SCISPACE
 formerly Typeset

〇 Open access • Posted Content - DOI:10.1101/2020.06.29.179234

Centromere evolution in the fungal genus Verticillium — Source link $\quad \boxed{\square}$

Michael F. Seidl, H. Martin Kramer, David Cook, Gabriel L. Fiorin ...+3 more authors
Institutions: Utrecht University, Wageningen University and Research Centre, Kansas State University, Sapienza University of Rome

Published on: 30 Jun 2020 - bioRxiv (Cold Spring Harbor Laboratory)
Topics: Heterochromatin, Centromere and Verticillium

Related papers:

- Islands of retroelements are the major components of Drosophila centromeres
- Regional centromeres in the yeast Candida lusitaniae lack pericentromeric heterochromatin
- Islands of retroelements are major components of Drosophila centromeres.
- Intergenic locations of rice centromeric chromatin.
- Long transposon-rich centromeres in an oomycete reveal divergence of centromere features in Stramenopila-Alveolata-Rhizaria lineages

Share this paper: $\boldsymbol{1}$ in \square
View more about this paper here: https://typeset.io/papers/centromere-evolution-in-the-fungal-genus-verticillium2wqllmh1ip

1 Centromere evolution in the fungal genus Verticillium

2 Michael F Seidl ${ }^{1,2 \#}$, H Martin Kramer 2, David E Cook ${ }^{2,3}$, Gabriel Lorencini Fiorin ${ }^{2}$, Grardy CM van den Berg ${ }^{2}$, Luigi Faino ${ }^{2,4}$, and Bart PHJ Thomma ${ }^{2,5 \#}$
${ }^{1}$ Theoretical Biology \& Bioinformatics, Utrecht University, Utrecht, the Netherlands
${ }^{2}$ Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands
${ }^{3}$ Plant Pathology, Kansas State University, Manhattan, United States of America
${ }^{4}$ Environmental Biology Department, Sapienza Università di Roma, Rome, Italy
${ }^{5}$ University of Cologne, Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), 50674 Cologne, Germany

Running title: Centromeres across the Verticillium genus

Abstract

Centromeres are chromosomal regions that are crucial for chromosome segregation during mitosis and meiosis, and failed centromere formation can contribute to chromosomal anomalies. Despite this conserved function, centromeres differ significantly between and even within species. Thus far, systematic studies into the organization and evolution of fungal centromeres remain scarce. In this study, we identified the centromeres in each of the ten species of the fungal genus Verticillium and characterized their organization and evolution. Chromatin immunoprecipitation of the centromere-specific histone CenH3 (ChIP-seq) and chromatin conformation capture (Hi-C) followed by high-throughput sequencing identified eight conserved, large ($\sim 150 \mathrm{~kb}$), AT-, and repeat-rich regional centromeres that are embedded in heterochromatin in the plant pathogen V. dahliae. Using Hi-C, we similarly identified repeat-rich centromeres in the other Verticillium species. Strikingly, a single repetitive element is strongly associated with centromeric regions in some but not all Verticillium species. Extensive chromosomal rearrangements occurred during Verticillium evolution, yet only a minority could be linked to centromeres, suggesting that centromeres played a minor role in chromosomal evolution. Nevertheless, the size and organization of centromeres differ considerably between species, and centromere size was found to correlate with the genome-wide repeat content. Overall, our study highlights the contribution of repetitive elements to the diversity and rapid evolution of centromeres within the fungal genus Verticillium.

IMPORTANCE

The genus Verticillium contains ten species of plant-associated fungi, some of which are notorious pathogens. Verticillium species evolved by frequent chromosomal rearrangements that contribute to genome plasticity. Centromeres are instrumental for separation of chromosomes during mitosis and meiosis, and failed centromere functionality can lead to chromosomal
anomalies. Here, we used a combination of experimental techniques to identify and characterize centromeres in each of the Verticillium species. Intriguingly, we could strongly associate a single repetitive element to the centromeres of some of the Verticillium species. The presence of this element in the centromeres coincides with increased centromere sizes and genome-wide repeat expansions. Collectively, our findings signify a role of repetitive elements in the function, organization and rapid evolution of centromeres in a set of closely related fungal species.

INTRODUCTION

Centromeres are crucial for reliable chromosome segregation during mitosis and meiosis. During this process, centromeres direct the assembly of the kinetochore, a multi-protein complex that facilitates attachment of spindle microtubules to chromatids (1-3). Failure in formation or maintenance of centromeres can lead to aneuploidy, i.e. changes in the number of chromosomes within a nucleus, and to chromosomal rearrangements (3-5). While these processes have been often associated with disease development (6), they can also provide genetic diversity that is beneficial for adaptation to novel or changing environments (7, 8). For example, aneuploidy in the budding yeast Saccharomyces cerevisiae can lead to increased fitness under selective conditions, such as the presence of antifungal drugs (9,10). Thus, centromeric instability can contribute to adaptive genome evolution $(11,12)$.

Despite their conserved function, centromeres are among the most rapidly evolving genomic regions $(13,14)$ that are typically defined by their unusual (AT-rich) sequence composition, low gene and high repeat density, and heterochromatic nature (13, 15). Nevertheless, centromeres differ significantly in size, composition, and organization between species (13,16). Centromeres in S. cerevisiae are only ~ 125 nucleotides long and are bound by a single nucleosome containing the centromere-specific histone 3 variant $\mathrm{CenH3}$ (also called CENP-A or Cse4) (17-20). In contrast to these 'point centromeres', centromeres in many other fungi are more variable and larger, and have thus been referred to as 'regional centromeres' (15). For instance, in the opportunistically pathogenic yeast Candida albicans, the CenH3-bound 3-5 kb long centromeric DNA regions differ significantly between chromosomes, and rapidly diverged from closely related Candida species (21-23). Centromeres in the basidiomycete yeasts Malassezia are similar in size (3-5 kb) but contain a short AT-rich consensus sequence in multiple Malassezia species (11). In Malassezia, chromosomal rearrangements and karyotype changes are driven by centromeric loss through chromosomal breakage or by inactivation through sequence
diversification (11). Chromosomal rearrangements at centromeres have been similarly observed in the yeast Candida parapsilosis, suggesting that centromeres can be fragile and contribute to karyotype evolution (11, 12). CenH3-bound centromeric regions of the basidiomycete yeast Cryptococcus neoformans are relatively large, ranging from 30 to 65 kb , and are rich in Long Terminal Repeat (LTR)-type retrotransposons (16). Centromere sizes differ between Cryptococcus species as those lacking RNAi and DNA methylation have shorter centromeres, associated with the loss of full-length LTR retrotransposons at centromeric regions, suggesting that functional RNAi together with DNA methylation is required for centromere stability (16).

In filamentous fungi, centromeres have been most extensively studied in the saprophyte Neurospora crassa (15). In this species, centromeric regions are considerably larger than in yeasts (on average $\sim 200 \mathrm{~kb}$), and are characterized by AT-rich sequences that are degenerated remnants of transposable elements and sequence repeats that lack an overall consensus sequence $(15,24$, 25). The increased AT-content and the degenerated nature of transposable elements in the genome of N. crassa are the result of a process called repeat-induced point mutation (RIP) (15, 26). RIP has been linked to the sexual cycle of ascomycetes and targets repetitive sequences by inducing C to T mutations, preferably at CpA di-nucleotides (26). The AT-rich centromeric regions are bound by CenH 3 and enriched in the heterochromatin-specific histone modification histone 3 trimethylation of lysine 9 (H3K9me3) (25). Additionally, H3K9me3 and cytosine methylation occurs at the periphery of the centromeres (25). Alterations in H3K9me3 localization compromise centromeric localization, suggesting that the formation and location of heterochromatin, rather than the DNA sequence itself, is essential for function and localization of centromeres in N. crassa $(15,25)$. However, heterochromatin is not a hallmark for centromeres in all filamentous fungi. Centromeres in the fungal wheat pathogen Zymoseptoria tritici are shorter ($\sim 10 \mathrm{~kb}$) and AT-poor, and their presence does not correlate with transposable elements nor with heterochromatin-specific histone modifications such as H 3 K 9 me 3 or histone 3 trimethylation of
lysine 27 (H3K27me3) (27). Thus, even though centromeric function is highly conserved, fungal centromeres differ considerably in size, sequence composition, and organization.

Knowledge on centromeres has been impaired by their repetitive nature, which hampers their assembly and subsequent analyses (15, 28). However, recent advances in long-read sequencing technologies enables to study the constitution and evolution of centromeres (11, 16, 29-31). By using long-read sequencing technologies in combination with optical mapping, we previously generated gapless genome assemblies of two strains of the fungal plant pathogen Verticillium dahliae (32), whose genomes are characterized by genome rearrangements and the occurrence of lineage-specific (LS) regions (7, 8, 33-35) that are hypervariable between V. dahliae strains and contain genes with roles in adaptive evolution to plant hosts (7, 8, 33, 35). Repetitive elements within the LS regions display a distinct chromatin state when compared with other repetitive regions (36). The Verticillium genus consists of ten species that are all soil-borne and presumed asexual but have different life-styles (37). Nine of these species are haploid, while the species Verticillium longisporum is an allodiploid hybrid between a strain that is closely related to V. dahliae and an unknown Verticillium species (37-39). During the evolution of the different Verticillium species frequent chromosomal rearrangements occurred ($8,35,40$). Facilitated by the availability of high-quality genome assemblies of V. dahliae strains and of all other Verticillium species ($32,33,40,41$), we here sought to identify and study the constitution and evolution of centromeres in the Verticillium genus.

RESULTS

CenH3-binding identifies large regional centromeres in Verticillium dahliae

Centromeres differ significantly between fungi, but most centromeres are functionally defined by nucleosomes containing CenH3 (1). To identify centromeres in V. dahliae strain JR2 by chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq), we first identified the V. dahliae CenH3 ortholog (Fig. S1a) and generated transformants with N terminally FLAG-tagged CenH3 (Table S1). To this end, the coding sequence for the FLAGtagged CenH3 was inserted in locus behind the native CenH3 promotor (Figs. S1b-c). We subsequently used anti-FLAG antibodies to purify FLAG-tagged CenH3-containing nucleosomes from two V. dahliae transformants (Table S1a) and sequenced the nucleosome-associated genomic DNA. Mapping of the sequencing reads to the V. dahliae strain JR2 genome assembly identified a single CenH3-enriched region per chromosome (Fig. 1a; Fig. S1d-e), while mapping of the sequencing reads derived from the WT strain did not reveal any CenH3-enriched region (Fig. S1d-e). The CenH3-enriched regions, designated as Cenl-8, range between ~ 94 and ~ 187 kb in size (Fig. 1a; Table 1). To corroborate these centromere sizes, we assessed centromere locations based on a previously generated optical map $(32,35)$ revealing no significant size differences (Fig. S1f). Thus, we conclude that CenH3-binding defines large regional centromeres in V. dahliae strain JR2.

Figure 1 - CenH3-binding defines centromeres in Verticillium dahliae strain JR2. (a) Schematic overview of the chromosomes of V. dahliae strain JR2 showing the normalized CenH3 ChIP-seq read coverage (RPGC normalization in 1 kb bins with 3 kb smoothening), CenH3 enriched regions, GC-content, gene density (red line), and repeat density (blue line). (b) Magnification of a 400 kb region containing the centromere is shown for each of the eight chromosomes of V. dahliae strain JR2 (Cen1-8) depicting the CenH3 ChIP-seq read coverage (RPGC normalization in 10 bp bins with a 30 bp smoothening) and enrichment, as well as the presence of genes (red) and repetitive elements (blue). Regions carrying the centromere-specific long-terminal repeat element VdLTRE9 are highlighted in green.

Centromeres in Verticillium dahliae are repeat-rich and embedded in heterochromatin

Centromeres are often characterized by increased AT-content, increased repeat density, and depletion of protein coding genes (13, 15, 29). To characterize the centromeres in V. dahliae strain JR2, we queried the eight chromosomes for the presence of large AT-rich, gene-sparse, and repeat-rich regions. Seven of the eight chromosomes contain only a single large ($>93 \mathrm{~kb}$; average size $\sim 150 \mathrm{~kb}$) AT-rich region ($\sim 74-78 \%$ versus $\sim 46 \%$ genome-wide), nearly completely devoid of protein-coding genes and enriched for repetitive sequences, that overlaps with the regions defined by CenH3-binding (Fig. 1a; Table 1). In contrast, chromosome 1 contains three regions with these characteristics (Fig. 1a; Table 1). However, only one of these overlaps with the centromeric regions defined by CenH3-binding (Fig. 1).

