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Introduction

The term cerebral amyloid angiopathy (CAA) describes an het-
erogeneous group of biochemically and genetically diverse 
central nervous system (CNS) disorders. All these medical con-
ditions share a characteristic morphological finding on patho-
logical examination, i.e. amyloid fibrils deposited in the walls 
of small to medium-sized, blood vessels mostly arterial. In some 
instances amyloid deposits have been also observed in the cap-
illaries of CNS parenchyma and of the leptomeninges. CAA 
mostly occurs in the sporadic form in the elderly, while rare fa-
milial forms occur in younger patients and are generally lead to 
more severe clinical manifestations. While more than 25 hu-
man proteins or have been found to form amyloid fibrils in 
vivo, only 7 have been described in CNS disorders,1,2 and all 
sporadic forms and most hereditary forms of CAA affecting the 
human brain are of the Aβ type (Aβ-CAA)(Table 1). In Aβ-CAA 
the action of β- and γ-secretases on the amyloid precursor pro-
tein (APP) lead to deposition of amyloid-β (Aβ) peptide, mirror-
ing some aspect of Alzheimer’s disease (AD) patophysiology.3

In this review we will present a summary of existing evi-
dence regarding the epidemiology, genetics and pathogenesis 

of CAA, provide an overview of diagnostic tools available to 
clinical neurologists, as well as summarize current guidelines 
and recommendation for prevention and treatment of CAA-in-
tracerebral hemorrhage (ICH)(See Appendix for literature 
Search criteria).

Historical Perspective

Vascular β-amyloid deposition in the central nervous system 
was first described by Gustav Oppenheim in 1909. Oppenheim 
found foci of necrosis in the brain parenchyma adjacent to hy-
alinized capillary walls in 6 of 14 brains of autopsied individ-
uals with senile dementia and the pathological changes of AD.4 
In 1938, Scholz published the first article focusing solely on 
cerebral vascular abnormalities now recognized as CAA.5 The 
observation that CAA is limited to the vascular media without 
adjacent parenchymal involvement was made in 1954 by Ste-
fanos Pantelakis.6 He also described many of the hallmark 
pathological features of CAA: 1) preferential involvement of the 
small arteries and capillaries of the meninges, cerebral cortex, 
and cerebellar cortex; 2) topographical distribution favoring the 
posterior brain regions; 3) lack of staining of vessels in the white 
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Table 1. Sporadic and familial (hereditary) CAA forms
Amyloid 
peptide 

Precursor 
protein 

Chromo-
some 

Disease Notes 
Hemorrhagic 

stroke 
Aβ APP - Sporadic CAA + 
Aβ APP - CAA related to sporadic AD No increase in lobar ICH risk - 
Aβ APP 21 CAA related to familial AD Associated to presenilin-1 and presenilin-2 mutations - 
Aβ APP 21 CAA in Down syndrome Lobar ICH is rarely observed - 
Aβ APP 21 Hereditary Cerebral 

  Hemorrhage with Amyloidosis:
  Dutch type 

Described in 2 large families from the Netherlands 
Age at onset: 50 years 
Lobar hemorrhages, focal neurological deficits,
  dementia, and leukoencephalopathy 

+ 

Aβ APP 21
 

Hereditary Cerebral Hemorrhage
  with Amyloidosis: Italian type 

Described in 3 Italian families 
Age at onset: 50 years 
Lobar hemorrhages and dementia 

+

Aβ APP 21 Hereditary Cerebral 
  Hemorrhage with Amyloidosis: 
  Flemish type 

Described in a dutch family (discovered in Belgium,
  therefore called “Flemish”) and a British family 
Age at onset: 45 years 
Progressive AD-like dementia, in some 
  patients associated with a lobar hemorrhage 

+/- 

Aβ

 

