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Abstract

Background: Pancreatic neuroendocrine tumors (PANETs) are rare, slow growing cancers that often present with local and

distant metastasis upon detection. PANETS contain distinct karyotypes, epigenetic dysregulation, and recurrent mutations in

MEN1, ATRX, and DAXX (MAD+); however, the molecular basis of disease progression remains uncharacterized.

Methods: We evaluated associations between aneuploidy and the MAD+ mutational state of 532 PANETs from 11

published genomic studies and 19 new cases using a combination of exome, targeted panel, shallow WGS, or RNA-seq. We

mapped the molecular timing of MAD+ PANET progression using cellular fractions corrected for inferred tumor content.

Results: In 287 PANETs with mutational data, MAD+ tumors always exhibited a highly recurrent signature of loss of

heterozygosity (LOH) and copy-number alterations affecting 11 chromosomes, typically followed by genome doubling

upon metastasis. These LOH chromosomes substantially overlap with those that undergo non-random mis-segregation due

to ectopic CENP-A localization to flanking centromeric regions in DAXX-depleted cell lines. Using expression data from 122

PANETs, we found decreased gene expression in the regions immediately adjacent to the centromere in MAD+ PANETs.

Using 43 PANETs from AACR GENIE, we inferred this signature to be preceded by mutations in MEN1, ATRX, and DAXX. We

conducted a meta-analysis on 226 PANETs from 8 CGH studies to show an association of this signature with metastatic

incidence. Our study shows that MAD+ tumors are a genetically diverse and aggressive subtype of PANETs that display

extensive chromosomal loss after MAD+ mutation, which is followed by genome doubling.
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Conclusions: We propose an evolutionary model for a subset of aggressive PANETs that is initiated by mutation of MEN1,

ATRX, and DAXX, resulting in defects in centromere cohesion from ectopic CENP-A deposition that leads to selective loss of

chromosomes and the LOH phenotype seen in late-stage metastatic PANETs. These insights aid in disease risk stratification

and nominate potential therapeutic vulnerabilities to treat this disease.

Keywords: Exome sequencing, Pancreatic neuroendocrine tumors, Molecular timing, Gene expression profiling, Whole-

genome sequencing, Molecular cytogenetics, Loss of heterozygosity, Genetic instability, Publicly available data

Background
Pancreatic neuroendocrine tumors (PANETs) are rare neu-

roendocrine malignancies largely derived from pancreatic

islet alpha- [1] and beta-cells [2]. Approximately half of all

PANETs are non-functional, defined as the absence of

hormone secretion, and thus resulting in asymptomatic

progression and late detection that typically co-occurs with

liver metastasis [1]. These tumors are characterized by mu-

tations in chromatin modifiers MEN1, ATRX, and DAXX

(MAD) (in 46, 18, and 31% of tumors, respectively) [3–7]

and typically dichotomize into a genome that is either

highly aneuploid or largely diploid with few copy-number

variants (CNVs) [8–17]. Scarpa et al. defined a subtype of

PANETs with a recurrent pattern of whole chromosomal

loss (RPCL) in chromosomes 1, 2, 3, 6, 8, 10, 11, 15, 16,

and 22 [17], while Stumpf et al. defined recurrent gains in

the complementary set of chromosomes [8] suggesting a

link via whole-genome duplication mechanisms or a tech-

nical difference in data normalization. The RPCL subtype

is enriched for MAD mutations as well as an alternative

lengthening of the telomere (ALT) phenotype [17]

which indicates a potential functional link between the

two. A recent characterization of PANETs highlights

the role of epigenetic modifications into distinct

subtype of this disease [2].

DAXX co-immunoprecipitates with both menin and

ATRX via its C-terminal [18] and N-terminal regions, re-

spectively [19]. The menin-DAXX complex assembles on

DNA where DAXX is unoccupied by histone variant H3.3/

H4 and functions to enhance marks of H3K9me3 at the

promoter of membrane metallo-endopeptidase (MME), a

colorectal cancer oncogene [20–22]. The DAXX-ATRX

complex participates in a functionally distinct pathway,

catalyzing replication-independent deposition of the histone

variant H3.3 at telomeric and pericentric heterochromatin

regions [23–25]. Directly associated with H3.3 is the H3

variant, CENP-A [26], a histone protein that is responsible

for assembling kinetochore proteins and dependent upon

DAXX- [18, 25, 27, 28] and ATRX-mediated [24, 29–32]

histone modifications for its endogenous localization [33,

34]. Dysregulation of DAXX induces mis-localization of

CENP-A, resulting in chromosomal instability, neocentro-

mere formation, and micronuclei formation, a common re-

sult of premature sister chromatid separation [35].