Elevated AT-levels in repeat-rich regions are caused by RIP mutations in some filamentous fungi $(15,25,26,42)$. Due to its presumably asexual nature (7), the occurrence of RIP in V. dahliae is controversial $(8,43,44)$, although signatures of RIP have previously been reported in a subset of repeat-rich regions (36). We assessed the occurrence of RIP signatures in centromeres using the composite RIP index (CRI) (45), which considers C to T mutations in the CpA context. Intriguingly, genomic regions located at centromeres display significantly higher CRI values than other genomic regions (e.g. genes or repetitive elements) (Fig. 2a; Figs. S2, S3a), and thus RIP signatures at repetitive elements located at centromeres likely contribute to the high AT-levels.

In most filamentous fungi and oomycetes, AT- and repeat-rich centromeres are embedded in heterochromatin that is characterized by methylated DNA and by particular histone modifications (H3K9me3 and H 3 K 27 me 3) (13, 15, 16, 25, 30, 45). We recently determined chromatin states in the genome of V. dahliae strain JR2 and revealed that repetitive sequences outside of the LS regions display characteristics of heterochromatin (36). To define centromeric chromatin states, we used previously generated bisulfite sequencing data to monitor DNA
methylation (mC) and ChIP-seq data to determine the distribution of the heterochromatic marks H3K9me3 and H3K27me3 (36). To also determine the distribution of euchromatin, we performed ChIP-seq with an antibody against the euchromatic mark di-methylation of lysine 4 of histone H 3 (H3K4me2). We observed overall low genome-wide DNA methylation levels (36) (Fig. 2a; Fig. S2), similar to the previously reported levels for Aspergillus flavus (46) and lower than for N. crassa (47). Nevertheless, repetitive elements and centromeres show significantly higher DNA methylation levels in all contexts when compared with genes (Fig. 2b). Methylation (in CG context) at repetitive elements at centromeres is significantly higher than at repeats located along the chromosomal arm, but not at sub-telomeric regions (Fig. 2c), and more methylation at centromeres correlates with increased CRI (Fig. 2a; Figs. S2, S3a). DNA methylation colocalizes with H3K9me3 at repeat-rich regions (36) (Figs. 2a; Fig. S2). H3K9me3 occurs predominantly at repetitive elements localized at sub-telomeres and centromeres (Figs. 2d-e; Figs. S2, S3b). In comparison, H3K4me2 and H3K27me3 are largely absent from centromeres (Figs. 2d-e; Fig. S3b). Collectively, these observations indicate that centromeres of V. dahliae display typical characteristics of constitutive heterochromatin.

Figure 2 - Centromeres in Verticillium dahliae strain JR2 are embedded in heterochromatin. (a) Schematic overview of chromosome 3 of V. dahliae strain JR2, exemplifying the distribution of heterochromatin-associated chromatin modifications (mC , H3K9me3, and H3K27me3) in relation to the centromeres. The different lanes display the CenH3-FLAG ChIP-seq read coverage (RPGC normalization in 1 kb bins with 3 kb smoothening), the CenH3-FLAG enriched regions, the repeat-density, the GC-content, the CRI as well as the weighted cytosine methylation (all summarized in 5 kb windows with 500 bp slide), and the normalized H3K9me3 and H3K27me3 ChIP-seq read coverage (RPGC normalization in 1 kb bins with 3 kb smoothening). The schematic overview of all chromosomes is shown in Figure S2. (b) Box plots of weighted DNA methylation levels per genomic context (CG, CHG, or CHH) are summarized over genes, repetitive elements, or 5 kb genomic windows (500 bp slide) overlapping with the centromeric regions. (c) Weighted DNA methylation levels per genomic context (CG, CHG, or CHH) are summarized over repetitive elements that have been split based on their genomic location; sub-telomeres (within the first or last 10% of the chromosome), centromeres, or the remainder of the chromosome arm. (d) ChIP-seq read coverage (RPGC normalized; see (a)) for H3K4me2, H3K27m3, and H3K9me3 is summarized over genes, repetitive elements, or 5 kb windows (500 bp slide) overlapping with the centromeric regions. (e) ChIP-seq read coverage (RPGC normalized; see (a)) for H3K4me2, H3K27m3, and H3K9me3 is summarized over repetitive elements that have been split based on their genomic location; subtelomeres (within the first or last 10% of the chromosome), centromeres, or the remainder of the
chromosomal arm. Statistical differences for the indicated comparisons were calculated using the one-sided non-parametric Mann-Whitney test; p -values < 0.001 : ${ }^{* * *}$.

A single repeat associates with Verticillium dahliae strain JR2 centromeres

Centromere identity and function is typically defined by CenH3-binding and not by specific DNA sequences, although various types of repetitive sequences, such as transposable elements, are commonly observed in centromeres of plants, animals, and fungi (13, 15, 48, 49). Unsurprisingly, CenH3-bound centromeres are repeat-rich in V. dahliae (Fig. 1). A detailed analysis of the eight centromeres revealed a near-complete (>96\%) composition of repetitive elements belonging to only ten different repeat sub-families (Figs. 1b, 3a; Table 1), of which the majority shows similarity to LTR retrotransposons of the Gypsy- and Copia-like families (Fig. 3a). These elements show signs of RIP, are highly methylated, and non-transcribed (Figs. S3c-e), and thus likely inactive. Interestingly, a single LTR retrotransposon sub-family, previously designated $\operatorname{VdLTRE9}(8,32)$, covers on average $\sim 70 \%$ of the DNA sequences at the eight centromeres, ranging from 47% in Cen 7 to 83% in Cen2 (Fig. 3a; Table 1). We scanned the genome for the localization of the ten repeat sub-families (Fig. 3). Intriguingly, although it is one of the most abundant repeats in the genome with 215 complete or partial matches, VdLTR9 is associated to centromeres as 95% of the copies (204 out of 215; one-sided Fisher's exact test; multiple-testing corrected p-value $3 \mathrm{e}-106$) occur at the eight centromeres, whereas only 5% of the copies are dispersed over the genome (Fig. 3b-c). The nine other repeat sub-families have additional matches that are located outside of the centromeres (Figs. 1a; Figs. 3b-c), and only two of these repeats are significantly enriched and consistently present in all eight centromeres; 63% and 45% of the matches of these two sub-families occur at the centromeres (Fig. 3c). Collectively, these findings suggest that only the presence of VdLTRE9 is strongly associated with centromeres in V. dahliae strain JR2.

VdLTRE9 displays similarity to LTR retrotransposons. The consensus sequence of VdLTRE9 is $\sim 7.3 \mathrm{~kb}$ long (the two LTR sequences are each $\sim 200 \mathrm{bp}$ long), and the individual matches share a high degree of sequence identity ($\sim 86 \%$). Sequence similarity based TEclassifications using PASTEC (50) indicates that the consensus sequence displays remote similarity to Gypsy-like retrotransposons. Only $\sim 25 \%$ of the VdLTRE9 matches in the genome cover the entire ($>97.5 \%$) consensus sequence, but many of these are still fragmented as they occur as discontinuous copies. Furthermore, the VdLTRE9 consensus sequence is AT-rich ($\sim 75 \%$ AT), which may be caused by RIP (Fig. S3d), indicating that VdLTRE9 has significantly degenerated.

Figure 3 - A single repeat family associates with centromeres in Verticillium dahliae strain JR2. (a) The presence of different repeat sub-families is shown across the eight centromeres (Cen1-8), and the number of occurrences for each sub-family within the centromeres is indicated. The individual centromeres in the diagram are shown in equal scale. (b) Genome-wide distribution of the ten repeat sub-families occurring within the eight centromeres (Cen1-8; dark blue); the location of VdLTRE9 is shown in green and the location of elements belonging to the other nine sub-repeat families (from panel (a)) is shown in light blue. (c) The distribution of different repeat sub-families in centromeres (Cen; dark blue) and across the genome (non-Cen; light grey). The enrichment of specific sub-families at centromeres was assessed using a onesided Fisher's exact test. Significant enrichment (multiple-testing corrected p-value < 0.01) is denoted with an asterisk.

VdLTRE9 as hallmark of Verticillium dahliae centromeres

To examine if VdLTRE9 similarly occurs at centromeres in other V. dahliae strains, we made use of the complete genome assembly of V. dahliae strain $\operatorname{VdLs} 17(8,32,35)$. The evolution of V. dahliae is characterised by chromosomal rearrangements (8, 35) (Figs. 4a; Figs. S4a-c). Nevertheless, synteny analyses between V. dahliae strains JR2 and VdLs17 revealed large regions of co-linearity between chromosomes and identified significant sequence and synteny conservation between the centromeres and their flanking regions (Figs. 4b-c; Fig. S4a), suggesting that centromeric sequences and their locations are conserved. We queried the genome of V. dahliae strain VdLs17 for the presence of VdLTRE9 and identified a single region on each chromosome, collectively containing 186 of the $207(90 \%)$ complete or partial matches of VdLTRE9 in the genome (Fig. 4d) (one-sided Fisher's exact test; multiple-testing corrected pvalue $3 \mathrm{e}-146$). These $V d L T R 9$-rich regions are $\sim 150 \mathrm{~kb}$ in size, AT-rich, gene-poor and repeatrich, and share similarity to the previously identified CenH3-bound and VdLTRE9-enriched regions of V. dahliae strain JR2 (Figs. 4b-c; Fig. S4d), suggesting that these regions similarly represent the centromeres of V. dahliae strain VdLs17.

Centromeres N. crassa and some other fungi co-localize within the nucleus (15, 51-55). This co-localization can be experimentally determined using chromosome conformation capture (HiC), which can identify centromeres by their increased inter-chromosomal contacts (55). To confirm that Hi-C can be used to identify centromeres in V. dahliae, we first applied Hi-C to V. dahliae strain JR2. As anticipated, we observed seven strong inter-chromosomal contacts for each of the eight chromosomes (Figs. 4e). Importantly, the interacting regions overlap with the CenH3-bound regions that we identified as centromeres (Table S1b), demonstrating that centromeres in V. dahliae strain JR2 co-localize within the nucleus and supporting that Hi-C reliably identifies centromeres $(51,52)$. We then applied Hi-C to V. dahliae strain VdLs17, and
similarly identified regions with strong inter-chromosomal contacts, one for each of the chromosomes (Figs. 4f). These regions overlap with the VdLTRE9-enriched regions (Table S1b), suggesting that these represent functional centromeres in V. dahliae strain VdLs17.

The two V. dahliae strains JR2 and VdLs17 are closely related and differ only by $\sim 0.05 \%$ sequence diversity $(8,35)$. Thus, the conservation of VdLTRE9 at centromeres could be driven by limited divergence between the two V. dahliae strains rather than representing a hallmark of V. dahliae centromeres. Therefore, we sought to determine centromeres in an additional V. dahliae strain with increased sequence diversity when compared with V. dahliae strains JR2 or VdLs17, namely strain CQ2 that displays ~ 1.05 percent sequence diversity (33). We previously obtained a long-read based genome assembly of this strain that encompasses 17 contigs (33). We generated Hi-C data for V. dahliae strain CQ2 and utilized intra-chromosomal contacts to assign the contigs into eight pseudo-chromosomes, leaving ~148 kb unplaced scaffolds (Fig. 4g; Fig. S4e; Table S1c). We subsequently identified a single region with seven strong inter-chromosomal contacts for each pseudo-chromosome that is significantly enriched for VdLTRE9 (one-sided Fisher's exact test; multiple-testing corrected p-value 3.4e-166) (Figs. 4d, g; Fig. S4e; Table S1b). Synteny analyses between V. dahliae strains JR2 and CQ2 revealed that the eight VdLTRE9-rich regions and their flanking chromosomal regions are co-linear, suggesting that centromere locations are conserved between different V. dahliae strains (Figs. 4; Figs. S4a-c, f). With an average size of 165 kb , the centromeres of V. dahliae strain CQ2 are similar in size as the 144 kb and 157 kb average sizes in V. dahliae strains VdLs17 and JR2, respectively (Table S1b). The sizes of the corresponding (i.e. homologous) centromeres vary between the different V. dahliae strains. Yet, the consistent co-occurrence of the VdLTRE9-rich regions with the interaction data obtained by Hi-C throughout a selection of V. dahliae strains demonstrates that VdLTRE9 is a hallmark of V. dahliae centromeres.