APP 21 Hereditary Cerebral 
  Hemorrhage with Amyloidosis:
  Iowa type 

Described in a Iowa family and a Spanish family 
Age at onset: 50-66 years 
Memory impairment, expressive language 
  dysfunction, personality changes, myoclonic jerks,
  short-stepped gait, no clinically manifest ICH 
  (family from Iowa) or lobar hemorrhages 
  (family from Spain) 

+/- 

Aβ APP 21 Hereditary Cerebral Hemorrhage
  with Amyloidosis: Piedmont type
 

Described in one family from Piedmont (Italy) 
Age at onset: 50-70 years 
Recurrent lobar hemorrhages, cognitive decline 

+ 

Aβ APP 21 Hereditary Cerebral Hemorrhage
  with Amyloidosis: 
  Arctic (Icelandic) type 

Described in one family from northern Sweden 
Age at onset: -60 years 
Progressive cognitive decline (no strokes) 

- 

ACys Cystatin C

 

20 Hereditary Cerebral Hemorrhage
  with Amyloidosis: Icelandic type
 

Described in 9 sub-families in Iceland 
(one sporadic case in the US) 
Causes systemic amyloidosis 
Age at onset: 20-30 years 
Recurrent lobar hemorrhages 

+ 

ATTR Transthyretin 18 Meningovascular amyloidosis Polyneuropathy is the main clinical symptom
  Rarer findings: ataxia, spasticity and dementia
Systemic amyloidosis 

In some 
families (rare)

AGel Gelsolin 9 Familial Amyloidosis-
  Finnish Type 

Progressive corneal lattice dystrophy, cranial and
  peripheral neuropathy, cutaneous amyloidosis 
Systemic amyloidosis 

- 

PrPSc
 

Prion 
Protein 

20 Gerstmann-Sträussler-
  Scheinker syndrome 

Described in one family 
Progressive cognitive decline 

- 

ABri ABri 
precursor 
protein 

13 Familial British Dementia Described in 4 families 
Age at onset: 45-50 years 
Progressive dementia, cerebellar ataxia, 
  spastic tetraparesis 

- 

ADan ADan 
precursor 
protein 

13

 

Familial Danish Dementia Described in 1 family from Denmark 
Age at onset: 30 years 
Cataracts, deafness, progressive ataxia, dementia 
  (previously known as “heredopatia 
  ophtalmo-oto-encephalica”) 

- 

AD: Alzheimer’s disease, CAA: cerebral amyloid angiopathy, ICH: intracerebral hemorrhage.
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matter; 4) association with increased age and dementia; 5) 
lack of association with hypertension and arteriosclerosis; 6) 
lack of association with amyloidosis of the other organs. Over 
the following 20 years multiple case reports and small series 
suggested an association between CAA and lobar ICH. Okaza-
ki and colleagues published a seminal article in 1979, clarify-
ing the relationship between CAA and lobar ICH.7 They iden-
tified 23 consecutive cases of moderate to severe CAA from au-
topsies at Mayo Clinic (Rochester, MN). A history of lobar, mul-
tiple hemorrhages was very common in these patients. Fibrinoid 
degeneration of the vessel walls with microaneurysm forma-
tion was sometimes seen, as well as a double-barreled vessel 
wall appearance caused by cracking of the arterial media. Based 
on these findings, the authors concluded that CAA was an un-
der-recognized cause of lobar ICH in the elderly, thus provid-
ing the foundation for further exploration of CAA and CAA-
related lobar ICH (CAA-ICH).

Sporadic  
Cerebral Amyloid Angiopathy 

As previously mentioned (Table 1), sporadic CAA mostly occurs 
in the elderly because of Aβ deposition (Aβ-CAA). Aβ is a nor-
mally secreted, -4 kDa, 40 or 42 amino acids in length, proteo-
lytic product of the 677-770 amino acid type 1 integral membrane 
protein referred to as the Aβ precursor protein (AβPP, or more 
commonly APP) encoded by the APP gene on chromosome 
21.8-11 Generation of Aβ from APP requires two proteolytic events, 
a proteolytic cleavage at the amino terminus of the Aβ sequence 
referred to as β-secretase and a cleavage at the carboxyl termi-
nus known as γ-secretase.