In our study of 532 PANETs, we sought to understand

the pathogenesis of PANETs by examining the relationship

between MAD mutations, chromosomal instability, cohe-

sion, and CENP-A localization. We found that MAD muta-

tions (MAD+) in PANET tumors were strongly predictive

of a highly conserved pattern of loss of heterozygosity

(LOH) and copy-number (CN) alterations across select

chromosomes, typically followed by genome doubling in

late-stage disease or metastatic disease. These patterns of

chromosome mis-segregation are likely to stem from mis-

localization of CENP-A in DAXX-deficient cells, resulting

in merotelic attachments and premature sister chromatid

separation via cohesion fatigue. Herein, we show that an

aggressive subtype of PANETs follows a conserved progres-

sion of molecular events that originates from non-random

chromosome mis-segregation and may suggest potential

therapeutic targets to disrupt this choreography.

Methods
Tissue acquisition

Our whole-exome sequencing (WES) cohort originated

from 4 patients enrolled in the NET-SEQ study (Clinical-

Trials.gov, NCT02586844) at the Princess Margaret Cancer

Centre. Of the 7 patients registered in this study, 4 had

histological or cytological diagnosis as well-differentiated

pancreatic neuroendocrine tumors (PANETs) to be used

for exploratory analysis. Our shallow whole-genome

(sWGS) cohort was comprised of 15 NET samples pro-

vided by the Ontario Tumour Bank. Three sample types

were processed: buffy coat blood cells, formalin-fixed

paraffin-embedded (FFPE) tissues at time of diagnosis, and

fresh-frozen core needle biopsies.

Genomic characterization

We sequenced DNA from the WES cohort to target a

depth of 250× coverage in tumors and 50× coverage in

normals. We also generated RNA sequencing (RNA-seq)

libraries from these cases, which we sequenced using ~ 80

million reads. We sequenced DNA from the sWGS cohort

to 0.34× mean coverage. Sequence data were aligned to

the human reference genome sequence build hg19. Vari-

ant detection in exome data was performed using MuTect

[36] and HaplotypeCaller [37], while copy-number profiles

were called using VarScan2 [38] and Sequenza [39]. Loss

Quevedo et al. Genome Medicine           (2020) 12:38 Page 2 of 15

http://clinicaltrials.gov
http://clinicaltrials.gov
https://clinicaltrials.gov/ct2/show/NCT02586844


of heterozygosity data was inferred from both DNA and

RNA data by determining purity-adjusted allelic fractions.

Gene-wise transcript abundances were quantified using

the Cufflinks suite of tools [40]. Pseudo allele-specific

copy-number profiles were estimated from sWGS data

using 500 kB bins tiled across the genome to count the

number of reads and the number of heterozygous variants

in each bin. To validate these copy-number calls, we

paired this analysis with fluorescence in situ hybridization

on complementary FFPE tissues.

CENP gene expression analysis

We analyzed 148 PANET gene expression profiles obtained

from published microarray datasets: 99 generated by Sada-

nandam et al. [41] (GSE73338) and 49 from Chan et al. [1]

(GSE117851). We compared expression patterns to a set of

normal pancreatic islet cells from 57 non-diabetic and 20

diabetic donors (GSE41762) generated by Tang et al. [42].

To approximate whether the CN signature was retained in

MAD+ PANETs from these datasets, we first separated

samples based on whether they carried MAD mutations

and computed the z-score for gene expression against the

MAD− PANETs on a per gene basis. Genes were mapped

back to the human genome assembly hg19, and a

loess regression with a 50% smoothing span was fitted

to these values.

To calculate whether genes near the centromeres in LOH

chromosomes are lower expressed than the rest of the

chromosomal arm, we took the aforementioned gene ex-

pression z-scores and calculated the arm-level gene expres-

sion percentile and fractional distance to the centromere.

Chromosomes were stratified into LOH and heterozygous

chromosomes, and a loess regression was fit to the gene-

level z-scores. To estimate regions of the chromosome arm

that were repressed or elevated relative to the rest of the

arm, we used an arm-level empirical cumulative density

function to estimate the percentile of each gene.

Detection of monoallelic expression

To detect monoallelic expression of genes, we called all

SNPs from RNA-seq data using HaplotypeCaller [37].

We tested each gene containing 2 or more SNPs for

MAE using a weighted t test. The allelic fractions of all

SNPs in a gene, weighted by the number of reads sup-

porting that SNP call, were compared to all SNP allelic

fractions across the entire sample. By bootstrapping this

calculation 1000 times per gene, we obtained the average

z-statistic for each gene and compared it to a null distri-

bution created using a similar test where the gene set is

replaced with randomly selected SNPs.

Detection of parental skewing

SNPs from WES data of NET-001 tumor, matching

blood DNA, and maternal DNA were estimated using

HaplotypeCaller. All SNPs were divided into groups based

on chromosomes and were then discretized into either

homozygous (AF ≥ 0.8 or AF ≤ 0.2) or heterozygous (AF >

0.2 and AF < 0.8). We only focused on SNPs that were

homozygous in the maternal DNA and heterozygous in the

NET-001 germline DNA. For each LOH chromosome, we

calculated the fraction of SNPs that were homozygous and

either matched the maternal SNPs or did not (paternal), or

were heterozygous.