Figure 4 - Hi-C contact maps identify VdLTRE9 as hallmark of centromeres in Verticillium dahliae. (a) Synteny analyses of the eight chromosomes of V. dahliae strains JR2 and VdLs17. Schematic overview of the eight chromosomes of V. dahliae strain JR2 (left) and the corresponding syntenic regions in V. dahliae strains VdLs17 (right). Approximate locations of centromeres are indicated by stars, and syntenic centromeres of V. dahliae strain VdLs17 are colored according to Cen1-8 of V. dahliae strain JR2. (b) Sequence alignment of the centromeric regions $\pm 20 \mathrm{~kb}$ in V. dahliae strain JR2 and the corresponding regions in V. dahliae strains VdLs17 shown as dot-plot. For clarity, only alignments with $>95 \%$ sequence identity are displayed. (c) Magnification of Cen3 of V. dahliae strain JR2 and the syntenic Cen1 of strain VdLs17. Synteny between regions is indicated by ribbons; entire centromeric regions Cenl and Cen3 are syntenic and sequence similarity between individual VdLTRE9 elements is visualized. The Cen regions $\pm 150 \mathrm{~kb}$ are shown as well as genes (red) and repeats (blue) are annotated within this region. (d) Distribution of different repeat families in centromeres (Cen; dark blue) and across the genome (non-Cen; light grey) for V. dahliae strains VdLs17 and CQ2. The enrichment of specific sub-families at centromeres was assessed using a one-sided Fisher's exact test. Significant enrichment (multiple-testing corrected p-value <0.01) is denoted with an asterisk. (e-g) Hi-C contact matrix showing interaction frequencies between genomic regions in Verticillium dahliae strains JR2 (e), VdLs17 (f), and CQ2 (g). Regions of high inter-chromosomal interaction frequencies are indicative of centromeres and are highlighted by arrow heads. Interaction frequencies are summarized in 50 kb bins along the genome.

The evolution of Verticillium centromeres

In addition to V. dahliae, we previously generated genome assemblies of the eight haploid Verticillium species and the allodiploid V. longisporum $(39,40)$ (Fig. 5a) that ranged from 12 to 684 scaffolds (Table S1c). These ten Verticillium species have been traditionally separated over two distinct clades; Flavnonexudans and Flavexudans (Fig. 5a) (37). We generated Hi-C data to study the composition and evolution of centromeres in the different Verticillium species. By using intra-chromosomal interaction signals, we first assigned the vast majority of the previously assembled contigs into eight pseudo-chromosomes for each of the haploid Verticillium species and 16 pseudo-chromosomes for the diploid V. longisporum, leaving between 0.5 kb and $2,022 \mathrm{~kb}$ unassigned (Fig. S5; Table S1c). For most genome assemblies, the pseudo-chromosomes contain one or both telomeric repeats (Table S1c), and thus we conclude that all Verticillium strains have eight chromosomes, and that this number doubled in V. longisporum. Based on the interchromosomal Hi-C interaction signals, we identified a single region with high inter-chromosomal contacts for each of the pseudo-chromosomes (Fig. S5; Table S1d), indicating that these are the centromeres in the different Verticillium species. The average centromere size in Verticillium is $\sim 80 \mathrm{~kb}$, yet we observed significant differences between the species (Fig. 5b; Figs. S6a-b). Centromeres within the Flavexudans clade are similarly sized and significantly smaller than the genus-wide average. By contrast, V. dahliae and V. longisporum centromeres are significantly larger.

We subsequently assessed whether VdLTRE9 defines centromeres in the other Verticillium species besides V. dahliae as well. Interestingly, VdLTRE9 is abundant at centromeres in the allodiploid V. longisporum and in V. alfalfae, but fewer (21) or no VdLTRE9 copies were identified at centromeres in V. nonalfalfae and V. nubilum, respectively (Fig. 5c; Fig. S6c-d). Similarly, only few or no (partial) matches of VdLTRE9 consensus could be identified in the genomes of the Flavexudans species (Fig. 5c; Fig. S6-7; Table S1e). Collectively, these
findings demonstrate that VdLTRE9 is specific to Flavnonexudans species and has likely been recruited to the centromere only after the divergence of V. nubilum (Fig. 5a; Fig. S6-7).

Since VdLTRE9 occurs only in few Verticillium species, we assessed to which extent other repetitive elements contribute to centromere organization. We analyzed the repeats identified by de novo repeat predictions for each of the Verticillium species. Centromeres in all species are AT- and repeat-rich (Fig. S6a-b), and some repeats occur in high frequency or nearly exclusively at centromeres in species that lack VdLTRE9 (Table S1e). However, in contrast to VdLTRE9, these repeats cover only a minority (typically less than 10%) of the centromeres (Table S1e). Sequence similarity-based cluster analyses of the de novo repeat consensus sequences revealed that divergent repeat families contribute to Verticillium centromere organization (Fig. S8). Thus, in contrast to VdLTRE9 in most Flavnonexudans species, we could not identify any additional repeat family as a hallmark of centromeres in other Verticillium species.

Figure 5 - Evolution of centromeres in the genus Verticillium. (a) Relationship of the ten members of the genus Verticillium. The predicted repeat content for each of the genomes is indicated (see Table S3 for details). The red star indicates the acquisition of VdLTRE9 in the Flavnonexudans clade while the yellow star indicates the recruitment of VdLTRE9 into centromeres. (b) Comparison of estimated centromere lengths (in kb) in the different Verticillium spp. Each dot represents a single centromere and the line represents the median size. (c) The number of (partial) VdLTRE9 matches identified in centromeres (Cen; dark blue) and across the genome (non-Cen; light grey). The asterisk indicates the high number of VdLTRE9 elements in unassigned contigs for Verticillium nonalfalfae strain T2 (see text for details). (d) Proportion of predicted repeat content localized at centromeres (Cen; dark blue) and across the genome (nonCen; light grey). (e) Schematic overview of the eight centromeric regions (250 kb) in Verticillium dahliae strain JR2, and Verticillium alfalfae strain PD683 and Verticillium tricorpus stain PD593 as representatives for clade Flavnonexudans and clade Flavexudans, respectively. The centromeres are indicated by dark blue bars. The predicted genes (red) and repeats (light blue) are shown below each centromere, and location of (partial) VdLTRE9 matches (light green) are shown above each centromere. Global statistical differences for the centromere sizes was calculated using one-way ANOVA, and differences for each species compared to the overall
mean were computed using unpaired T-tests; p-values < 0.0001: ****, p-values < 0.001: ***, pvalues < 0.01: ${ }^{* *}$, p-values < $0.05: *$.

Centromeres contribute to Verticillium karyotype evolution

We previously used fragmented genome assemblies to identify chromosomal rearrangements during Verticillium evolution (8, 35, 40). We hypothesize that centromeres might have contributed to these chromosomal rearrangements. To identify genome rearrangements and to trace centromeres during Verticillium evolution, we used the pseudo-chromosomes of the haploid Verticillium species to reconstruct ancestral chromosomal configurations using AnChro (Fig 6a) (56). We reconstructed all potential ancestors that predominantly had eight chromosomes and $\sim 8,000$ genes (Figs. S9a-b), yet the number of ancestral chromosomes and genes varied when approaching the last common ancestor (Figs. S9a-b). By balancing the number of reconstructed chromosomes and genes, we identified a single most parsimonious ancestral genome with eight chromosomes and $\sim 8,500$ genes (Fig. 6a; Fig. S9c), except for the last common ancestor within the clade Flavexudans clade that had eight major chromosomes and two additional 'chromosomes' with only six and two genes (Fig. S9d). As these two smaller 'chromosomes' likely do not represent genuine chromosomes, we conclude that all of the ancestral genomes, similar to the extant haploid Verticillium genomes, had eight chromosomes (Fig. 6a). Confirming our previous report (40), we observed in total 198 chromosomal rearrangements (124 inversions and 74 translocations) (Fig. 6a). The number of chromosomal rearrangements is lower than previously recorded and we did not observe any chromosomal fusion or fission events, which is likely the result of the drastically improved genome assemblies, but the rearrangement signal on each branch is sufficient to nevertheless recapitulate the known Verticillium species phylogeny (Fig. S9e). Importantly, we observed 17 genomic rearrangements that occurred at, or in close proximity (within ~ 15 genes up or downstream) to, centromeres, both in extant Verticillium species as well as in the ancestors (Fig. 6). For example, at the branch from the last common ancestor (VA; Fig. 6a) to the ancestor of the clade Flavexudans (B1; Fig. 6a), two centromere-
associated translocations (between the ancestral chromosome 2 and 6) led to the formation of two rearranged chromosomes. In total, we observed that five out of the eight ancestral centromeres were associated with a chromosomal rearrangement at one point during evolution (Fig. 6a). Nevertheless, comparisons of protein-coding genes that flank centromeres show that these are syntenic in most extant species. Similarly, none of the recent chromosomal rearrangements observed between V. dahliae strains is associated with centromeres (Figs. 4a-b, 6a). Thus, while chromosomal rearrangements involving centromeres occurred during evolution, they do not account for the majority of the karyotype variation between extant Verticillium species.

Figure 6 - Centromeres contribute to karyotype evolution in Verticillium. (a) Relationship of the ten members of the genus Verticillium. The allodiploidization event forming V. longisporum is indicated by dashed lines $(38,57)$. The chromosomal evolution within the haploid members of the genus was reconstructed using AnChro (56). The chromosomal structure of the nine species is shown in relation to the last common ancestor of the genus. The approximate locations of the centromeres are indicated by stars. The number of chromosomal rearrangements (inversions and translocations) are displayed for each branch, and centromeres that co-localize in proximity to chromosomal rearrangements are highlighted by two-colored stars. (b) The number of major
chromosomal rearrangements that occurred at, or in close proximity of, centromeres are shown along the branches depicting the Verticillium species phylogeny shown in (a).

DISCUSSION

Centromeric regions are among the most rapidly evolving genomic regions (13-16, 29), yet centromere evolution has only been systematically studied in few fungi (11, 12, 16, 29). Here, we took advantage of the fungal genus Verticillium and used a combination of genetic and genomic strategies to identify and characterize centromere organization and evolution. Verticillium centromeres are characterized as large regional centromeres that are repeat-rich and embedded in heterochromatin. We furthermore show that centromeres contribute to the karyotype evolution of Verticillium. Finally, we demonstrate that VdLTRE9 is a hallmark of centromeres in some Verticillium species, while species that lack VdLTRE9 display a divergent repeat content.

Centromeres in fungi, plants, and animals co-localize within the nucleus (15, 51-55, 58), a phenomenon that can be exploited for their identification $(51,52)$. Here, we used Hi-C to first establish chromosome-level genome assemblies and subsequently identify centromeres in every Verticillium species, and we demonstrate that centromere locations are in agreement with CenH3binding. While we obtained chromosome-level genome assemblies for all species, Hi-C scaffolded genome assemblies could still contain partially collapsed repeats and assembly gaps, in particular for short-read assemblies (59). With the exception of V. nonalfalfae, we observed only few sequencing gaps and no evidence that would point to collapsed repeats at centromeres, suggesting that the inferred centromeres are of high quality. Verticillium centromere sizes differ, which is likely not driven by assembly artefacts, and centromeres in most Verticillium species are larger than in Z. tritici (27), C. neoformans, M. oryzae, or Fusarium graminearum (13, 16, 29), yet smaller than in N. crassa (25). Species of the Flavexudans clade typically encode fewer repeats than species of the clade Flavnonexudans clade $(32,40,60)$, and V. nubilum, V. longisporum, and V. dahliae are particularly rich in repeats when compared with other

Verticillium species ($32,39-41,60$). Thus, increased centromere sizes positively correlate with overall increased repeat contents.

Using fragmented genome assemblies, we previously identified chromosomal rearrangements during Verticillium evolution $(8,35,40)$ that were thought to have contributed to genetic diversity and adaptation in the absence of sexual recombination ($7,35,40$). Chromosomelevel genome assemblies for an entire genus enabled unprecedented analyses of the karyotype evolution over longer evolutionary timescales. Here, we observed extensive chromosomal rearrangements and provide evidence that some rearrangements at centromeres contributed to karyotype evolution, most of which occurred early during the divergence of Verticillium. Chromosomal rearrangements at centromeres occur in the fungal yeasts Candida, Cryptococcus, and Malassezia (11, 12, 61), and synteny breakpoints have been identified between mammals and chicken (62), suggesting that centromeres often contribute to karyotype evolution. The emergence of chromosomal rearrangements at centromeres could be facilitated by their repeat-rich nature (11, 12). For example, centromeres in Malassezia are enriched with an AT-rich motif that could facilitate replication fork stalling, which leads to double strand DNA breaks (11). Repeats localized outside of centromeres in V. dahliae contribute to chromosomal rearrangements (8), and thus it seems plausible that centromeric repeats similarly contribute to chromosomal rearrangements. Chromosomal rearrangements often do not only lead to changes in chromosome organization but also in chromosome number (11, 12). While we observed chromosomal rearrangements, all extant and ancestral genomes contained eight chromosomes, suggesting that eight chromosomes are a stable configuration for all Verticillium species.