Epidemiology
CAA is a frequent pathological finding and a fairly common 
clinical entity in the elderly. As a detectable pathology (regard-
less of severity), cerebrovascular amyloid is present in approxi-
mately 10% to 40% of elderly brains and 80% or more in brains 
with concomitant AD.12 Even when taking only relatively ad-
vanced amyloid pathology in consideration, CAA remains a fre-
quent finding. CAA pathology graded as moderate or severe (see 
below for pathology grading scores) was estimated to be pres-
ent in 2.3% of 65 to 74 year olds, 8.0% in 75 to 84 year olds, and 
12.1% in those over 85 years in analyses of brains from the Har-
vard Brain Tissue Resource Center. Of note, these figures were 
corrected for over-representation of AD referrals.13 An even 
higher estimate of 21% for the prevalence of CAA graded as se-
vere emerged from other analyses of autopsied individuals aged 
85 to 86.14 The role of CAA in cerebrovascular epidemiology is 
of course mostly related to the increased risk for lobar ICH. In-
deed, estimates for the proportion of spontaneous hemorrhages 

in the elderly attributable  to CAA range from 10% to 20% in 
autopsy series to 34% in clinical series.12,15

Pathogenesis
The 40-amino-acid-long Aβ (Aβ 1-40) is more soluble than 
the longer Aβ 1-42 and the two molecules differ in the distribu-
tion in brain and vessel walls. Aβ 1-40 tends to be the major 
form in the amyloid in artery walls in CAA, whereas Aβ1-42 is 
more prominent in the plaques in brain tissue.16,17 It is generally 
accepted that conformational transitions occurring in native sol-
uble amyloid molecules increase their content in β-sheet struc-
tures, thus favoring the formation and deposition of more insol-
uble oligomeric structures. In turn, these deposits trigger a se-
condary cascade of events including, among others, release of 
inflammatory components, activation of the complement sys-
tem, oxidative stress, alteration of the blood-brain barrier (BBB) 
permeability, and cell toxicity.18,19

While both deposited and soluble Aβ molecules are identi-
cal in their primary structure, they exhibit completely different 
solubility and tinctorial properties. Soluble Aβ forms undergo 
a change in conformation (via mechanisms that remains largely 
unknown) resulting in a predominantly β-sheet structure, high-
ly prone to oligomerization, fibrillization and deposition. The 
identification of soluble Aβ species in the systemic circulation, 
brain interstitial fluid and CSF, together with the ability of the 
BBB to regulate Aβ transport in both directions, originally sug-
gested plasma Aβ to be a potential precursor of deposited am-
yloid.20 However, lack of brain lesions in transgenic models ex-
hibiting several fold increased in plasma soluble Aβ strongly 
argues against the sole contribution of circulating species to 
brain deposition.21

Since smooth muscle cells, pericytes and endothelial cells all 
express APP22 and isolated cerebral microvessels and meninge-
al blood vessels are able to produce Aβ23 the cerebral vascula-
ture itself was therefore proposed as a possible source of ce-
rebral Aβ. Nevertheless, the sole contribution of smooth-muscle 
cells to Aβ-CAA is made less likely by the existence of amy-
loid deposits in capillaries (which are devoid of smooth mus-
cle) in CAA patients. In recent years, the hypothesis of a neuro-
nal origin of Aβ and other amyloid proteins has therefore been 
gathering support.22,25-27 It has been proposed that amyloid pro-
duced by neurons is drained along the perivascular interstitial flu-
id pathways of the brain parenchyma and leptomeninges, depo-
siting along the vessels under specific pathologic conditions.28,29