CENP-A ChIP analysis

WIG files for the Nechemia dataset were downloaded from

GEO:GSE111381 [43], while BigWIG files for the Nye data-

set were downloaded from GEO:GSE120230 [35]. Peaks

were assigned to cytobands based on the hg19 reference

genome. CENP-A peaks were summarized across a refer-

ence “merged peaks” representation defined by Nye et al.

using two metrics: the max peak height for each merged

peak or reads per kilobase of peaks per million mapped

reads (RPKM).

For the Nye dataset, overlapping peaks between DAXX

and control groups were compared using a t-statistic. To

test for an elevated number of peaks in each cytoband,

we calculated the Kolmorogov-Smirnov D-statistic by

comparing the peaks found only in that cytoband against

peaks found across the entire genome.

Alternative lengthening of telomere

Telomere lengths for all sWGS data were analyzed using

Telomerecat [44]. Samples were split between PANETs

and GINETs, and a one-sided t test was done on the es-

timated telomere lengths. A one-sided F test was also

conducted to calculate for difference in variance.

Meta-analysis of published datasets

Whole-exome sequencing of the BON-1 and QGP-1

PANET cell line from Vandamme and colleagues [45]

was re-analyzed, and LOH segments were called based

on allelic fractions (European Nucleotide Archive study

ID: PRJEB8223). Copy-number profiles derived from

CGH microarray data were obtained from data tables

described in six publications [8–16] and transcribed into

genomic coordinates (Additional file 1) by mapping to

cytobands using the UCSC Table Browser hg19 cytoBan-

dIdeo file (http://hgdownload.cse.ucsc.edu/goldenPath/

hg19/database/cytoBandIdeo.txt.gz). Each copy ratio seg-

ment was assigned a value corresponding to the copy-

status. Jaccard index values were calculated to measure

the asymmetric binary concordance between any two

copy-number profiles.

Molecular timing in project GENIE

Copy-number profiles and mutational data of PANETs

from AACR’s project GENIE (v1.0.1) were downloaded
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from Sage Synapse (https://www.synapse.org/; synapse IDs:

syn7851250, syn7851253, and syn7851246). In total, 43

PANET samples had both copy-number information and

mutational information. The molecular timing of these

samples was determined by estimating the tumor purity re-

quired for every possible copy-number profile to generate

the observed tumor purity for all somatic mutations. The

simplest copy-number profile that fits the constraints of

pathologist purity ± 0.15 and copy-number constraints im-

posed by the relative copy-states of somatic mutations was

used to infer molecular timing of the disease.

Additional methods and detailed version and param-

eter information are available in the Additional file 2.

Results
Mutations in MEN1, ATRX, and DAXX are characteristic of

chromosome mis-segregation errors

To characterize the molecular profiles of PANETs (Add-

itional file 3: Fig. S1), we generated an exome and whole-

genome dataset totaling 19 samples. The exome cohort

consisted of whole-exome sequencing (WES) paired with

RNA-seq across 4 patients, 6 samples (4 metastatic sam-

ples, 2 of which are complemented with their diagnostic

tissue) (Additional file 4: Table S1a). Our whole-genome

cohort consisted of 13 PANETs analyzed using shallow

(0.3×) whole-genome sequencing (sWGS) and a 21-gene

panel targeted deep sequencing, paired with FISH of 4

centromeric probes across 5 of the 13 samples (Add-

itional file 4: Table S1b). Moreover, we included 165

PANET samples from version 5.0 of the publicly available

AACR GENIE dataset [46] (Additional file 4: Table S1c).

By stratifying our cohort based on MAD status (MAD+

n = 18/19), we discovered a highly recurrent copy-number

and LOH pattern that overlapped the RPCL pattern de-

scribed by Scarpa et al. [17] in our exome and whole-

genome cohorts (Fig. 1a, b). Three cases in our whole-

genome cohort did not exhibit this LOH pattern; this pat-

tern is undetected in NET-105 due to low tumor purity

obscuring the signal (purity = 0.25, Additional file 4: Table

S1b), while NET-130 and NET-131 did not show LOH in

chromosomes 15, 16, 21, and 22. Although the inferred

ploidy between samples differed, almost every case demon-

strated LOH for chromosomes 1, 2, 3, 6, 8, 10, 11, 16, 21,

and 22 and retained heterozygosity for chromosomes 4, 5,

7, 9, 12, 13, 14, 17, 19, and 20 (Fig 1d). Chromosomes 15

and 18 showed no consistent pattern of variation with het-

erozygosity and LOH occurring in equal proportions.

Moreover, the LOH chromosomes were largely copy-

neutral (i.e., diploid) while the heterozygous chromosomes

showed copy-gain (Fig. 1e), mimicking the pattern

observed by Stumpf et al. [8–10]. We validated the CN

and LOH regions identified in our WES samples using the

Affymetrix SNP 6.0 array (Additional file 3: Fig. S2a) and

allelic skewing in RNA sequencing (Additional file 3: Fig.

S2b). Additionally, we validated the CN inference in our

13 sWGS samples using fluorescent in situ hybridization

of centromeric probes targeting LOH chromosomes 3 and

10, and zygosity-intact 7 and 17 (Additional file 4: Table

S2a). To rule out the possibility of germline LOH, we con-

firmed that all patients had a diploid heterozygous genome

in their germline DNA (Additional file 3: Fig. S3a).