Centromere position and function are thought to be driven by the protein complement (e.g. CenH3 localization) and by heterochromatin formation rather than by specific DNA sequences (13, 15, 63). In V. dahliae, we observed the co-occurrence of CenH3 with H3K9me3 and DNA methylation. This suggests that DNA methylation, as previously reported in N. crassa
and in C. neoformans (16,25), is also a feature of centromeric DNA in V. dahliae. Colocalization of CenH3 with $\mathrm{H} 3 \mathrm{~K} 9 \mathrm{me} 2 / 3$ and DNA methylation has been reported for N. crassa (25) and C. neoformans (16). In contrast, H3K9me3 and H3K27me3 are absent from centromeres in Z. tritici (27). H3K4me2 borders most centromeres in Z. tritici (27), and is associated with centromeres in S. pombe and some animals and plants (64-67). H3K4me2 has not been observed at centromeres in most fungi, including V. dahliae, and in the oomycete P. sojae (30). Changes in heterochromatin in N. crassa leads to altered CenH3 positioning (25), suggesting that heterochromatin is similarly required for centromere maintenance and function in V. dahliae. Elevated AT-levels in repeat-rich heterochromatic regions can be caused by RIP mutations (15, $25,26,42$). RIP-like mutations have been previously reported in some repeats in V. dahliae (36, 44), and we observed strong RIP signals at centromeres. Due to its presumably asexual nature (7), the occurrence of RIP in V. dahliae is controversial ($8,43,44$). Noteworthy, mutational signatures resembling RIP have recently been observed in Z. tritici propagated through mitotic cell divisions, pointing to the existence of a mitotic version of a RIP-like process (42). Thus, we conclude that RIP was an active process in V. dahliae at some point in evolution, or that RIP-like processes outside of the sexual cycle occur in V. dahliae.

Centromeres are often enriched for a variety of different retrotransposons and other repetitive elements $(15,16,25,29,30)$. We similarly observed that centromeres in all Verticillium species are repeat-rich. Repeats and their remnants identified at centromeres typically also occur outside of centromeres, as observed in M. oryzae (29) and N. crassa (25). Strikingly, we observed that a single repetitive element, VdLTRE9, is strongly associated with centromeres in some Verticillium species, which to our knowledge, has only been observed in the fungus Cryptococcus where centromeres contain six retrotransposons (Tcnl-6) that nearly exclusively occur at centromeres (16). Similarly, centromeres of the oomycete plant pathogen Phytophthora sojae contain multiple types of repeats, but they are enriched for a single element called CoLT (Copia-

Like Transposon) (30). The strong associations of specific repeats to centromeres could directly or indirectly link these elements to centromere function. Functional centromeres as observed here are also heterochromatic and contain CenH3. AT-rich repetitive elements can direct heterochromatin formation via DNA methylation and H3K9me3 deposition in N. crassa $(45,68)$, a phenomenon that can also occurs at repeats outside of centromeres (45). Heterochromatin occurs at centromeres but also at repeat-rich regions outside of centromeres in V. dahliae, thus the repeat-rich nature of centromeres is likely not sufficient to direct CenH3 deposition. In S. pombe heterochromatin formation is directed by short interfering RNAs (siRNA) derived from flanking repetitive elements via RNAi (69, 70), and RNAi and heterochromatin mediate CenH3 localization at centromeres $(71,72)$. RNAi is also important for centromere maintenance and evolution in Cryptococcus, as RNAi deficient species have smaller centromeres than RNAi proficient ones (16). Interestingly, centromere-specific elements (Tcnl-6) in RNAi proficient species are typically full-length elements while only remnants can be found in RNAi deficient species, which could be caused by recombination between elements (16). In Verticillium, centromere size differences correlate with increase of repeat content and the recruitment of VdLTRE9, which is highly fragmented and likely non-active. Furthermore, even though key components of the RNAi machinery exist in at least some Verticillium species (73), we know very little about its biological functions. Similarly, to C. neoformans, we observed no transcriptional activity of VdLTRE9 or any other repeat at centromeres, but it is unclear if this silencing is mediated by RNAi, is a consequence of their heterochromatic nature, is due to their fragmentation, or a combination of these. Ultimately, unravelling how specific elements contribute to centromere identify necessitates future experiments. VdLTRE9 occurs only in some Verticillium species and has likely been recruited to centromeres subsequent to the divergence of V. nubilum. Conversely, these observations raise further questions on the roles of repeats and mechanisms of centromeric identity in species without VdLTRE9. Repeats are important drivers of Verticillium genome evolution and function $(8,36)$, and here we highlight their contributions
to centromere diversity within the fungal genus Verticillium. Our analyses provide the framework for future research into the diversity or convergence of mechanisms establishing centromere identity and functioning in fungi.

MATERIAL \& METHODS

Construction of Verticillium dahliae transformants expressing FLAG-tagged CenH3

CenH3 and H3 homologs were identified in the predicted proteomes of V. dahliae strain JR2 (32) and selected other fungi through a BLAST sequence similarity search (blastp v2.9.0+; default settings, e-value cutoff 1e-20) $(74,75)$ using the N. crassa CenH3 (Q7RXR3) and H3 (P07041) sequences as queries. Missing homologs of CenH3 or H 3 were identified using manual BLAST (tblastn v2.9.0+; default settings) $(74,75)$ and exonerate (v2.2.0; default settings) (76) searches against the genome sequences. Protein sequences of selected $\mathrm{CenH3}$ and H 3 proteins were aligned using mafft (v7.271; default settings, LINSi) (77). A phylogenetic tree was inferred with maximum-likelihood methods implemented in IQ-tree (v1.6.11) (78) and robustness was assessed by 1,000 rapid bootstrap replicates.

To construct the N-terminally FLAG-tagged CenH3 strain of V. dahliae, a recombinant DNA fragment was constructed into the binary vector PRF-HU2 (79) or PRF-GU2 for homologous recombination. The CenH3 locus, from V. dahliae strain JR2, was amplified as 3 fragments with overlapping sequences (Table S1f). The 5 ' most fragment containing the promoter was amplified using primers $\mathrm{A}+\mathrm{B}$, the ORF with primers $\mathrm{C}+\mathrm{D}$, the Hyg promoter and ORF with primers E+F, and the 3 ' end of the CenH3 locus with primers $\mathrm{G}+\mathrm{H}$. The four fragments were combined by overlap PCR using primers A +H and cloned into a $P s p \mathrm{OMI}$ and $S p \mathrm{hI}$ linearized vector using Gibson Assembly. The vector construction was confirmed by Sanger sequencing. Vectors were transformed to Verticillium with Agrobacterium-mediated transformation (80). Correct homologous recombination and replacement at the CenH3 locus was verified by PCR amplification using primer I+J (Fig. S1b, Table S1f). Correct translation of the recombinant protein was assessed using Western analyses with anti-FLAG antibody (Fig. S1c). Briefly, proteins were extracted from 5-day old cultures grown in 100 ml Potato Dextrose Broth at $22^{\circ} \mathrm{C}$ with continuous shaking at 120 rpm . Mycelium was collected by straining over a double
layer of miracloth and subsequently snap-frozen in liquid nitrogen and ground with a mortar and pestle using liquid nitrogen. Approximately 0.3 g of ground mycelium was resuspended in 600 $\mu \mathrm{L}$ protein extraction buffer (50 mM HEPES $\mathrm{pH} 7.5,150 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ EDTA, 1% glycerol, 0.02% NP-40, 2 mM Phenylmethanesulfonyl fluoride (PMSF), $100 \mu \mathrm{M}$ Leupeptin, $1 \mu \mathrm{~g} / \mathrm{mL}$ Pepstatin), briefly vortexed, incubated on ice for 15 min and centrifuged at $4^{\circ} \mathrm{C}$ at $8,000 \mathrm{~g}$ for 3 min. The supernatant was collected by transferring $20 \mu \mathrm{~L}$ to a new tube to serve as the input control and the remaining $\sim 500 \mu \mathrm{~L}$ was transferred to a fresh microcentrifuge tube with $15 \mu \mathrm{~L}$ of Anti-FLAG M2 affinity gel (catalog number A2220, Sigma-Aldrich, St. Louis, Missouri, United States) and incubated while rotating at $4^{\circ} \mathrm{C}$ for 1 h . Samples were centrifuged at $5,000 \mathrm{~g}, 4^{\circ} \mathrm{C}$ for 3 min , after which the supernatant was discarded. Samples were washed with $500 \mu \mathrm{~L}$ of lysis buffer, and the centrifugation and washing were repeated three times. Protein was eluted from the resin by adding $15 \mu \mathrm{~L}$ of lysis buffer, $20 \mu \mathrm{~L}$ of 2 x Laemmli loading buffer (4\% SDS, 20\% glycerol, 0.004% bromophenol blue, 125 mM Tris HCL pH 6.8) and boiled at $95^{\circ} \mathrm{C}$ for 3 min . Protein samples were separated on a 12% polyacrylamide gel, and subsequently transferred to PVDF membranes, blocked in 5\% BSA, washed twice in TBST, and incubated with 1:3500 antiFLAG antibody (monoclonal anti-FLAG M2; Merck KGaA, Darmstadt, Germany).

Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq)

For each V. dahliae genotype, one million spores were added to 100 ml Potato Dextrose Broth and incubated for 7 days at $22^{\circ} \mathrm{C}$ with continuous shaking at 120 rpm . Mycelium was collected by straining over a double layer of miracloth and subsequently snap-frozen in liquid nitrogen and ground with a mortar and pestle using liquid nitrogen. All ground material (0.5-1 gram per sample) was resuspended in 4 mL ChIP Lysis buffer (50 mM HEPES-KOH pH7.5, 140 mM $\mathrm{NaCl}, 1 \mathrm{mM}$ EDTA, 1% Triton $\mathrm{X}-100,0.1 \% \mathrm{NaDOC}$) and dounced 40 times in a $10 \mathrm{~cm}^{3}$ glass tube with tightly fitting pestle on 800 power with a RZR50 homogenizer (Heidolph, Schwabach, Germany), followed by five rounds of 20 seconds sonication on ice with 40 seconds of resting in
between rounds with a Soniprep 150 (MSE, London, UK). Samples were redistributed to 2 mL tubes and pelleted for 2 min at maximum speed in a tabletop centrifuge. Supernatants were pooled per sample in a 15 mL tube together with $25 \mu \mathrm{~L} \alpha$-FLAG M2 magnetic beads (SigmaAldrich, St. Louis, Missouri, United States), incubated overnight at $4^{\circ} \mathrm{C}$ and continuous rotation. Beads were captured on a magnetic stand and washed with wash buffer (50 mM Tris $\mathrm{HCl} \mathrm{pH} 8,1$ mM EDTA, 1% Triton X-100, 100 mM NaCL), high-salt wash buffer (50 mM Tris $\mathrm{HCl} \mathrm{pH} 8,1$ mM EDTA, 1% Triton X-100, 350 mM NaCL), LiCl wash buffer (10 mM Tris $\mathrm{HCl} \mathrm{pH} 8,1 \mathrm{mM}$ EDTA, 0.5% Triton X-100, 250 mM LiCl), and TE buffer (10 mM Tris $\mathrm{HCl} \mathrm{pH} 8,1 \mathrm{mM}$ EDTA). Chromatin was eluted twice from beads by addition of $100 \mu \mathrm{~L}$ pre-heated TES buffer (100 mM Tris $\mathrm{HCl} \mathrm{pH} 8,1 \%$ SDS, 10 mM EDTA, 50 mM NaCl) and 10 minutes incubation at $65^{\circ} \mathrm{C} .10$ $\mathrm{mg} / \mathrm{mL} 2 \mu \mathrm{~L}$ Proteinase K was added and incubated at $65^{\circ} \mathrm{C}$ for 5 hours, followed chloroform extraction. DNA was precipitated by addition of 2 volumes 100% ethanol, $1 / 10^{\text {th }}$ volume 3 M NaOAc pH 5.2 and $1 / 200^{\text {th }}$ volume $20 \mathrm{mg} / \mathrm{mL}$ glycogen, and overnight incubation at $-20^{\circ} \mathrm{C}$.

