
Cerebral amyloid angiopathy and Alzheimer disease — one 

peptide, two pathways

Steven M. Greenberg1,*, Brian J. Bacskai1, Mar Hernandez-Guillamon2, Jeremy Pruzin3, 

Reisa Sperling3, Susanne J. van Veluw1

1Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, 

MA, USA

2Neurovascular Research Laboratory, Institut de Recerca, Hospital Vall d'Hebron, Universitat 

Autònoma de Barcelona, Barcelona, Spain

3Center for Alzheimer Research and Treatment, Brigham & Women's Hospital, Massachusetts 

General Hospital, Harvard Medical School, Boston, MA, USA

Abstract

The shared role of amyloid-β (Aβ) deposition in cerebral amyloid angiopathy (CAA) and 

Alzheimer disease (AD) is arguably the clearest instance of cross-talk between neurodegenerative 

and cerebrovascular processes. The pathogenic pathways of CAA and AD intersect at the levels of 

Aβ generation, its circulation within the interstitial fluid and perivascular drainage pathways and 

its brain clearance, but diverge in their mechanisms of brain injury and disease presentation. Here, 

we review the evidence for and pathogenic implications of interactions between CAA and AD. 

Both pathologies seem to be driven by impaired Aβ clearance, creating conditions for a self-

reinforcing cycle of increased vascular Aβ, reduced perivascular clearance and further CAA and 

AD progression. Despite the close relationship between vascular and plaque Aβ deposition, 

several factors favour one or the other, such as the carboxy-terminal site of the peptide and specific 

co-deposited proteins. Amyloid-related imaging abnormalities that have been seen in trials of anti-

Aβ immunotherapy are another probable intersection between CAA and AD, representing 

overload of perivascular clearance pathways and the effects of removing Aβ from CAA-positive 

vessels. The intersections between CAA and AD point to a crucial role for improving vascular 

function in the treatment of both diseases and indicate the next steps necessary for identifying 

therapies.
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ToC summary

Amyloid-β deposition underlies the pathogenesis of cerebral amyloid angiopathy (CAA) and 

Alzheimer disease (AD), but the disease pathways differ. Here, Greenberg et al. consider the 

interactions between CAA and AD, the factors that determine which disease pathway transpires, 

and the implications for therapeutic development.

Introduction

The contemporary understanding of age-related cognitive impairment centres on the 

interplay between neurodegenerative disease and cerebrovascular disease. A substantial 

body of literature suggests that cognitive impairment in the ageing brain is typically driven 

by overlapping neurodegenerative and cerebrovascular pathologies1. This overlap is 

demonstrated by findings from the clinical–pathological Religious Orders Study and 

Memory and Aging Project2, in which Alzheimer disease (AD) pathology was the most 

prevalent pathology (present in ~65% of brains), but four of the next five most prevalent 

were vascular pathologies: gross ischaemic infarcts, moderate-to-severe cerebral amyloid 

angiopathy (CAA), atherosclerosis and arteriolosclerosis. Each of the vascular pathologies 

was present in >30% of brains. When present, each accounted for a mean of 20–30% of an 

individual’s age-related cognitive decline. Knowledge that overlap between 

neurodegenerative and vascular pathologies has a role in cognitive impairment affects 

prevention strategies. Indeed, over the past 3–4 decades, the age-specific incidence of 

dementia in developed countries has declined3 in parallel with improvements in blood 

pressure control and vascular health, suggesting that that these improvements have at least 

partly reduced the vascular contribution to cognitive impairment and dementia (VCID).

Interactive effects of neurodegenerative and cerebrovascular disease on cognition certainly 

result from the cumulative brain injuries caused by each process. However, at a more 

mechanistic level, the two processes might also interact through cross-talk between 

neurodegenerative pathways and the blood vessels4. The most clear-cut examples of 

mechanistic interactions are seen in CAA and AD. CAA involves cerebrovascular deposition 

of amyloid-β (Aβ), which is also the primary constituent of neuritic plaques in AD (Fig. 1). 

The two conditions often overlap, presumably because of the shared role of Aβ. CAA might 

also contribute to the pathogenesis of AD by affecting perivascular drainage, a major route 

of Aβ clearance from the brain5. Given that overlap between sporadic CAA and AD is 

high6,7, virtually every clinical trial of treatment for sporadic AD or CAA can be considered 

as a trial for treatment of both, underlining the importance of identifying the interactions 

between these two processes in disease pathogenesis.