Extended validation of CN and LOH signature

Next, we sought to expand our validation through inclu-

sion of a larger, clinically derived cohort made available

through the AACR GENIE consortium [46]. While

genome-wide zygosity calls were not available for the

GENIE cohort, we were able to stratify the CN profiles

of 165 PANETs samples into MAD+ (n = 99) and MAD

− (n = 66) subgroups. Consistent with our genome-wide

cohort, the targeted clinical panel sequencing data reca-

pitulated the same pattern of losses and gains (Fig. 1c)

and a near perfect overlap of MAD+ karyotypes. Chro-

mosomes 8, 9, 15, and 21 had more than one prominent

copy-states, suggesting more variable copy-number al-

terations of these chromosomes (Fig. 1f). PANETs in the

GENIE cohort without MAD mutations were largely

diploid with fewer recurrent gains and losses compared

to those with MAD mutations (Fig. 1g).

We defined a CN signature by utilizing all available CN

aberrations (CNA) data to calculate the co-occurence of

copy-number states between chromosomes. By taking the

copy-number states with the highest propensity (Fig. 1f),

we flagged aberrations that are synchronous in their pres-

entation from those that are random independent events

(Additional file 3: Fig. S4a). Furthermore, we identified loss

of chromosome 7 (Additional file 3: Fig. S4b) and gain of

chromosomes 1, 6, and 16 (Additional file 3: Fig. S4d) as

aberrations strongly antagonistic of our copy-number

signature. Since the aberrations are largely chromosomal in

size, we hypothesized that these CNA were likely a result

of mis-segregation errors from merotelic events resulting

in lagging chromosomes.

To evaluate whether PANET model systems accurately

recapitulate these well-defined molecular signatures, we in-

ferred genome-wide zygosity using publicly available WES

data from two metastatic PANET cancer cell lines, BON-1

and QGP-1 [45]. While both cell lines exhibited a high

degree of aneuploidy and LOH, neither were MAD+ and

the affected chromosomes differed dramatically between

cell lines and when compared to the MAD+ PANETs in

our meta-analysis (Additional file 3: Fig. S5). These results

are in agreement with those of Boora et al. [47], suggesting

that BON-1 and QGP-1 are genetically distinct from clin-

ical samples of MAD− and MAD+ PANETs and should be

used with caution in understanding PANET cancer biology

or for pharmacological screening.
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Fig. 1 Loss of heterozygosity and copy-number profiles for PANET samples. Loss of heterozygosity profiles depicted as being copy-loss/haploid

(blue), copy-neutral/diploid (purple), or copy-gain/triploid+ (red) for each PANET sample in the a exome, b whole-genome, and c AACR GENIE

cohorts. Motif plots describe the most recurrent zygosity (d) or copy-number (e–g) states for each chromosome. MAD+ PANETs in the exome

and whole-genome cohorts depict patterns of copy-neutral and copy-gain (e), while PANETs in the AACR GENIE cohort depict patterns of copy-

loss and copy-gain for MAD+ samples (f) and copy-neutral for MAD− samples (g)
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The MAD phenotype is associated with alternative

lengthening of telomeres

To test whether MAD+ PANETs in our cohort exhibited

ALT phenotype as reported by Jiao et al. [45, 48], we com-

pared the overall length of telomeres between 13 PANETs

and 10 MAD− GINETs (gastrointestinal neuroendocrine

tumors) using sWGS. We observed longer telomere

lengths in PANETs (p = 0.031; one-sided t test) as well as

greater variation across samples (p < 0.001; one-sided F

test) suggestive of an ALT phenotype (Additional file 3:

Fig. S6). In the sWGS cohort, NET-129 lacked any MAD

mutations and displayed telomere length concordant with

the average length of GINET telomeres. The presence of

ALT might suggest disruption of H3.3 incorporation,

which we hypothesize is linked to the chromosomal mis-

segregation pattern observed.

Mis-segregation errors are associated with DAXX-linked

cohesion fatigue

The MAD+ CN signature may be a result of selective pres-

sures favoring the retention and loss of certain chromo-

somes, or merely a stochastic event that always leads to the

same karyotype. We first hypothesized that retention of

chromosomes may be a consequence of selective pressures

due to monoallelic expression (MAE). By examining 36

PANETs (23 MAD+, 13 MAD−) from our study and Chan

et al. [1] that exhibited the LOH signature (Additional file 3:

Fig. S7), we only found 11 genes that exhibited evidence of

MAE scattered across 7 of the 8 chromosomes that were

always heterozygous, leaving chromosome 14 unexplained

(Additional file 3: Fig. S8a). Our second hypothesis was that

there is a genetic predisposition to losing chromosomes

from one parent. For NET-001, we flagged heterozygous

single-nucleotide polymorphisms (SNPs) in germline DNA

that were observed to be homozygous in the matched

tumor and germline DNA collected from the patient’s

mother. We determined that only 8 of the 11 chromo-

somes exhibiting LOH were of maternal origin (Chr1, 6, 8,

11, 13, 15, 21, and 22) and 3 were paternal (Chr2, 3, and

18) (Additional file 3: Fig. S8b), hence showing no statis-

tical significance for favoring parental origin (p = 0.23, bi-

nomial test). Overall, we show that there are no robust

selective factors driving our copy-number signature sug-

gesting that another mechanism may be at play.