Sequencing libraries were prepared using the TruSeq ChIP Library Preparation Kit (Illumina, city, country) according to the manufacterer's instructions, but without gel purification and with use of the Velocity DNA Polymerase (BioLine, Luckenwalde, Germany) for 12 cycles of amplification for the FLAG-CenH3. H3K4me2 ChIP was performed as described previously (36), using an α-H3K4me2 antibody (\#39913, ActiveMotif; Carlsbad, California, United States). Single-end (125 bp) sequencing was performed on the Illumina HiSeq2500 platform at KeyGene N.V. (Wageningen, the Netherlands).

Chromatin confirmation capturing followed by high-throughput sequencing (Hi-C)

We determined the inter- and intra-chromosomal contact frequencies using Hi-C in V. dahliae strains CQ2, JR2, and VdLs17, as well as in V. albo-atrum strain PD747, V. alfalfae strain PD683, V. isaacii strain PD618, V. klebahnii strain PD401, V. longisporum strain PD589, V.
nonalfalfae strain T2, V. nubilum strain 397, V. tricorpus strain PD593, and V. zaregamsianum strain PD739. For each strain, one million spores were added to 400 mL Potato Dextrose Broth and incubated for 6 days at $22^{\circ} \mathrm{C}$ with continuous shaking at 120 rpm . Mycelium was collected by straining over double layer miracloth and 300 mg (fresh weight) was used as input for generating Hi-C sequencing libraries with the Proximo Hi-C kit (Microbe) (Phase Genomics, Seattle, WA, USA), according to manufacturer's instructions. Hi-C sequencing libraries of V. dahliae strains CQ2, JR2. and VdLs17 were paired end ($2 \times 125 \mathrm{bp}$) sequenced on the Illumina HiSeq2500 platform at KeyGene N.V. (Wageningen, the Netherlands). Hi-C sequencing libraries of the other Verticillium species were paired-end (2 x 150 bp) sequenced on the NextSeq500 platform at USEQ (Utrecht, the Netherlands).

In vitro transcriptome profiling using RNA-seq

RNA sequencing of V. albo-atrum strain PD747, V. isaacii strain PD618, V. klebahnii strain PD401, V. longisporum strain PD589, V. nonalfalfae strain T2, V. nubilum strain 397, V. tricorpus strain PD593, and V. zaregamsianum strain PD739 as described previously (36). Singleend (50 bp) sequencing was performed on the BGISeq500 platform at BGI (BGI Hong Kong).

Analyses of high-throughput sequencing data

High-throughput sequencing libraries (Table S1a) have been analyzed as follows: Illumina reads were quality-filtered and trimmed using trimmomatic (version 0.36) (81). Sequencing reads were trimmed and filtered by removing Illumina TruSeq sequencing adapters (settings seed mismatches 2, palindrome clip threshold 30, and simple clip threshold 10), removal of lowquality leading or trailing bases below quality 5 and 10 , respectively, and 4 -base sliding window trimming and cutting when average quality per base dropped below 15. Additionally, filtered and trimmed reads < 90 nt were removed from further analyses. Filtered and trimmed reads were mapped to the corresponding genome assembly with Bowtie2 (default settings) (82), and mapping
files were converted to bam-format using samtools (v 1.8) (83). Genomic coverage was determined using deepTools (v3.4.1; bamCoverage) (84) by extending sequencing reads to 147 bp followed by RPGC normalization with a bin-size of $1,000 \mathrm{bp}$ and smoothening of $3,000 \mathrm{bp}$. To assess between sample variability, we used deepTools (v3.4.1, plotPCA) (84) to generate principle component analyses. Furthermore, we employed deepTools (v3.4.1, multiBigwigSummary) (84) to summarize genomic coverages of over genes, repetitive elements, and genomic windows (5 kb windows with 500 bp slide). Genomic regions enriched for FLAGCenH3 were identified using MACS2 (v2.1.1) (broad peak option; broad cutoff 0.0025) (85).

To determine DNA (cytosine) methylation, we utilized sequencing data of bisulfite treated genomic DNA previously generated for V. dahliae strain JR2 (36). Sequencing reads were mapped to the V. dahliae strain JR2 genome assembly as previously described (36). Subsequently, the number of reads supporting cytosine methylation in CG-context were extracted, and weighted CG-methylation levels were calculated over genes, repetitive elements, and genomic windows (5 kb window size with 500 bp slide) (86); weighted CG-methylation was defined as the sum of reads supporting cytosine methylations divided by the sum of all reads occurring at all CG sites in the respective regions. Sites with less than four reads were not considered.

To improve the genome assemblies of the Verticillium species, we mapped Hi-C sequencing reads to genome assemblies of V. dahliae strain CQ2, V. albo-atrum strain PD747, V. alfalfae strain PD683, V. isaacii strain PD618, V. klebahnii strain PD401, V. longisporum strain PD589, V. nonalfalfae strain T2, V. nubilum strain 397, V. tricorpus strain PD593, and V. zaregamsianum strain PD739 using Juicer (v1.6) with early stage setting (87). The contact matrices generated by juicer were used by the 3D de novo assembly (3D-DNA) pipeline (88) (v180922) with a contig size threshold of 1000bp to eliminate mis-joints in the previous assemblies and to generate improved assemblies. The genome assemblies were manually
improved using Juicebox Assembly Tools (JBAT) (v1.11.08) (89) and improved genome assemblies were generated using the 3D-DNA post-review asm pipeline (88). Centromere locations were determined using a 1 kb-resolution contact matrix in JBAT, by identifying a region per chromosome that displays strong inter-chromosomal interactions, yet weak intrachromosomal interactions (see Figure S12, S13).

To assess potential repeat collapses during genome assemblies at centromeric regions, we mapped previously generated short-read data V. dahliae strain JR2 and VdLs17, V. albo-atrum strain PD747, V. alfalfae strain PD683, V. isaacii strain PD618, V. klebahnii strain PD401, V. longisporum strain PD589, Verticillium nonalfalfae strain T2, V. tricorpus strain PD593, and V. zaregamsianum strain PD739 $(39,40,90,91)$ to the genome assemblies using BWA (v0.7.17; mem) (83). We first used bedtools (v2.29.2) (92) to identify few genomic regions with > 500x coverage. We then applied deepTools (v3.4.1, computeGCBias) (84) to compute GC biases of read depth across the genome, excluding the identified high coverage regions, and used deepTools (v3.4.1, correctGCBias) (84) to correct GC biases, which addresses known biases in sequencing library preparation to ensure even read coverage throughout the genome irrespective of their base composition (93). We used deepTools (v3.4.1, bamCoverage, bins 50 bp , CPM normalization) (84) to obtain the read coverage throughout the genome, excluding regions containing sequence assembly gaps (Ns). Assuming that collapsed repeats would lead to a local increase in read depth, we used the ratio of the average read coverage at the centromeres and outside of the centromere at each chromosome to correct the inferred centromere sizes. To further validate the genome assembly of regions identified as centromeres of V. dahliae strain JR2, the genome assembly was compared to the previously generated optical map (35) using MapSolver (v 3.2; OpGen, Gaithersburg, MD).

The transcriptional activity for genes and repetitive elements in V. dahliae strain JR2 was assessed in vitro (in Potato Dextrose Broth) using previously generated deep transcriptome
datasets (36). To this end, single-end sequencing reads of three biological replicates were mapped to the V. dahliae strain JR2 genome assembly (32) using STAR (v2.4.2a; max. intron size 1 kb and outFilterMismatchNmax to 5) (94). The resulting mapped reads were summarized per genomic feature (gene or repeat) using summarizeOverlaps (95), converted to counts per million (cpm) mapped reads, and averaged over the three biological replicates.

Sequence analyses of Verticillium genome assemblies, centromeres, repeat and gene content

Repetitive elements in the genomes of V. dahliae strains JR2, VdLs17 and CQ2 $(32,33)$ were identified as previously described (36). Briefly, repetitive elements were identified in each genome independently using a combination of LTRharvest (96) and LTRdigest (97) followed by identification of RepeatModeler. Identified repeats in the different V. dahliae strains were clustered into a non-redundant library that contained consensus sequences for each repeat family. The repeat library was manually curated and annotated using PASTEC (98) or by sequence similarity to previously identified and characterized repeat families (32, 44). Genome-wide occurrences of repeat families were determined using RepeatMasker (v 4.0.9; sensitive option and cutoff 250), and the output was postprocessed using 'One code to find then all' (99). We only considered matches to the repeat consensus library, and thereby excluded simple repeats and lowcomplexity regions.

De novo gene and repeat annotation for the Hi-C-improved Verticillium genome assemblies, and for V. dahliae strains JR2 and VdLs17 as a comparison was performed using the funannotate pipeline (100). Briefly, repetitive elements were first de novo identified using RepeatModeler and masked for gene prediction using RepeatMasker. Subsequently, gene prediction parameters were estimated using in vitro RNA-seq data (see above for details; exception: V. alfalfae for which no RNA-seq data was available, V. nonalfalfae for which publicly available RNA-seq data was used (90), and V. dahliae strain JR2 for which in addition to
the in vitro RNA-seq data generated in this study, also previously generated in vitro (xylem sap and half-MS; (36)) as well as long-read nanopore cDNA data (101) was used). Based on the gene prediction parameters, gene prediction was performed with funannotate using a combination of $a b$ initio gene predictors, consensus predictions were obtained using Evidencemodeler (v1.1.1) (102), and gene predictions were adjusted using information from the RNA-seq data. Repeat annotation for each genome assembly was based on the de novo repeat family consensus sequences obtained with funannotate. Genome-wide occurrences of these repeat families as well as previously defined repeat families for V. dahliae (see above) were determined using RepeatMasker (v 4.0.9; sensitive option and cutoff 250), and the output was postprocessed using 'One code to find then all' (99). De novo repeat families overlapping with centromeres in the different species were clustered using BLASTClust (v2.2.26; parameter '-S $60-\mathrm{L} 0.55$-b F -p F'), and subsequently visualized using Cytoscape (v.3.8.0) (103). Next to RepeatMasker, genomewide occurrences of the previously determined VdLTRE9 $(32,36)$ were identified by BLAST searches (blastn v2.9.0+; e-value cutoff 1e-5, no soft-masking and dust, fixed database size 10e6) (74, 75), and similarity between VdLTRE9 consensus sequences and the de novo predicted repeat families was established using BLAST (blastn, e-value cutoff 1e-5, query coverage > 50%, no soft-masking and dust, fixed database size 10e6).

Repeat and gene density (V. dahliae strain JR2 and VdLs17 based on previous gene annotation (101)), GC-content, and composite RIP index were calculated along the genome sequence using sliding windows (5 kb window with 500 bp slide). The composite RIP index (CRI) was calculated according to Lewis et al. (45). CRI was determined by subtracting the RIP substrate from the RIP product index, which are defined by dinucleotide frequencies as follows: RIP product index $=\mathrm{TpA} / \mathrm{ApT}$ and the RIP substrate index $=(\mathrm{CpA}+\mathrm{TpG}) /(\mathrm{ApC}+\mathrm{GpT})$. Overlaps between different genomic features (for example repetitive elements over centromeric
regions) was assessed using bedtools (v2.29.2) (92). Genome-wide data was visualized using R (104) with the packages ggplot2 (105), karyplotR (106), or Gviz (107), as well as EasyFig (108).

Whole-genome alignments between V. dahliae strains JR2, VdLs17, and CQ2 were performed using NUCmer, which is part of the MUMmer package (v 3.1; --maxmatch) (109). To remove short matches, we only considered alignments longer than 10 kb . Ancestral genome configurations were reconstructed using AnChro (56). We first determined the synteny relationships between all possible pairs of haploid Verticillium genomes and two outgroup genomes (Plectosphaerella cucumerina and Sodiomyces alkalinus) using SynChro with synteny block stringency (delta parameter) ranging from 2-5 (110). We then obtained all ancestors by calculating all possible pairs of genomes (G1 and G2) and outgroups (G3,.., G_{n}) and by varying the delta' (G1 and G2 comparisons) and delta'" (G1/G3..G1/G G_{n} and $\mathrm{G} 2 / \mathrm{G} 3 . . \mathrm{G} 2 / \mathrm{G}_{\mathrm{n}}$ comparisons) parameters for AnChro. We additionally reconstructed all ancestors starting from the extent genomes in a sequential approach with multiple successive cycles of SynChro and AnChro (delta parameters varied between 2-5). For each ancestor, we chose the optimal reconstructed by the delta parameter combination (delta' and delta'') that minimizes the number of reconstructed chromosomes and rearrangements and at the same time maximizes the number of genes, both guided by the most commonly observed number of chromosomes and genes in all rearrangements. We obtained the number of large-scale rearrangements between reconstructed ancestral genomes and the extent Verticillium genomes using ReChro with a delta parameter of 1 (56). The relationship between chromosomes of the reconstructed ancestors and the extent species in relationship to the common ancestor is generated with SynChro with a delta parameter of 1 (110). A species phylogeny that uses synteny relationships computed by SynChro (see above) as informative character between the Verticillium genomes and the outgroup genomes was reconstructed using PhyChro (111).