In this Review, we summarize the current understanding of the relationship between CAA 

and AD, how the common factor of Aβ deposition can generate two different disease 

pathways, how each pathology affects the other, and how the two pathologies together 

promote cognitive impairment and neurological dysfunction. We focus on the pathological 

and pathogenic similarities and differences between CAA-related and AD-related brain 

injury, the central role of perivascular clearance in accumulation of Aβ in the brain, the 

biochemical and genetic features that favour deposition of Aβ in the vessels or in plaques, 
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and the potential role of CAA in the development of amyloid-related imaging abnormalities 

(ARIA) that have been identified as major adverse effects of anti-Aβ immunotherapy.

Brain injury in CAA and AD

CAA and AD pathology frequently co-occur in the same brain, presumably because Aβ is 

pathogenic in both. For example, in an autopsy analysis of 404 brains from individuals in the 

Religious Orders Study (mean age at death 86.5 ± 7.0 years), the correlation coefficient 

between CAA severity and AD severity was 0.68 (ref.6). Another autopsy study of 3,976 

brains in the US National Alzheimer’s Coordinating Center database (mean age at death 

83.2 ± 8.4 years) revealed that the pathological grade of CAA was moderate to severe in 

5.3% of brains with no neuritic plaques, 16.1% of brains with mild neuritic plaques, 31.7% 

of brains with moderate neuritic plaques, and 45.3% of brains with severe neuritic plaques7. 

Similarly, use of lobar cerebral microbleeds as a neuroimaging marker of CAA8 has shown 

that the prevalence and incidence of these lesions is increased in symptomatic patients with 

AD and cognitively normal individuals who are positive for Aβ on PET imaging, suggesting 

that CAA-related vessel rupture occurs in the presence as well as the absence of AD9. These 

examples show that, though CAA and AD do not occur in perfect lockstep7, their co-

occurrence far exceeds that of other vascular and neurodegenerative pathologies.

The mechanisms by which AD and CAA lead to brain injury largely do not seem to overlap, 

however. The precise mechanisms of AD-related brain injury remain unclear10, but seem to 

centre on Aβ-triggered loss of synapses and neurons, normally measured as a loss of cortical 

tissue, and the development of hyperphosphorylated tau-containing neurofibrillary lesions, 

which can now be detected with PET11,12,13. Each measure correlates with cognitive 

performance in Aβ-positive individuals14,15.

By contrast, CAA-related brain injuries seem to arise from blood vessel dysfunction16, 

either via loss of vessel integrity and haemorrhage or via loss of normal blood supply and 

ischaemia. CAA-related haemorrhagic lesions include large symptomatic intracerebral 

haemorrhages, small (mostly asymptomatic) cerebral microbleeds, and bleeding into the 

cortical sulci (convexity subarachnoid haemorrhage or cortical superficial siderosis). T2*-

weighted MRI detects these haemorrhagic markers with high sensitivity, enabling them to 

form the basis of the Boston Criteria for CAA8. The primary non-haemorrhagic (presumed 

ischaemic) forms of brain injury in CAA show up as white matter hyperintensities on T2-

weighted MRI, structural disconnection measured with diffusion-tensor MRI, and cerebral 

microinfarcts. These non-haemorrhagic brain injuries, particularly loss of structural 

connectivity17, seem to correlate most directly with cognitive impairment and slower gait 

speed in CAA, suggesting that disconnection has a primary role in vascular cognitive 

impairment and dementia18. A recent investigation of the underlying anatomical basis of 

reduced structural connectivity in CAA revealed potential contributions from axonal loss, 

myelin loss and cerebral microinfarcts19; the latter is the most difficult to detect in vivo but 

is likely to be the most abundant focal CAA-related brain lesion20. Besides overt vascular or 

perivascular inflammation associated with an autoimmune subtype of CAA21, inflammation 

does not seem to be a major component in CAA-related microhaemorrhage or 

microinfarction22.
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Despite the broad distinctions between neurodegenerative brain injury in AD and vascular 

brain injury in CAA, evidence suggests some overlap in pathogenic mechanisms. For 

example, cerebrovascular dysfunction, which is one of the earliest detectable abnormalities 

in sporadic and hereditary CAA23–25, has also been identified as an early step in AD 

pathogenesis26. Conversely, tau deposition is generally not a prominent feature of CAA 

pathology but has been observed around Aβ-laden vessels in sporadic and hereditary 

CAA27. In addition, brain atrophy and cortical thinning seem not to be AD-specific 

neuroimaging markers but also features of cerebrovascular disease, including CAA28. From 

a clinical standpoint, the presence of advanced CAA in AD is associated with greater 

cognitive impairment29 and/or faster cognitive decline30, indicating shared contributions to 

clinical dysfunction.