A recent publication by Worrall et al. [49] details a non-

random chromosome mis-segregation pattern in SW403

colorectal cancer cells similar to our own (Fig. 2a; r = 0.50,

point-biserial correlation) that is due to cohesion fatigue,

resulting in premature sister chromatid separation and

lagging chromosome formation. To explore the possibility

of centromere dysfunction as the underlying mechanism

driving formation of the MAD+ CN signature, we inte-

grated our genomic data with two ChIP-seq datasets char-

acterizing CENP-A binding locations. Nechemia-Arbely

et al. defined centromeric CENP-A loads in HeLa cells

throughout the cell cycle under endogenous and ectopic

CENP-A expression [43] (Additional file 3: Fig. S9). Nye

et al. characterized non-centromeric CENP-A binding in

DAXX-depleted and DAXX-intact SW480 colorectal can-

cer cells [35] (Fig. 2b, c).

In HeLa cells, chromosomal CENP-A levels in the

centromere were more similar between endogenous and

ectopic expression conditions than between cell cycle

phase, with chromosomes 2 and 9 containing the highest

level of deposition and chromosomes 14, 19, and 21 the

lowest (Additional file 3: Fig. S9). Meanwhile, in SW480

cells, there was an increase of ectopic CENP-A occupancy

from 397 to 1124 kb when DAXX was depleted, the

majority of this coverage occurring in chromosomes

8, 19, and 21 while losing coverage on chromosomes

1, 16, and 17 (Fig. 2d).

Using the single-cell sequencing (SCS) data from Wor-

rall et al., we tested whether mis-segregation of specific

chromosomes were related to centromeric CENP-A level

and centromere size [49]. We did not observe any cor-

relation between CENP-A levels in centromeric regions

and mis-segregation rates (rEndogenous_g1,g2 = − 0.005, −

0.09, rElevated_g1,g2,RC = − 0.11, 0.01, − 0.41), nor with the

coverage or number of CENP-A binding sites acquired

in DAXX-depleted conditions (rcoverage = 0.08, rcount =

0.12). However, there was a significant correlation be-

tween the frequency of mis-segregation per chromosome

and the size of centromeres as well as flanking cytobands

(hg19: rCEN = 0.58, p < 0.01; rflank = 0.51, p = 0.01; Fig. 2e).

The features that most correlated with chromosomal

mis-segregation rates were the mean CENP-A levels

across all ectopic locations (rDAXX = 0.51, p = 0.02; rCon-

trol = 0.43, p = 0.06) and levels in regions close to the

centromeric regions under both DAXX-depleted and

control conditions (rDAXX = 0.56, p = 0.02; rControl = 0.58,

p = 0.02; Fig. 2f). While the majority of ectopic CENP-A

peaks localized to the flanking regions of centromere

(Fig. 2b), we found that newly acquired CENP-A peaks

in DAXX-depletion conditions were primarily localized

to these flanking regions (Fig. 2c). These results suggest

that DAXX-deficient tumors may mis-localize CENP-A

to ectopic sites that flank the centromere, which could

possibly seed the formation of neocentromeres and favor

merotelic attachments of select chromosomes.

LOH chromosomes in MAD+ PANETs exhibit a gene-

repressive environment directly adjacent to the

centromere

It has been shown that proximity to chromocenters and

pericentromeric regions results in gene repression [50].

Therefore, to test whether PANETs have increased CENP-

A loading in a similar fashion to DAXX-depleted colorectal

cells, we tested whether there is a corresponding decrease
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Fig. 2 Ectopic CENP-A loading localizations in DAXX-depleted and wild-type SW403 colorectal cancer cell lines from the Nye et al. dataset. a Mis-

segregated chromosomes identified by Worrall et al. through single-cell analysis, compared to the LOH chromosomes we define. b, c Chromosome-

relative localization of CENP-A peaks that are found in either DAXX-depleted-only regions (b) or peaks that are found in both DAXX-depleted and

control cells (c) for both the commonly mis-segregated and normal-segregation chromosomes as identified by Worrall et al. d Depiction of acquired,

maintained, and lost CENP-A peaks when SW403 undergo DAXX depletion. e Correlation plots between mis-segregation fractions and size of the

centromere (CEN), or the cytobands immediately flanking the centromere (periCEN) on the p-arm or q-arm. f Correlation plots between the number of

CENP-A peaks and mis-segregation fractions
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of gene expression in regions proximal to the centromere

in the LOH chromosomes. We examined the gene expres-

sion profiles of 122 PANETs with known MAD mutational

status from two datasets: Sadanandam et al. [41] (28

MAD+, 47 MAD−) and Chan et al. [1] (30 MAD+, 17

MAD−). We first verified that the MAD+ samples recap-

itulate our previously defined copy-number signature

(Fig. 3a, b). By normalizing the expression scores of each

gene for all genes on the chromosome arms, we sought to

identify whether there were regions on the chromosome

that had lower or higher expression. We observed that

there was a region, between 0 and 0.025 fractional distance

of the centromere to the end of the chromosome arms,

which had decreased gene expression in LOH chromo-

somes relative to heterozygous chromosomes (Fig. 3c, d).