Data availability

ChIP-seq and Hi-C data were submitted to the Short Read Archive (SRA) under the accession PRJNA641329 (Table S1a).

ACKNOWLEDGMENTS

Work in the laboratories of M.F.S and B.P.H.J.T. is supported by the Research Council Earth and Life Sciences (ALW) of the Netherlands Organization of Scientific Research (NWO). Furthermore, B.P.H.J.T. would like to acknowledge the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - EXC 2048/1 - Project ID: 390686111. This work was supported in part by a European Molecular Biology Organization postdoctoral fellowship (EMBO, ALTF 969-2013) and Human Frontier Science Program Postdoctoral Fellowship (HFSP, LT000627/2014-L) to D.E.C. A portion of the work was also carried out in the laboratory of D.E.C. under USDA-NIFA-PBI grant 2018-67013-28492. We thank Utrecht Sequencing Facility for providing sequencing service and data. Utrecht Sequencing Facility is subsidized by the University Medical Center Utrecht, Hubrecht Institute, Utrecht University, and The Netherlands X-omics Initiative (NWO project 184.034.019).

SUPPLEMENTARY MATERIAL

Figure S1 - (a) Phylogenetic analyses of the canonical H3 and the centromeric-specific CenH3 in Verticillium dahliae (strain JR2) and other fungal genomes. (b-c) Transformation of the coding sequence of N-terminally FLAG-tagged CenH3 directed by its native promoter at the CenH 3 locus in Verticillium dahliae strain JR2. (b) Correct homologous recombination and replacement at the $\mathrm{CenH3}$ locus was verified by PCR amplification was assessed using PCR and (c) Correct translation of the recombinant protein was assessed using Western Blot analyses with anti-FLAG antibody. (d) Sequencing read coverage (RPGC normalization in 1 kb bins with 3 kb smoothening) from ChIP-seq experiments using FLAG-tag antibodies on two independent transformants of Verticillium dahliae strain JR2 that express FLAG-tagged CenH3 and the wildtype strain are mapped to the eight chromosomes of V. dahliae strain JR2 (32). Gene (red) and repeat (blue) density are shown below each chromosome. (e) Principal component analysis of the four FLAG-tag ChIP-seq samples (two wild-type and two CenH3-FLGA). (f) Comparison of the centromeric regions with the identified centromeres highlighted as blue block in the genome assembly of Verticillium dahliae strain JR2 with a previously generated optical map (35). Vertical lines display corresponding (in silico) restriction sites and their alignment.

Figure S2 - Schematic overview of the eight chromosomes of Verticillium dahliae strain JR2 displaying different heterochromatin-associated chromatin modifications ($\mathrm{mC}, \mathrm{H} 3 \mathrm{~K} 9 \mathrm{me}$, and H3K27me3) in relation to the centromeres. The different lanes display the CenH3-FLAG ChIPseq read coverage (RPGC normalization in 1 kb bins with 3 kb smoothening), the repeat-density, the GC-content, the CRI as well as the weighted cytosine methylation (all summarized in 5 kb windows with 500 bp slide), and the normalized H3K9me3 and H3K27me3 ChIP-seq read coverage (RPGC normalization in 1 kb bins with 3 kb smoothening).

Figure S3-(a) Boxplot displaying the composite RIP index (CRI) of C to T in CA recorded in genomic windows (5 kb , 500 bp slide), per gene, per annotated repeat, and per window overlapping with the CenH3-enriched centromeres. Statistical differences for the indicated comparisons were calculated using the one-sided non-parametric Mann-Whitney test; p-values < 0.001: ***. (b) Summary of H3K4me2 (green), H3K9me3 (red), and H3K27me3 (orange) normalized ChIP-seq read coverage (RPGC normalization in 1 kb bins and 3 kb smoothening) in genomic bins (2.5\%) across the chromosomal arms of the eight chromosomes of Verticillium dahliae strain JR2 (divided into 2.5\% bins) and the centromeric regions (divided into 10% bins). The dots indicate the average ChIP-seq coverage and the whiskers indicate ± 1.5 times the interquartile range. (c-e) Boxplots displaying the (c) weighted methylation levels (CG context), (d) the composite RIP index, and (e) the expression in PDB growth medium (counts per million) for repetitive elements belonging to ten repeat families identified in the eight centromeres in Verticillium dahliae JR2.

Figure S4 (a-c) Whole-genome alignments between the eight chromosomes of (a) Verticillium dahliae strains JR2 and VdLs17 (32), (b) V. dahliae strains CQ2 and JR2 (32, 33), and (c) V. dahliae strains CQ2 and VdLs17 (32, 33). (d-e) Schematic overview of the genome assemblies of Verticillium dahliae strains (d) VdLs17 and (e) CQ2. The individual lanes show the GC content, the gene (red) and repeat (blue) density (all summarized in 5 kb windows with 500 bp slide), and the location of the centromere associated VdLTRE9. (f) Synteny analyses of the eight chromosomes of V. dahliae strains JR2 and CQ2. Schematic overview of the eight chromosomes of V. dahliae strain JR2 (left) and the corresponding syntenic regions in V. dahliae strains CQ2 (right). Centromeres are indicated by stars, and syntenic centromeres of V. dahliae strain CQ2 are colored according to Cen1-8 of V. dahliae strain JR2.

Figure S5- Hi-C contact matrix showing the interaction frequencies between genomic regions in (a) V. nonalfalfae (T2), (b) V. alfalfae (PD683), (c) the allodiploid V. longisporum (PD589), (d)
V. nubilum (397), (e) V. albo-atrum (PD747), (f) V. zaregamsianum (PD739), (g) V. tricorpus (PD593), (h) V. klebhanii (PD401), and (i) V. isaacii (PD618). Regions of high interchromosomal interaction frequencies are indicative of centromeres and are highlighted by arrow heads, and the blue line indicated boundaries between the pseudo-chromosomes.

Figure S6 - (a-b) Comparison of normalized read coverage and corrected centromere lengths for Verticillium species for which short-read data is available. (a) Counts per million mapped reads (CPM) normalized read coverage was calculated for GC-biased corrected short-read libraries in 50 bp genomic windows, excluding regions containing assembly gaps (Ns). Genomic windows are summarized in boxplots (outliers not shown) by genomic location, centromeric regions (Cen, blue) and non-centromeric regions (non-Cen, grey). (b) Centromeric lengths inferred by Hi-C data were 'corrected' based on the ratio of normalized read depth between centromeres and noncentromeric regions per chromosomes. Differences for each species compared to the overall mean were computed using unpaired T-tests; p-values < 0.0001: ${ }^{* * * *}$, p-values < 0.001: ${ }^{* * *}$, p-values < 0.01: **, p-values < 0.05: *. (c) The number of BLASTn matches of the VdLTRE9 consensus element to the genomes of the Verticillium species separated by their genomic location, centromeric regions (Cen, blue) and non-centromeric regions (non-Cen, grey). The overall number of base pairs (bp) covered by the BLASTn matches in each genome sequence is indicated. The asterisk denotes the high number of VdLTRE9 matches to unassigned, non-Cen regions in the genome assembly of Verticillium nonalfalfae (T2). (d) The number of repetitive element matches identified by RepeatMasker for each Verticillium species based on species/strain-specific repeat libraries generated by RepeatModeler separated by their genomic location, centromeric regions (Cen, blue) and non-centromeric regions (non-Cen, grey). (e) GCcontent of the Verticillium genomes in 50 bp windows and separated by their genomic location, centromeric regions (Cen, blue) and non-centromeric regions (non-Cen, grey). (§) The repeat
content of centromeric regions in percent covered sequences in the different Verticillium species. Each data point summarized in the boxplot is the repeat content per centromere.

Figure S7 - Schematic overview of the centromeric regions (250 kb) in (a) Verticillium dahliae strain JR2, in (b) species belonging to clade Flavnonexudans, and in (c) species belonging clade Flavexudans. The centromeres are indicated by dark grey bars. The predicted genes (black) and repeats (blue) are shown below each centromere, and location of VdLTRE9 (partial) matches (light green) are shown above each centromere. Repeats that share sequence similarity (BLASTn) to the VdLTRE9 consensus sequence are shown above each centromere (dark green).

Figure S8 - Sequence comparisons of de novo repeat families identified with RepeatModeler and RepeatMasker in the genome assemblies of the different Verticillium species. Individual repeat family consensus sequences were clustered using BLASTClust. (a) Relationships between different repeat family consensus sequences are displayed as connected graphs. The sub-graph with the consensus sequences with similarity to VdLTRE9 is highlighted in yellow. (b) The presence/absence matrix indicates the occurrences of different repeat families in the analyzed Verticillium species (black present, white absent). The cluster containing consensus sequences with similarity to VdLTRE9 is highlighted.

Figure S9 - Reconstruction of ancestral genomes within the genus Verticillium with AnChro (56). The number of (a) chromosomes and (b) genes predicted by all potential ancestral reconstructions using different combinations of genomes and stringency parameters. The phylogenetic tree in (a) depicts the relationships between Verticillium species and the abbreviations used for the ancestors. The inlays display boxplots to summarize the number of (a) chromosomes and (b) genes per ancestral reconstruction. (c) The number of chromosomes and genes of the chosen 'optimal' reconstruction for each of the internal ancestors. (d) The number of genes per chromosome for each of the reconstructed ancestor and the extant Verticillium species. The star highlights the reconstruction for the B1 ancestor that had ten chromosomes, but with two
chromosomes with six and two genes. (e) Reconstruction of the Verticillium species phylogeny based on synteny relationship using PhyChro (111).

Table S1 - (a) Overview of the different Verticillium sequencing libraries used in this study. (b) Position of the individual centromeric regions inferred by Hi-C inter-chromosomal interaction frequencies and the overlap (in kb) with CenH3-enriched regions and the centromere associated VdLTRE9 in Verticillium dahliae JR2, VdLs17, and CQ2. (c) Overview of the different Verticillium genomes assembled using Hi-C interactions. (d) Position, length, and number of assembly gaps (Ns) of the individual centromeric regions inferred by Hi-C inter-chromosomal interaction in Verticillium nonalfalfae (T2), Verticillium alfalfae (PD683), the allodiploid Verticillium longisporum (PD589), Verticillium nubilum (397),Verticillium albo-atrum (PD747), Verticillium zaregamsianum (PD739), Verticillium tricorpus (PD593), Verticillium klebhanii (PD401), and Verticillium isaacii (PD618). (e) The number of de novo repeat consensus sequences identified within and outside of centromeric regions in the Verticillium species. Only consensus elements with >5 matches in centromeric regions are displayed. Note that the consensus names between species/strains are not comparable. (f) The primers used for cloning the CenH3 FLAG tag in Verticillium dahliae strain JR2