Since no evidence of increased Aβ production has been 
found in sporadic CAA, imbalance between Aβ production and 
clearance is generally considered a key element in the formation 
of amyloid deposits. The amphyphilic nature of Aβ precludes 
its crossing through the BBB unless mediated by specialized 
carriers and/or receptor transport mechanisms. These mecha-
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nisms control the uptake of circulating Aβ into the brain30-36 and 
regulate clearance.37-43 Among receptors involved, Receptor 
for Advance Glycation End-products actively participates in 
brain uptake of free Aβ at the vessel wall level.30 Other recep-
tors are more relevant for the transport of Aβ complexed with 
other molecules: LRP-1 mediates transcytosis of Aβ-ApoE com-
plexes contributing to rapid CNS clearance,41 whereas megalin 
mediates in the cellular uptake and transport of Aβ-ApoJ.36

The hypothesis of defective Aβ degradation, while less ex-
tensively studied as a possible mechanism for amyloid accumu-
lation, should not be overlooked. Neprilysin, endothelin-convert-
ing enzyme, insulin-degrading enzyme, beta-amyloid-convert-
ing enzyme 1, plasmin and matrix metalloproteases are among 
the major enzymes known to participate in brain Aβ catabolic 
pathways.44-46 Reduced levels and/or activity of Aβ degrading 
enzymes favor Aβ accumulation, as documented in murine mod-
els, in which gene deletion of different proteases translate into 
increased levels of Aβ deposition.45,46

Genetics of sporadic CAA
The ApoE ε4 and ε2 alleles are the only genetic risk factors 
robustly associated with risk of developing sporadic Aβ-CAA.47 
Interestingly ApoE ε2, which exerts a protective effect on AD 
risk, increases risk of ICH in Aβ-CAA patients.48,49 ApoE inter-
acts with soluble and aggregated Aβ in vitro and in vivo and is 
therefore likely to be involved in both parenchymal and vas-
cular amyloidosis.50-53 Further studies tested the role of human 
ApoE alleles on the formation of parenchymal and vascular 
amyloid. The presence of the ε4 allele led to substantial Aβ-
CAA with only few parenchymal amyloid deposits. The ε3 al-
lele, however, resulted in almost no vascular and parenchymal 
amyloidosis.54 In young mice, an increased ratio of Aβ 40 : 42 
was observed in brain extracellular pools and a lower Aβ 40 : 
42 ratio in CSF, suggesting that ApoE ε4 causes altered clear-
ance and transport of Aβ within different brain compartments. 
These findings highlight again the importance of a high Aβ 40 : 
42 ratio for the formation of vascular amyloid. Other genetic risk 
factors for Aβ-CAA have been investigated, but their role re-
mains unclear, thus requiring additional research efforts.

Neuropathology

Characteristic	findings
In hematoxylin-eosin stained sections severe CAA can be rec-
ognized by acellular thickening of blood vessel walls, but this 
finding is non-specific for CAA since it occurs in a variety of 
other disorders, including hypertensive angiopathy.55 In CAA, 
Aβ is deposited mainly as amyloid-β fibrils in close contact 
with smooth muscle cells.56,57 Non-fibrillar, monomeric and oli-
gomeric Aβ was also demonstrated inside smooth muscle cells.56 

Depending on the severity of CAA, Aβ depositions have been 
shown primarily in the abluminal portion of the tunica media, 
often surrounding smooth muscle cells, and in the adventitia. 
With increasing severity, Aβ infiltrates all layers of the vessel 
wall, which shows loss of smooth muscle cells. Finally, the vas-
cular architecture is severely disrupted and ‘‘double barreling’’, 
microaneurysm formation, fibrinoid necrosis, and evidence of 
perivascular leakage may be seen.58 Even in very high degrees 
of CAA-related changes, endothelial cells are well preserved 
and usually not affected. Perivascular hemorrhages are frequent 
around blood vessels affected with CAA.

Several authors also reported CAA-associated inflamma-
tion/vasculitis.59,60 Two subtypes of CAA-associated inflamma-
tion have been described so far: a non-vasculitic form called 
perivascular infiltration, which is characterized by perivascu-
lar infiltration of the parenchyma by multinucleated giant cells 
and a vasculitic form called transmural granulomatous angiitis, 
which is characterized by inflammation of the vessel wall with 
the occasional presence of granulomas. Both pathologic forms 
can co-occur, suggesting at least a partial overlap in biological 
mechanisms.