While this observation was noted in both datasets, it was

noticeably absent in a dataset composed of 77 normal pan-

creatic islet cells [42] (Fig. 3c). The minor discrepancies be-

tween PANET datasets may reflect the inherent noise in

RNA-seq data, the stratification of LOH and heterozygous

chromosomes without genome data to validate, or the sim-

plifying assumption that chromosomal arms only have sin-

gle copy-state. As seen in the colorectal cell lines, the

increased deposition of CENP-A in the pericentromeric re-

gion due to DAXX depletion may be linked to a corre-

sponding decrease of gene expression in this region,

suggesting an unseen mechanism for chromosomal mis-

segregation pattern in PANETs.

Mutational events in MAD genes precede chromosomal

mis-segregation

Given the progression of events proposed by our mis-

segregation model, we assessed whether MAD mutations

arose prior to LOH events. Hence, we developed a molecu-

lar timing analysis for the initial release of AACR GENIE

dataset (Additional file 3: Fig. S1) [46]. We obtained allelic

fractions for clinical panel sequencing data from 43 mixed

primary/metastasis samples (29 MAD+, 14 MAD−) that

contain both copy-number and somatic mutation data in

the GENIE v1.0 data freeze. Of the MAD+ population, 26/

29 samples co-occur with the CN signature versus only 1/

14 MAD− samples (Additional file 3: Fig. S10).

We next estimated the allele-specific CN profile of the

GENIE cohort using the observed allelic fractions, CN log2

ratios, and pathologist-estimated tumor purities (± 0.15)

(Supplementary Data). Of the MAD+ GENIE PANETs, 6/

29 samples with low (< 30%) tumor cellularity were ex-

cluded from the analysis. The remaining 23 PANETs

showed a strong tendency to adopt a CN model with can-

cer cell fraction of MAD mutations at 1.0, reinforcing the

hypothesis that these mutations occur prior to LOH and

genome doubling events (Fig. 4). We observed a significant

enrichment of MEN1 and DAXX mutations prior to LOH

and genome doubling events (Bonferroni adjusted p values:

MEN1 = 0.00029, DAXX = 0.00011, binomial test) when

using a cutoff of 0.85 cancer cell fraction. ATRX mutations

reached significant enrichment at a cancer cell fraction cut-

off of 0.63, which is expected as LOH on the X chromo-

some occurs infrequently in PANETs and may not always

require LOH as a second hit due to X-inactivation. We ob-

served that 35/39 MAD+ PANET samples follow a mo-

lecular timing model of MAD mutations prior to LOH (4/

4 exome cohort, 10/12 whole-genome cohort, 21/23

GENIE cohort) (p = 3.4 × 10−7, binomial test). Collectively,

our results provide evidence that acquisition of MEN1 and

DAXX/ATRX mutations is an early event that leads to a

genome-wide LOH event, likely through centromere fa-

tigue from merotelic attachments.

Meta-analysis of copy-number profiles informs the

molecular progression towards late-stage PANETs

PANET CN profiles have been extensively reported in the

literature, each with their own reported chromosomes of

significance. Scarpa et al. [17] examined 102 clinically

sporadic PANETS and identified 4 CN groups: (G1) CN

loss affecting > 50% of the genome, (G2) a diploid genome

with little to no LOH or CN loss, (G3) CN gains affecting

~ 100% of the genome, and (G4) a mix of CN-LOH and

CN gains. The absolute copy-number profiles of our ex-

ome cohort revealed 3 of the 4 groups described by Scarpa

et al. The pancreatic diagnostic sample for patient NET-

003 displays the G1 signature while the liver-metastasis

sample displayed the G4 CN-LOH signature. Similarly,

NET-009 presented with a similar transition of the G4

CN-LOH signature towards a G3 whole-genome gain

(Fig. 1a), suggesting a mechanism of whole-genome dupli-

cations underlying PANET progression.