REFERENCES

1. Roy B, Sanyal K. 2011. Diversity in requirement of genetic and epigenetic factors for centromere function in fungi. Eukaryotic cell 10:1384-1395.
2. Foley EA, Kapoor TM. 2013. Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nature reviews Molecular cell biology 14:25-37.
3. Burrack LS, Berman J. 2012. Flexibility of centromere and kinetochore structures. Trends in Genetics 28:204-212.
4. Janssen A, van der Burg M, Szuhai K, Kops GJPL, Medema RH. 2011. Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science (New York, NY) 333:1895-1898.
5. Sheltzer JM, Blank HM, Pfau SJ, Tange Y, George BM, Humpton TJ, Brito IL, Hiraoka Y, Niwa O, Amon A. 2011. Aneuploidy drives genomic instability in yeast. Science (New York, NY) 333:1026-1030.
6. Barra V, Fachinetti D. 2018. The dark side of centromeres: Types, causes and consequences of structural abnormalities implicating centromeric DNA. Nature Communications 9:4340.
7. Seidl MF, Thomma BPHJ. 2014. Sex or no sex: Evolutionary adaptation occurs regardless. BioEssays 36:335-345.
8. Faino L, Seidl MF, Shi-Kunne X, Pauper M, van den Berg GCM, Wittenberg AHJ, Thomma BPHJ. 2016. Transposons passively and actively contribute to evolution of the twospeed genome of a fungal pathogen. Genome Research 26:1091-1100.
9. Rancati G, Pavelka N, Fleharty B, Noll A, Trimble R, Walton K, Perera A, StaehlingHampton K, Seidel CW, Li R. 2008. Aneuploidy underlies rapid adaptive evolution of yeast cells deprived of a conserved cytokinesis motor. Cell 135:879-893.
10. Pavelka N, Rancati G, Zhu J, Bradford WD, Saraf A, Florens L, Sanderson BW, Hattem GL, Li R. 2010. Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast. Nature 468:321-325.
11. Sankaranarayanan SR, Ianiri G, Coelho MA, Reza MH, Thimmappa BC, Ganguly P, Vadnala RN, Sun S, Siddharthan R, Tellgren-Roth C, Dawson TLJ, Heitman J, Sanyal K. 2020. Loss of centromere function drives karyotype evolution in closely related Malassezia species. Elife 9.
12. Ola M, O'Brien CE, Coughlan AY, Ma Q, Donovan PD, Wolfe KH, Butler G. 2020. Polymorphic centromere locations in the pathogenic yeast Candida parapsilosis. bioRxiv doi:10.1101/2020.04.09.034512:2020.04.09.034512.
13. Yadav V, Sreekumar L, Guin K, Sanyal K. 2018. Five pillars of centromeric chromatin in fungal pathogens. PLoS pathogens 14:e1007150.
14. Henikoff S, Ahmad K, Malik HS. 2001. The centromere paradox: Stable inheritance with rapidly evolving DNA. Science 293:1098-102.
15. Smith KM, Galazka JM, Phatale PA, Connolly LR, Freitag M. 2012. Centromeres of filamentous fungi. Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology 20:635-656.
16. Yadav V, Sun S, Billmyre RB, Thimmappa BC, Shea T, Lintner R, Bakkeren G, Cuomo CA, Heitman J, Sanyal K. 2018. RNAi is a critical determinant of centromere evolution in closely related fungi. Proceedings of the National Academy of Sciences of the United States of America 115:3108-3113.
17. Fitzgerald-Hayes M, Clarke L, Carbon J. 1982. Nucleotide sequence comparisons and functional analysis of yeast centromere DNAs. Cell 29:235-244.
18. Furuyama S, Biggins S. 2007. Centromere identity is specified by a single centromeric nucleosome in budding yeast. Proceedings of the National Academy of Sciences of the United States of America 104:14706-14711.
19. Krassovsky K, Henikoff JG, Henikoff S. 2012. Tripartite organization of centromeric chromatin in budding yeast. Proceedings of the National Academy of Sciences of the United States of America 109:243-248.
20. Cliften PF, Fulton RS, Wilson RK, Johnston M. 2006. After the duplication: gene loss and adaptation in Saccharomyces genomes. Genetics 172:863-872.
21. Baum M, Sanyal K, Mishra PK, Thaler N, Carbon J. 2006. Formation of functional centromeric chromatin is specified epigenetically in Candida albicans. Proceedings of the National Academy of Sciences of the United States of America 103:14877-14882.
22. Padmanabhan S, Thakur J, Siddharthan R, Sanyal K. 2008. Rapid evolution of Cse4p-rich centromeric DNA sequences in closely related pathogenic yeasts, Candida albicans and Candida dubliniensis. Proceedings of the National Academy of Sciences of the United States of America 105:19797-19802.
23. Sanyal K, Baum M, Carbon J. 2004. Centromeric DNA sequences in the pathogenic yeast Candida albicans are all different and unique. Proceedings of the National Academy of Sciences of the United States of America 101:11374-11379.
24. Cambareri EB, Aisner R, Carbon J. 1998. Structure of the chromosome VII centromere region in Neurospora crassa: degenerate transposons and simple repeats. Molecular and cellular biology 18:5465-5477.
25. Smith KM, Phatale PA, Sullivan CM, Pomraning KR, Freitag M. 2011. Heterochromatin is required for normal distribution of Neurospora crassa CenH3. Molecular and cellular biology 31:2528-2542.
26. Selker EU. 2002. Repeat-induced gene silencing in fungi. Advances in genetics 46:439450.
27. Schotanus K, Soyer JL, Connolly LR, Grandaubert J, Happel P, Smith KM, Freitag M, Stukenbrock EH. 2015. Histone modifications rather than the novel regional centromeres of Zymoseptoria tritici distinguish core and accessory chromosomes. Epigenetics \& Chromatin 8:41.
28. Thomma BPHJ, Seidl MF, Shi-Kunne X, Cook DE, Bolton MD, van Kan JAL, Faino L. 2016. Mind the gap; Seven reasons to close fragmented genome assemblies. Fungal Genetics and Biology 90:24-30.
29. Yadav V, Yang F, Reza MH, Liu S, Valent B, Sanyal K, Naqvi NI. 2019. Cellular dynamics and genomic identity of centromeres in cereal blast fungus. mBio 10 .
30. Fang Y, Coelho MA, Shu H, Schotanus K, Thimmappa BC, Yadav V, Chen H, Malc EP, Wang J, Mieczkowski PA, Kronmiller B, Tyler BM, Sanyal K, Dong S, Nowrousian M, Heitman
J. 2020. Long transposon-rich centromeres in an oomycete reveal divergence of centromere features in Stramenopila-Alveolata-Rhizaria lineages. PLoS Genetics 16:e1008646.
31. Navarro-Mendoza MI, Perez-Arques C, Panchal S, Nicolas FE, Mondo SJ, Ganguly P, Pangilinan J, Grigoriev IV, Heitman J, Sanyal K, Garre V. 2019. Early diverging fungus Mucor circinelloides lacks centromeric histone CENP-A and displays a mosaic of point and regional centromeres. Current Biology 29:3791-3802 e6.
32. Faino L, Seidl MF, Datema E, van den Berg GCM, Janssen A, Wittenberg AHJ, Thomma BPHJ. 2015. Single-Molecule Real-Time sequencing combined with optical mapping yields completely finished fungal genome. mBio 6:e00936-15.
33. Depotter JRL, Shi-Kunne X, Missonnier H, Liu T, Faino L, van den Berg GCM, Wood TA, Zhang B, Jacques A, Seidl MF, Thomma BPHJ. 2019. Dynamic virulence-related regions of the plant pathogenic fungus Verticillium dahliae display enhanced sequence conservation. Molecular Ecology 28:3482-3495.
34. de Jonge R, van Esse PH, Maruthachalam K, Bolton MD, Santhanam P, Saber MK, Zhang Z, Usami T, Lievens B, Subbarao KV, Thomma BPHJ. 2012. Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing. Proceedings of the National Academy of Sciences of the United States of America 109:5110-5115.
35. de Jonge R, Bolton MD, Kombrink A, van den Berg GCM, Yadeta KA, Thomma BPHJ. 2013. Extensive chromosomal reshuffling drives evolution of virulence in an asexual pathogen. Genome research 23:1271-1282.
36. Cook DE, Kramer M, Seidl MF, Thomma BP. 2020. Chromatin features define adaptive genomic regions in a fungal plant pathogen. bioRxiv doi:10.1101/2020.01.27.921486:2020.01.27.921486.
37. Inderbitzin P, Bostock RM, Davis RM, Usami T, Platt HW, Subbarao KV. 2011. Phylogenetics and taxonomy of the fungal vascular wilt pathogen Verticillium, with the descriptions of five new species. PloS one 6:e28341.
38. Inderbitzin P, Davis RM, Bostock RM, Subbarao KV. 2011. The ascomycete Verticillium longisporum is a hybrid and a plant pathogen with an expanded host range. PloS one 6:e18260.
39. Depotter JRL, Beveren Fv, Rodriguez-Moreno L, van den Berg GCM, Wood TA, Thomma BPHJ, Seidl MF. 2018. Homogenization of sub-genome secretome gene expression patterns in the allodiploid fungus Verticillium longisporum. bioRxiv:341636.
40. Shi-Kunne X, Faino L, van den Berg GCM, Thomma BPHJ, Seidl MF. 2018. Evolution within the fungal genus Verticillium is characterized by chromosomal rearrangement and gene loss. Environmental Microbiology 20:1362-1373.
41. Depotter JRL, Seidl MF, van den Berg GCM, Thomma BPHJ, Wood TA. 2017. A distinct and genetically diverse lineage of the hybrid fungal pathogen Verticillium longisporum population causes stem striping in British oilseed rape. Environmental Microbiology 19:39974009.
42. Moeller M, Habig M, Lorrain C, Feurtey A, Haueisen J, Fagundes WC, Alizadeh A, Freitag M, Stukenbrock EH. 2020. Recent loss of the Dim2 cytosine DNA methyltransferase impacts mutation rate and evolution in a fungal plant pathogen. bioRxiv doi:10.1101/2020.03.27.012203:2020.03.27.012203.
43. Klosterman SJ, Subbarao KV, Kang S, Veronese P, Gold SE, Thomma BPHJ, Chen Z, Henrissat B, Lee Y-H, Park J, Garcia-Pedrajas MD, Barbara DJ, Anchieta A, de Jonge R, Santhanam P, Maruthachalam K, Atallah Z, Amyotte SG, Paz Z, Inderbitzin P, Hayes RJ, Heiman DI, Young S, Zeng Q, Engels R, Galagan J, Cuomo CA, Dobinson KF, Ma L-J. 2011. Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens. PLoS pathogens 7:e1002137.
44. Amyotte SG, Tan X, Pennerman K, del Mar Jimenez-Gasco M, Klosterman SJ, Ma L-J, Dobinson KF, Veronese P. 2012. Transposable elements in phytopathogenic Verticillium spp.: insights into genome evolution and inter- and intra-specific diversification. BMC genomics 13:314.
45. Lewis ZA, Honda S, Khlafallah TK, Jeffress JK, Freitag M, Mohn F, Schubeler D, Selker EU. 2009. Relics of repeat-induced point mutation direct heterochromatin formation in Neurospora crassa. Genome Research 19:427-437.
46. Liu S-Y, Lin J-Q, Wu H-L, Wang C-C, Huang S-J, Luo Y-F, Sun J-H, Zhou J-X, Yan SJ, He J-G, Wang J, He Z-M. 2012. Bisulfite sequencing reveals that Aspergillus flavus holds a hollow in DNA methylation. PloS one 7:e30349.
47. Seymour M, Ji L, Santos AM, Kamei M, Sasaki T, Basenko EY, Schmitz RJ, Zhang X, Lewis ZA. 2016. Histone H1 Limits DNA Methylation in Neurospora crassa. G3 6:1879-1889.
48. Kursel LE, Malik HS. 2016. Centromeres. Current Biology 26:R487-R490.
49. Friedman S, Freitag M. 2017. Evolving centromeres and kinetochores. Advances in Genetics 98:1-41.
50. Flutre T, Duprat E, Feuillet C, Quesneville H. 2011. Considering transposable element diversification in de novo annotation approaches. PloS one 6:e16526.
51. Galazka JM, Klocko AD, Uesake M, Honda S, Selker EU, Freitag M. 2016. Neurospora chromosomes are organized by blocs of importin alpha-dependent heterochromatin that are largely independent of H3K9me3. Genome research doi:10.1101/gr.203182.115:gr.203182.115.
52. Winter DJ, Ganley ARD, Young CA, Liachko I, Schardl CL, Dupont P-y, Berry D, Ram A, Scott B, Cox MP. 2018. Repeat elements organise 3D genome structure and mediate transcription in the filamentous fungus Epichloë festucae. PLoS Genetics 14:e1007467.
53. Marie-Nelly H, Marbouty M, Cournac A, Flot J-F, Liti G, Parodi DP, Syan S, Guillén N, Margeot A, Zimmer C, Koszul R. 2014. High-quality genome (re)assembly using chromosomal contact data. Nature Communications 5:5695.
54. Mizuguchi T, Fudenberg G, Mehta S, Belton J-M, Taneja N, Folco HD, FitzGerald P, Dekker J, Mirny L, Barrowman J, Grewal SIS. 2014. Cohesin-dependent globules and heterochromatin shape 3D genome architecture in S. pombe. Nature 516:432-435.
55. Varoquaux N, Liachko I, Ay F, Burton JN, Shendure J, Dunham MJ, Vert J-P, Noble WS. 2015. Accurate identification of centromere locations in yeast genomes using Hi-C. Nucleic Acids Research 43:5331-5339.
56. Vakirlis N, Sarilar V, Drillon G, Fleiss A, Agier N, Meyniel JP, Blanpain L, Carbone A, Devillers H, Dubois K, Gillet-Markowska A, Graziani S, Huu-Vang N, Poirel M, Reisser C, Schott J, Schacherer J, Lafontaine I, Llorente B, Neuveglise C, Fischer G. 2016. Reconstruction of ancestral chromosome architecture and gene repertoire reveals principles of genome evolution in a model yeast genus. Genome Research 26:918-32.
57. Depotter JR, Deketelaere S, Inderbitzin P, Tiedemann AV, Hofte M, Subbarao KV, Wood TA, Thomma BP. 2016. Verticillium longisporum, the invisible threat to oilseed rape and other brassicaceous plant hosts. Molecular Plant Pathology 17:1004-16.
58. Muller H, Gil J, Jr., Drinnenberg IA. 2019. The impact of centromeres on spatial genome architecture. Trends in Genetics 35:565-578.
59. Treangen TJ, Salzberg SL. 2011. Repetitive DNA and next-generation sequencing: Computational challenges and solutions. Nature Reviews Genetics 13:36-46.
60. Seidl MF, Faino L, Shi-Kunne X, van den Berg GCM, Bolton MD, Thomma BPHJ. 2015. The genome of the saprophytic fungus Verticillium tricorpus reveals a complex effector repertoire resembling that of its pathogenic relatives. Molecular Plant-Microbe Interactions 28:362-373.
61. Sun S, Yadav V, Billmyre RB, Cuomo CA, Nowrousian M, Wang L, Souciet JL, Boekhout T, Porcel B, Wincker P, Granek JA, Sanyal K, Heitman J. 2017. Fungal genome and mating system transitions facilitated by chromosomal translocations involving intercentromeric recombination. PLoS Biology 15:e2002527.
62. International Chicken Genome Sequencing C. 2004. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:695-716.
63. Fukagawa T. 2017. Critical histone post-translational modifications for centromere function and propagation. Cell Cycle 16:1259-1265.
64. Sullivan BA, Karpen GH. 2004. Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nature Structural \& Molecular Biology 11:1076-83.
65. Volpe TA, Kidner C, Hall IM, Teng G, Grewal SI, Martienssen RA. 2002. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297:1833-7.
66. Li X, Wang X, He K, Ma Y, Su N, He H, Stolc V, Tongprasit W, Jin W, Jiang J, Terzaghi W, Li S, Deng XW. 2008. High-resolution mapping of epigenetic modifications of the rice genome uncovers interplay between DNA methylation, histone methylation, and gene expression. Plant Cell 20:259-76.
67. Blower MD, Sullivan BA, Karpen GH. 2002. Conserved organization of centromeric chromatin in flies and humans. Dev Cell 2:319-30.
68. Lewis ZA, Adhvaryu KK, Honda S, Shiver AL, Knip M, Sack R, Selker EU. 2010. DNA methylation and normal chromosome behavior in Neurospora depend on five components of a histone methyltransferase complex, DCDC. PLoS Genetics 6:e1001196.
69. Bayne EH, White SA, Kagansky A, Bijos DA, Sanchez-Pulido L, Hoe KL, Kim DU, Park HO, Ponting CP, Rappsilber J, Allshire RC. 2010. Stc1: A critical link between RNAi and chromatin modification required for heterochromatin integrity. Cell 140:666-77.
70. Buhler M, Moazed D. 2007. Transcription and RNAi in heterochromatic gene silencing. Nature Structural \& Molecular Biology 14:1041-8.
71. Yang J, Sun S, Zhang S, Gonzalez M, Dong Q, Chi Z, Chen YH, Li F. 2018. Heterochromatin and RNAi regulate centromeres by protecting CENP-A from ubiquitin-mediated degradation. PLoS Genetics 14:e1007572.
72. Kagansky A, Folco HD, Almeida R, Pidoux AL, Boukaba A, Simmer F, Urano T, Hamilton GL, Allshire RC. 2009. Synthetic heterochromatin bypasses RNAi and centromeric repeats to establish functional centromeres. Science 324:1716-9.
73. Jesenicnik T, Stajner N, Radisek S, Jakse J. 2019. RNA interference core components identified and characterised in Verticillium nonalfalfae, a vascular wilt pathogenic plant fungi of hops. Scientific Reports 9:8651.
74. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. Journal of molecular biology 215:403-410.
75. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10:421.
76. Slater GS, Birney E. 2005. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 6:31.
77. Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular biology and evolution 30:772-780.
78. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32:268-74.
79. Frandsen RJ, Andersson JA, Kristensen MB, Giese H. 2008. Efficient four fragment cloning for the construction of vectors for targeted gene replacement in filamentous fungi. BMC Mol Biol 9:70.
80. Santhanam P. 2012. Random insertional mutagenesis in fungal genomes to identify virulence factors. Methods Mol Biol 835:509-17.
81. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics (Oxford, England) 30:2114-2120.
82. Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nature methods 9:357-359.
83. Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics (Oxford, England) 25:1754-1760.
84. Ramirez F, Ryan DP, Gruning B, Bhardwaj V, Kilpert F, Richter AS, Heyne S, Dundar F, Manke T. 2016. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res 44:W160-5.
85. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu XS. 2008. Model-based analysis of ChIP-Seq (MACS). Genome Biology 9:R137.
86. Schultz MD, Schmitz RJ, Ecker JR. 2012. 'Leveling' the playing field for analyses of single-base resolution DNA methylomes. Trends in Genetics 28:583-585.
87. Durand NC, Shamim MS, Machol I, Rao SS, Huntley MH, Lander ES, Aiden EL. 2016. Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. Cell Systems 3:95-8.
88. Dudchenko O, Batra SS, Omer AD, Nyquist SK, Hoeger M, Durand NC, Shamim MS, Machol I, Lander ES, Aiden AP, Aiden EL. 2017. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356:92-95.
89. Dudchenko O, Shamim MS, Batra SS, Durand NC, Musial NT, Mostofa R, Pham M, Glenn St Hilaire B, Yao W, Stamenova E, Hoeger M, Nyquist SK, Korchina V, Pletch K, Flanagan JP, Tomaszewicz A, McAloose D, Pérez Estrada C, Novak BJ, Omer AD, Aiden EL. 2018. The Juicebox Assembly Tools module facilitates de novo assembly of mammalian genomes with chromosome-length scaffolds for under \$1000. bioRxiv doi:10.1101/254797:254797.
90. Jakse J, Jelen V, Radisek S, de Jonge R, Mandelc S, Majer A, Curk T, Zupan B, Thomma B, Javornik B. 2018. Genome sequence of a lethal strain of xylem-Invading Verticillium nonalfalfae. Genome Announcements 6.
91. de Jonge R, Peter van Esse H, Maruthachalam K, Bolton MD, Santhanam P, Saber MK, Zhang Z, Usami T, Lievens B, Subbarao KV, Thomma BPHJ. 2012. Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing. Proceedings of the National Academy of Sciences of the United States of America 109:5110-5115.
92. Quinlan AR, Hall IM. 2010. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 26:841-2.
93. Benjamini Y, Speed TP. 2012. Summarizing and correcting the GC content bias in highthroughput sequencing. Nucleic Acids Research 40:e72.
94. Dobin A, Gingeras TR. 2015. Mapping RNA-seq reads with STAR. Current Protocols in Bioinformatics 51:11 14 1-11 1419.
95. Lawrence M, Huber W, Pages H, Aboyoun P, Carlson M, Gentleman R, Morgan MT, Carey VJ. 2013. Software for computing and annotating genomic ranges. PLoS Computational Biology 9:e1003118.
96. Ellinghaus D, Kurtz S, Willhoeft U. 2008. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics 9:18.
97. Steinbiss S, Willhoeft U, Gremme G, Kurtz S. 2009. Fine-grained annotation and classification of de novo predicted LTR retrotransposons. Nucleic Acids Res 37:7002-13.
98. Hoede C, Arnoux S, Moisset M, Chaumier T, Inizan O, Jamilloux V, Quesneville H. 2014. PASTEC: an automatic transposable element classification tool. PloS one 9:e91929.
99. Bailly-Bechet M, Haudry A, Lerat E. 2014. "One code to find them all": a perl tool to conveniently parse RepeatMasker output files. Mobile DNA 5:13.
100. Palmer JM, JE S. 2016. Funannotate: Eukaryotic genome annotation pipeline. http://funannotate.readthedocs.io. Accessed
101. Cook DE, Valle-Inclan JE, Pajoro A, Rovenich H, Thomma B, Faino L. 2019. LongRead Annotation: Automated Eukaryotic Genome Annotation Based on Long-Read cDNA Sequencing. Plant Physiol 179:38-54.
102. Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, White O, Buell CR, Wortman JR. 2008. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biology 9:R7.
103. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. 2003. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research 13:2498-504.
104. Team RC. 2013. A Language and Environment for Statistical Computing \}.
105. Wickham H. 2016. ggplot2: Elegant Graphics for Data Analysis \}.
106. Gel B, Serra E. 2017. karyoploteR: an R/Bioconductor package to plot customizable genomes displaying arbitrary data. Bioinformatics 33:3088-3090.
107. Hahne F, Ivanek R. 2016. Visualizing genomic data using Gviz and Bioconductor. Methods in molecular biology (Clifton, NJ) 1418:335-351.
108. Sullivan MJ, Petty NK, Beatson SA. 2011. Easyfig: A genome comparison visualizer. Bioinformatics 27:1009-10.
109. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL. 2004. Versatile and open software for comparing large genomes. Genome Biology 5:R12.
110. Drillon G, Carbone A, Fischer G. 2014. SynChro: A fast and easy tool to reconstruct and visualize synteny blocks along eukaryotic chromosomes. PLoS One 9:e92621.
111. Drillon G, Champeimont R, Oteri F, Fischer G, Carbone A. 2020. Phylogenetic reconstruction based on synteny block and gene adjacencies. Molecular Biology and Evolution doi:10.1093/molbev/msaa114.