Topographical	distribution
CAA distribution is characteristically patchy and segmental. 
In one given histological slide there may be foci showing ves-
sels with varying degrees of amyloid depositions adjacent to foci 
showing vessels without any amyloid deposition. This phenom-
enon might lead to an under-diagnosis of CAA in postmortem 
examination, as even in severe cases a given histological slide 
might not contain amyloid-laden blood vessels. It has been sh-
own by many authors that CAA is most frequent in the occipi-
tal lobe, followed by either frontal, temporal or parietal lobes, 
respectively. Furthermore, the occipital lobe is not only the site 
most frequently affected with CAA but also most severely so. 
CAA is more rarely seen in the basal ganglia, thalamus, and cer-
ebellum, while both white matter and brainstem are usually 
spared.61-63

Histological	diagnosis
Histological diagnosis of CAA requires use of special staining 
for amyloid under light microscopy. Puchtler alkaline Congo-
red stain has been the standard method of amyloid staining for 
a long time, but since this stain is relatively unstable and has low 
sensitivity, a control staining with positive specimens is abso-
lutely essential.64 Daylon stain (also known as direct fast scar-
let) is more sensitive: it is therefore of greater utility in detect-
ing smaller amounts of amyloid deposition, but requires more 
careful observation because of a known tendency to overstain.64 
Fluorescent microscopy is also useful for the diagnosis of am-
yloidosis. Thioflavin-S is a sensitive stain for amyloid deposi-
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tion, and it has been used from long time along with Congo-red 
staining.65 Immunohistochemistry with fluorescent antibodies 
specific for precursor proteins is also a reliable diagnostic com-
plement.

CAA	severity	grading
Two grading systems for CAA are commonly used in routine 
neuropathology. Olichney et al.66 proposed the scale: 0, no Aβ 
positive blood vessels; 1, scattered Aβ positivity in either lep-
tomeningeal or intracortical blood vessels; 2, strong, circumfer-
ential Aβ positivity in either some leptomeningeal or intracor-
tical blood vessels; 3, widespread, strong, circumferential Aβ 
positivity in leptomeningeal and intracortical blood vessels; 4, 
same as 3 with additional dyshoric changes. Vonsattel et al.67 
graded CAA with respect to the severity of pathological chang-
es in a given blood vessel: mild, amyloid is restricted to the tu-
nica media without significant destruction of smooth muscle 
cells; moderate, the tunica media is replaced by amyloid and is 
thicker than normal; severe, extensive amyloid deposition with 
focal wall fragmentation or even double barreling of the vessel 
wall, microaneurysm formation, fibrinoid necrosis, and leakage 
of blood through the blood vessel wall.

Clinical features
CAA can be completely asymptomatic, especially since ap-
proximately 50% of individuals over 80 years of age display 
some pathology evidence of amyloid deposition as part of nor-
mal aging processes. However, amyloid deposition in cerebral 
blood vessels does favor development of several clinical con-
ditions. Amyloid deposition can weaken cerebral blood ves-
sels walls, causing rupture and therefore leading to both asymp-
tomatic microbleeds and lobar ICH. Amyloid deposits can also 
obliterate the vessel lumen, leading to ischemia and related clin-
ical manifestations (cerebral infarction, “incomplete infarction”, 
leukoaraiosis). Focal neurological deficits, disturbances of con-
sciousness, progressive cognitive decline, dementia, and death 
can occur as a consequence of these vascular mechanisms (al-
beit additional biological processes are also likely to be impli-
cated).15