To further validate these groupings across independent

cohorts, we analyzed previously published CGH datasets

for the same signatures of absolute loss of LOH chromo-

somes (G1) or gain of retained chromosomes (G4). Due to

the inability of CGH to detect CN-LOH and whole-

genome gains, we anticipated tumors with the G3 profile to

appear similar to G4 profiles defined by no aberrations in

the LOH chromosomes with gains of the retained chromo-

somes. To compare the CGH copy-number data with our

current study, we performed a meta-analysis of 226 NETs

from 8 previous reports (Supplementary Data) [8–16]. By

clustering the absolute copy-number profiles of our NETs

and published datasets (Online methods), we demonstrated

that tumors were divided into 5 clusters characterized by

high and low fractions of genome-wide aneuploidy (Add-

itional file 3: Fig. S11a). PANETs in our exome and whole-

genome cohorts were mostly represented in cluster 1 which

best represented G4 PANETs. Cluster 5 displayed loss of

LOH chromosomes, suggesting that they best represent G1

PANETs. Cluster 4 was composed of 9 samples but con-

tained karyotype that is reminiscent of profiles from the
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GENIE cohort, suggesting that this may reflect a

normalization error rather than true biology. The

remaining clusters 3 and 5 were largely diploid with few re-

current CN aberrations such as chromosome 11 loss.

As PANETs with increased chromosomal instability are

characteristic of late-stage and more aggressive PANETs

[48], we next sought to validate whether PANETs with the

CN signature were in fact more aggressive. We separated

samples based on copy-number profiles with high-

chromosomal instability (high-CI) or low-chromosomal

instability (low-CI) (Additional file 3: Fig. S11b). PANETs

with high-CI were more likely to be metastatic (OR 4.35,

95% CI [1.99, 9.52]; p = 0.00; Cochrane’s Q) (Fig. 5), and

the majority of the high-CI NETs were those found in

Fig. 3 Gene expression recapitulating the copy-number signature of MAD+ PanNETs. a, b The copy-number signature was inferred from RNA-seq

data from the Sadanandam (nMAD+ = 28, nMAD− = 47) and Chan (nMAD+ = 30, nMAD− = 17) datasets by calculating the z-score on a per-gene basis

using MAD+ PANETs compared to MAD−. These plots visualize data from the a Sadanandam dataset and the b Chan dataset. c, d Regions of a

chromosome arm that have elevated or repressed gene expression in MAD+ samples for the LOH chromosomes (red) relative to genes on

heterozygous chromosomes (blue) are plotted against the fractional distance to the centromere (0 = at centromere boundary, 1 = chromosomal

arm end). Three datasets are illustrated here: the Tang et al. dataset composed of 77 normal pancreatic islets (top), the Sadanandam PANET

dataset (middle), and the Chan PANET dataset (bottom). d Distances between loess regression lines of LOH to heterozygous chromosomes where

all 3 aforementioned datasets are overlapped on each other to better visualize overlapping and discordant regions relative to normal islet cells
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clusters 1, 4, and 5 (Additional file 3: Fig. S11a); all tumors

follow the proposed model of PANET CN progression.

Thus, loss of the LOH chromosomes appears to be an ini-

tial step towards metastasis, reflecting a transient state

due to the small sample size, resulting in a more stable

and metastatic genome-doubled PANET (Fig. 6).

Discussion
In our study, we integrate large publicly available data-

sets of PANETs to show a remarkably conserved MEN1-

and DAXX/ATRX-driven metastatic disease progression.

Across 306 PANETs with inferable copy-number profiles

and MAD mutational status, we observed a well-defined

pattern of LOH affecting select chromosomes following

somatic mutations ofMEN1 and DAXX or ATRX. By lever-

aging expression profiles for 122 of the 306 PANETs [1,

41], we show that this CN signature may be linked to per-

turbation of core kinetochore processes which would in-

duce chromosomal mis-segregations. A recent publication

from Worrall et al. suggests that there may be order in the

timing of chromosomal mis-segregation stemming from

merotelic attachments and cohesion fatigue [49]. Strikingly,

their mis-segregation fractions from SCS partially over-

lapped our LOH signature, suggesting a potential mechan-

ism that we investigated using large CENP-A ChIP-seq

datasets [35, 43]. Our results support the hypothesis that

Fig. 4 Cancer chromosome fraction for MAD genes in the GENIE PANET samples. Estimations of the theoretical tumor allelic fraction for MEN1

(red diamond), DAXX/ATRX (red square), and other gene-level mutations (gray circles) for the copy-number model (number of ALT alleles/ploidy)

that best represents the pathologist-estimated purities across the different cohorts. A fraction of 1.0 indicates a homozygous variant, and 0.5 a

heterozygous variant. Any deviations from these values represent variance in the observed allelic fractions
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depletion of DAXX is associated with increased

chromosome-specific ectopic CENP-A deposition, result-

ing in decreased gene expression [50], that correlates with

mis-segregation frequencies. Finally, using the AACR

GENIE dataset [46], we show that MEN1 and DAXX/

ATRX mutational events all preceded the onset of chromo-

somal instability in clinical samples, subsequently resulting

in LOH and whole-genome duplication to propagate

chromosomal stability and increase tumor aggressiveness

in 226 PANETs [8–16]. Overall, we define the molecular

progression mechanisms for an aggressive subtype of

PANETs which is also the first known observations to sup-

port the non-random chromosome mis-segregation theory

[49] in primary clinical tumor specimens.