CenH3 (0-300)
CenH3 enrichment
GC-content (0-100)
Genes (I, 0-1)
Repeats (I, 0-1)

蹅

b

Cen1
…i VaLTRE9
non-VdLTRE9
Chr 1 " .-. . .
Cen2
Chr. $2 \underset{\text { Cen3 }}{\text { Cinn }}$
Chr. $3 \stackrel{*}{*}$
Cen4
Chr. $4\ulcorner$!"
Cen5
Chr. 5

Cen6

Chr. 6
\#1III
|IIIII
Cen7
Chr. 7

Cen8

Chr. 8
Distribution of centromere repeats

a Verticillium dahliae
JR2

f Verticillium dahliae VdLs17

Verticillium dahliae JR2

 Verticillium dahliae VdLs17 ${ }_{\text {B4\% }} \underset{\text { Inversion }}{\text { Direct }} 100 \%$
Distribution of centromere repeats

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.29.179234; this version posted June 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

		CenH3		AT-rich		AT-content (\%)		Repetitive elements	
Chr.	Locus	CenH3 position (bp)	CenH3 length (bp)	Position (kb)	Chr.	Cen.	\# Repeats (\%) ${ }^{\text { }}$	\# VdLTRE9 (\%)	
1	CEN1	$2,920,143-3,094,179$	174,037	$2,919-3,094$	45.7	77.1	$50(99.8)$	$27(70.4)$	
2	CEN2	$520,698-672,281$	151,584	$516-672$	46.3	77.8	$43(99.7)$	$26(83.0)$	
3	CEN3	$2,374,294-2,541,026$	166,733	$2,375-2,542$	45.8	77.3	$47(99.8)$	$31(80.5)$	
4	CEN4	$2,884,316-3,071,412$	187,097	$2,885-3,072$	46.2	75.4	$54(99.5)$	$24(53.8)$	
5	CEN5	$1,868,317-2,043,260$	174,944	$1,868-2,044$	46.7	73.9	$58(99.5)$	$25(63.1)$	
6	CEN6	$2,166,972-2,333,060$	166,089	$2,167-2,334$	46.4	75.2	$48(100)$	$31(62.6)$	
7	CEN7	$1,944,367-2,038,091$	93,725	$1,945-2,038$	44.7	76.5	$32(95.8)$	$14(47.8)$	
8	CEN8	$1,406,398-1,561,664$	155,267	$1,406-1,562$	47.7	77.0	$37(100)$	$26(73.9)$	

${ }^{1}$: position of CenH3-enriched domains; enriched domains within 10 kb have been merged
${ }^{2}$: position of AT-rich domains; AT-rich domains with 20 kb have been merged
${ }^{3}$: average AT-content of 1 kb windows of the entire chromosome and the AT-rich domain
${ }^{4}$: percentage of centromeric region covered