CAA-related ICH (CAA-ICH) accounts for 5-20% of all spon-
taneous (non-traumatic) ICH in elderly subjects. CAA-ICH 
tends to be lobar in location, due to the involvement of super-
ficial cortical and leptomeningeal vessels, and often manifests 
as recurrent or multiple simultaneous bleeding events, because 
of the widespread nature of the angiopathy. Hypertension is 
less commonly associated with lobar hemorrhages than with 
non-lobar ICH.15 Increasing evidence is emerging that CAA may 
be a risk factor for thrombolysis-related intracerebral hemor-
rhage. CAAH and thrombolysis-related intracerebral hemor-
rhage share some clinical features, such as predisposition to lo-

bar or superficial regions of the brain, multiple hemorrhages, 
increasing frequency with age, and an association with demen-
tia.68 In vitro work showed that accumulation of amyloid-beta 
peptide causes degeneration of cells in the walls of blood ves-
sels, affects vasoactivity, and improves proteolytic mechanisms, 
such as fibrinolysis, anticoagulation, and degradation of the ex-
tracellular matrix.68

Clinical diagnosis
While hemorrhagic stroke is the defining clinical characteristic 
raising concern for CAA, there are no pathognomonic clinical 
features of CAA-ICH. Headache, focal neurological deficits, 
seizures and altered level of consciousness occur in all ICH pa-
tients, based on hematoma size and location rather than patho-
physiological mechanisms. Spontaneous bleeding due to CAA, 
as previously mentioned, can also be small and asymptomatic 
and is commonly referred to as a “microbleed”.69,70 Microbleeds 
are part of the integrated clinical and imaging assessment lead-
ing to CAA diagnosis during life (see below), and have also been 
shown to correlate with risk of cognitive decline, functional de-
pendence and lobar ICH recurrence.71 A recent study, based on 
assessment of microbleeds and leukoaraiosis in CAA-ICH and 
hypertensive ICH patients, suggested that both pathophysiolog-
ical mechanisms might be present simultaneously in up to 25% 
of ICH patients.72

A definitive CAA diagnosis can only be formulated after his-
tological investigation of affected brain tissue, obtained at autop-
sy or via brain biopsy. In practice evidence of CAA is very often 
found unexpectedly at post-mortem investigation. Non-invasive 
CAA diagnostic criteria have been therefore developed and re-
fined in the past decade, in order to both improve and standard-
ize diagnosis during life (Table 2).73 Additional refinement of 
these criteria based on inclusion of superficial siderosis among 
imaging markers of CAA has been recently proposed.74 Further-
more, positron emission tomography imaging with the beta-
amyloid-binding compound Pittsburgh Compound B has 
been recently proposed as a potential noninvasive method for 
CAA detection in living subjects.75 A recent report suggested 
that severity of Pittsburgh Compound B retention is associated 
with risk of recombinant tissue-type plasminogen activator-as-
sociated intraparenchymal hemorrhage.76

Prevention and treatment
No evidence-based treatment or preventive strategy for CAA 
or CAA-ICH exists at this time. Corticosteroid treatment has 
been shown in some case reports and small series to amelio-
rate symptoms associated with CAA-related inflammation, pos-
sibly by reducing vasogenic edema.77 Other immunosuppressant 
treatments have been reported to influence the course of inflam-
matory CAA, but available evidence is extremely limited.78 How-
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ever, recently reported results from the PROGRESS trial sug-
gests that blood pressure control is likely to reduce risk of CAA-
ICH recurrence.79 While CAA has been shown to represent a risk 
factor for thrombolysis-associated ICH and warfarin-related 
hemorrhagic stroke, no clear tools for risk prediction and strati-
fication have yet been developed and validated. In particular, 
there is growing interest in the possible role of leukoaraiosis and 
microbleeds as surrogate markers for CAA severity, and there-
fore as possible tools for prediction of CAA-ICH.80 Of note, a re-
cent study found an association between aspirin use and CAA- 
ICH recurrence, providing preliminary evidence of a possible as-
sociation between microbleed burden and re-bleeding risk due to 
antiplatelet treatment.81 Similarly, in light of recent evidence as-
sociating statin treatment with increased risk for ICH recurren-
ce additional research is necessary in order to determine the risks 
and benefits of lipid-loweirng treatment for CAA patients.82