We observed that non-random mis-segregation of chro-

mosomes in the SW480 colorectal cancer cell line [49]

largely overlaps the LOH chromosomes in PANETs. This

chromosome-specific overlap suggests that merotelic at-

tachment and lagging chromosome formation is the com-

mon underlying mechanism guiding patterns of mis-

segregation. Unequal chromosome and centromere sizes as

well as levels of CENP-A can predispose chromosomes to

merotelic attachment [42]. The “placeholder theory” posits

that H3.3 acts as a placeholder at centromeric domains

during S phase, to be replaced by CENP-A during late G1

[25]. H3.3 deposition at tandem repeat sites in centromeric

and pericentromeric regions [27] is largely guided by the

DAXX-ATRX complex. Disruption of H3.3 deposition is

evident due to the presence of the alternative lengthening

of telomere phenotype exclusively seen in the MAD+

PANETs [4, 24, 51, 52]. Using a dataset produced by Nye

et al. that illustrates mis-localization of ectopic CENP-A in

SW480 cells under DAXX-depleted conditions [35], we

calculated a significant correlation with increased CENP-A

deposition in regions flanking the centromere and mis-

segregation fraction per chromosome. To translate these

findings to PANETs, we observed a region immediately ad-

jacent to the centromeres in LOH chromosomes in two

published PANET datasets that had decreased gene ex-

pression relative to the rest of the chromosome arm. Thus,

we propose that promiscuous CENP-A deposition to flank-

ing centromeric regions is a factor that induces merotelic

attachments, lagging chromosome formation, and the mis-

segregation pattern proposed by Worrall et al.

Fig. 5 Meta-analysis of the CGH datasets for the highly aneuploid PANET tumors (High-CI) against the low aneuploid PANET tumors (Low-CI). The

parameters being compared are the metastasis status of the tumor type (Met+, metastasis present; Met−, no metastasis) and the functional status

(F, functional; NF, non-functional)
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The functional effects of aneuploidy are generally detri-

mental to cellular proliferation [53, 54] and can induce

aneuploidy-associated stresses [55]. Loss of an entire

chromosome can have drastic effects, resulting in slowing

of cell growth [53] but may allow advantages through loss

of tumor suppressor genes (TSG) [56]. Additionally, dupli-

cation of the remaining chromosomal region following a

CN loss could harbor advantageous alterations, allowing

cells to overcome the negative growth effects of chromo-

somal loss [57] or enhance for homozygous expression of

preceding oncogenic mutations [58]. A study by Taylor

et al. illustrates this point in lung epithelial cells where they

used CRISPR-Cas9 to induce loss of chromosome 3p. After

several passages of slow growth, the cells acquired whole-

chromosome duplication to overcome the negative growth

effects incurred from the aberration [57]. PANETs are well

characterized as slow growing neoplasms that are clinically

detectable only when they have metastasized [59]; the initial

steps of disease progression described as near-global LOH

could be an underlying mechanism for this slow growth.

Acquired whole-genome duplication would be the tumor’s

way to alleviate the negative growth effects of MAD-

induced LOH, resulting in a more aggressive tumor that

harbors loss of tumor suppressor genes but is not con-

founded by aneuploidy-associated stresses.

While the sample size of our in-house PANET cohort

is small, we were able to leverage publicly available data-

sets allowing us to create a unifying model of disease

progression to explain the remarkable consistency be-

tween karyotypes. However, due to the nature of this

meta-analysis, we were unable to confidently validate

our epigenetic dysregulation hypothesis due to the ab-

sence of publicly available ChIP-seq of H3.3 and CENP-

A data in MAD+ and MAD− PANETs. Instead, we pro-

vide preliminary results leveraging work in SW480 and

HeLa cells paired with evidence of a repressive gene en-

vironment proximal to centromeres in PANETs to pro-

vide compelling evidence to pursue further in vivo

validation of this disease progression. Furthermore, we

acknowledge that there are minor variations in copy-

number and LOH profiles in the literature [16, 60, 61],

but we hypothesize that these differences are a reflection

of stochastic chromosomal instability events, mutational

profiles allowing for more aneuploidy tolerance (e.g.,

TP53 mutation), or synthetic lethality which may alter

which chromosomal losses are tolerated.

Conclusions
In our study, we observed a conserved trend of MEN1-,

ATRX-, and DAXX-induced chromosome mis-segregation,

leading to the characteristic karyotype of aggressive

PANETs. These findings pave the way for functional valid-

ation studies to recreate the molecular progression of

PANETs in model systems. Understanding the molecular

basis of disease progression towards a more metastatic state

has several benefits, specifically for risk stratification,

treatment design for intermediate progression stages, and

possibly even prophylactic treatment in at-risk individuals.

As loss of heterozygosity appears as the molecular trigger

for metastases, genome duplication acts as a mechanism to

stabilize the genome.

Fig. 6 Proposed molecular progression mechanism for pancreatic neuroendocrine tumors. Normal islet cells acquire a mutation in MEN1, and

ATRX or DAXX which leads to perturbed deposition of H3 histone variants H3.3 and CENP-A at nucleosomes in centromeric sites. This results in

premature sister chromatid separation and loss of one allele, followed by a series of genome duplications
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