solutions in a single
time interval. In particular, for the case discussed here, the 8 cluster generators had
components as listed in Table 3.2. In the interest of clarity, we’ve renumbered the
cluster indices.
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Fig. 3.6. Full finite element approximation (left) and CVT-based reduced-order approximation
of size 8 based on nonnormalized snapshots (right) for t = 0.1 (top), t = 1.0 (second), t = 1.5
(third), t = 2.0 (bottom).
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Fig. 3.7. Full finite element approximation (left) and CVT-based reduced-order approximation
of size 8 based on nonnormalized snapshots (right) for t = 2.5 (top), t = 3.0 (second), t = 3.5
(third), t = 5.0 (bottom).
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Fig. 3.8. The CVT basis of dimension 4 determined from nonnormalized snapshots.

Note that, except for cluster 5, the clusters are formed exactly from a sequence of
data points at neighboring times. The two smallest clusters, number 1 and number 6,
correspond to the initial transient and the “shock” to the system that occurs after step
250, when the system parameter α is changed. Since the solution is changing rapidly
at those times, it makes sense that the clusters are small, and yet still comprise a
sizable portion of the total cluster energy. Also, the one exceptional cluster, number
5, corresponds to the relatively quiescent “tails” of the two evolution processes, since
it contains the solutions for steps [75, 250] and [308, 500]. This near “sequential”
arrangement of snapshots within the clusters may be useful in some settings, e.g., for
adapting a CVT basis.

4. Concluding remarks. We have introduced and discussed a centroidal Voronoi
tessellation based reduced-order modeling methodology and have shown that it is ef-
fective, i.e., accurate and inexpensive, on some example problems. The CVT-based
approach is based on data clustering concepts. Compared to POD-based reduced-
order modeling approaches, which are the ones in most common use today, the CVT-
based approach is potentially less expensive, i.e., for the same number of snapshots
and the same number of basis vectors, the CVT-based approach is usually less costly
than POD-based approaches which require the solution of a dense eigenvalue of sin-
gular value decomposition problem. Although no direct comparisons of POD- and
CVT-based results were made, the computational results provided in this paper indi-
cate that the latter approach provides accurate results for the same type of problems
for which the former approach works.

There are several avenues for the further development of CVT-based reduced-
order modeling methodologies which we are currently considering. First, in [9], a
discussion was given of how the CVT- and POD-based reduced-order modeling ap-
proaches can be combined to produce a hybrid method (called CVOD in that paper)
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Fig. 3.9. The CVT basis of dimension 8 determined from nonnormalized snapshots.

that possesses the good features of both. The implementation of CVOD and exper-
imentation with the various hybridization possibilities is a subject that is certainly
deserving of attention.

Another important avenue we are pursuing is the application of CVT- and CVOD-
based reduced-order modeling methodologies to control and optimization problems for
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Fig. 3.10. Multiplicative inflow strength parameter α (top left) and L2-norm of difference
between CVT-based reduced-order solutions and a full finite element simulation vs. time for the
T-cell problem based on the normalized snapshot set (top right), the nonnormalized snapshot set
(bottom left), and the reduced snapshot set (bottom right).

Table 3.1

Energy and iteration statistics for the CVT-basis generation.

Process Final Energy Iterations
Random initial 49,860.5 1
h-means 3,283.4 22
k-means 3,212.5 4

Table 3.2

Cluster statistics for computed CVT generators.

Cluster Cluster Energy Population Range
1 281.1 5 [1, 5]
2 247.5 10 [6, 15]
3 236.4 18 [16, 33]
4 215.3 41 [34, 74]
5 532.1 369 [75, 250] + [308, 500]
6 523.3 7 [251, 257]
7 428.3 15 [258, 272]
8 420.1 35 [273, 307]

Total 3,212.5 500 [1, 500]
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complex systems. Many approaches to such problems require multiple or real-time
state simulations so that reducing the cost of those simulations is a necessity. Indeed,
much of the current interest in the reduced-order modeling of complex systems is
motivated by control and optimization problems. One issue that is sure to enter these
considerations is the adaptation of reduced-order bases. Adaptation is likely to be
needed since, during a control or optimization process, the snapshot set that was
used to generate the reduced basis my not remain adequate to represent the dynamic
behavior of the system. The “sequential” aspect of CVT clustering of the snapshots
may turn out to be a useful feature in this context.

A third avenue is to use the flexibility provided by CVT methodologies to advan-
tage in the reduced-order modeling setting. For example, it is often the case that one
wants a certain snapshot or a group of snapshots to have greater influence on the re-
duced basis than do the others. This can be easily accomplished by simply scaling the
important snapshots, or equivalently, by introducing a density function defined over
the snapshot set; important snapshots would have high associated densities. CVT
construction algorithms would then automatically prejudice some of the generators
towards the important snapshots. Furthermore, constrained CVTs can be applied
which enable one to include important snapshot vectors in the reduced basis.
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