Hereditary  
Cerebral Amyloid Angiopathy

Overall, hereditary forms of CAA (Table 1) are generally more 
severe than sporadic forms and often characterized by earlier 
age of onset, more severe clinical course, and earlier age of neu-
rologic devastation and/or death.83-89 Unlike sporadic CAA, he-

reditary forms are exceedingly rare and tend to present in se-
lected families in the form of autosomal dominant disorders. 
Both sporadic and hereditary CAA often cause cognitive im-
pairment, but lobar ICH is not a consistent feature of all heredi-
tary CAA forms. Specifically, hereditary CAA can be further 
classified in Aβ and non-Aβ forms, based on the accumulating 
peptide (or fragment). While involvement of leptomeningeal or 
cerebral vessels has been described in all familial syndromes, 
lobar ICH rarely dominates the clinical picture of non-Aβ CAA, 
with the remarkable exception of the non-Aβ Icelandic type. 
As for familial Aβ forms (Fig. 1), although some alterations in 
APP processing have been associated with corresponding mu-
tations (particularly the Flemish mutation), their primary char-
acteristic appears to be a modification of biochemical and cell 
biological properties of the peptide itself, including conforma-
tion, aggregation and fibril generation. Of note, APOE seems to 
play less of a significant role in hereditary than sporadic CAA, 
possibly reflecting the overriding role of the autosomal domi-
nant Aβ mutation in determining Amyloid accumulation and 
therefore disease risk and clinical course.

Conclusion

CAA presents in both sporadic and hereditary familial forms. 

Table 2. Boston criteria for CAA diagnosis

1. Definite CAA 
Full postmortem examination demonstrating: 

• Lobar, cortical, or corticosubcortical hemorrhage 
• Severe CAA with vasculopathy* 
• Absence of other diagnostic lesion 

2. Probable CAA with supporting pathology 
Clinical data and pathologic tissue (evacuated hematoma or cortical biopsy) demonstrating: 

• Lobar, cortical, or corticosubcortical hemorrhage 
• Some degree of CAA in specimen 
• Absence of other diagnostic lesion 

3. Probable CAA 
Clinical data and MRI or CT demonstrating: 

• Multiple hemorrhages restricted to lobar, cortical, or corticosubcortical regions (cerebellar hemorrhage allowed) 
• Age ≥55 years 
• Absence of other cause of hemorrhage†

4. Possible CAA 
Clinical data and MRI or CT demonstrating: 

• Single lobar, cortical, or corticosubcortical hemorrhage 
• Age ≥55 years 
• Absence of other cause of hemorrhage†

INR >73.0 or other nonspecific laboratory abnormalities permitted for diagnosis of possible CAA.
*Von sattel JP, Myers RH, Hedley-Whyte ET, Ropper AH, Bird ED, Richardson EP Jr. Cerebral amyloid angiopathy without and with ce-
rebral hemorrhages: a comparative histological study. Ann Neurol 1991;30:637-649,67 †Other causes of intracerebral hemorrhage in-
clude: excessive warfarin dosing (INR >3.0), antecedent head trauma or ischemic stroke, CNS tumor, vascular malformation, CNS 
vasculitis, blood dyscrasia, coagulopathy.
CAA: cerebral amyloid angiopathy.
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While hereditary forms are rare in the population and tend to af-
fect younger individuals, sporadic CAA is a common disease of 
the elderly, its incidence and severity increasing with age. The 
emphasis placed on CAA in medical practice and research is 
justified by its association with cognitive decline, dementia and, 
more importantly, spontaneous lobar ICH. In the past decade a 
vast body of knowledge has been gathered on CAA pathogene-
sis, and efficient clinical and imaging tools have been devel-
oped to allow reliable diagnosis in life. However, further research 
efforts are required in order to identify targets for therapeutic 
and preventive interventions, aimed at limiting mortality, dis-
ability and neurological compromise associated with this CAA 
and CAA-related ICH.
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