Pathogenic mechanisms

Aβ clearance pathways

Pathways that are known to be involved in clearing soluble Aβ from the brain include 

transport across the blood–brain barrier (BBB), phagocytosis, enzymatic degradation and 

perivascular drainage5. The extent to which each of these pathways contributes to 

elimination of Aβ from the brain is unclear, but abnormal perivascular drainage of Aβ from 

interstitial fluid is believed to have a major role in the pathogenesis of CAA and AD.

In studies published in the 1980s and 1990s, injection of tracers into the brains of rats 

revealed that interstitial fluid drains alongside intracortical arterioles and leptomeningeal 

arteries and ends up in extracranial lymph nodes31–33. Neuropathological studies of brains 

from patients with AD have shown that accumulation of Aβ around arteries is fivefold more 

common than around veins and that Aβ is first deposited at the periphery of arterioles, at the 

site of putative interstitial fluid drainage pathways34. These observations support the 

hypothesis that Aβ exits the brain via perivascular pathways and that reduced perivascular 

clearance (rather than overproduction of Aβ) is a shared pathogenic mechanism in CAA and 

AD34–36. Further tracer studies of this putative exit route have suggested that fluid gathers 

around capillaries and leaves the brain along intramural peri-arterial drainage (IPAD) 

pathways between the smooth muscle cell basement membranes in the tunica media of 

arterioles and arteries37,38; these pathways match the predominant distribution of Aβ 
deposition in CAA39.

An alternative proposed route of perivascular drainage of the interstitial fluid is via the 

glymphatic system40–42. This pathway, which has mainly been described in the context of 

cerebrospinal fluid (CSF)–interstitial fluid exchange, involves CSF entering the brain 

alongside arteries, mixing with interstitial fluid and exiting the brain alongside veins. The 

movement of fluid might depend on the astrocytic water channel aquaporin-4, which serves 

as the primary channel for convective flow of fluid from the peri-arterial space into the 

interstitial space and ultimately the peri-venous compartment43–45. Experiments in 

aquaporin-4 knockout mice and postmortem human brain tissue showed that tracer clearance 

was reduced in the absence of aquaporin-4 and aquaporin-4 levels were reduced in astrocytic 

endfeet in the presence of CAA, suggesting that glymphatic clearance can fail in AD and 
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CAA as a result of aquaporin-4 mislocalization and a consequent decrease in Aβ 
clearance45,46.

Differing findings about the specific patterns of drainage (peri-arterial or peri-venous) in 

IPAD and the glymphatic system could be attributed to different experimental procedures 

(reviewed elsewhere47,48, and this remains a topic for ongoing studies38,45,47,49. The two 

mechanisms could coexist for different types of convective fluid movements. Both models 

indicate the importance of perivascular drainage pathways in the pathophysiology of CAA 

and AD, although IPAD better fits the pattern of Aβ deposition observed in vessels in post-

mortem human brains.

Despite consensus that fluid drainage from the brain relies on cardiac output37,49, the exact 

mechanism responsible for perivascular clearance is incompletely understood. Arterial 

pulsations generated by the heart have been suggested as a potential motive force49–52, but 

other models have suggested that these small pulsations cannot create the necessary gradient 

to push fluid towards the pial surface along arteries (or veins)53,54. An alternative is 

vasomotion generated by larger, spontaneous, low-frequency contractions and dilations of 

smooth muscle cells55,56, and a role for this motive force is supported by accumulating 

evidence54,57. Additional studies are needed to unravel the contributions of arterial 

pulsations and vasomotion58, and advances in contrast-enhanced MRI could improve 

visualization of clearance pathways in humans in vivo59,60, an important development 

towards translating experimental observations to the clinical setting.

Interference with perivascular clearance as a result of vascular Aβ deposition in CAA could 

establish a self-reinforcing cycle of reduced clearance, increased Aβ deposition, and 

consequent loss of vascular smooth muscle cells (Fig. 2). This self-reinforcing mechanism 

would exacerbate AD pathology, owing to reduced Aβ clearance, and CAA-related vessel 

wall breakdown, vascular lesions and tissue injury. In vivo studies have shown that 

perivascular clearance and evoked vascular reactivity (functional hyperaemia) is reduced in 

mice with CAA57,61,62. In patients with CAA, reduced evoked vascular reactivity in 

response to visual stimulation has also been observed, assessed by measurement of the 

blood-oxygen-level dependent signal in the visual cortex23–25. Further evidence for reduced 

perivascular clearance in patients with CAA comes from observation of abnormally enlarged 

perivascular spaces in the subcortical white matter on in vivo MRI63,64, correlating with a 

high Aβ burden in the overlying cortex65. Furthermore, topographical colocalization of 

enlarged perivascular spaces and cortical microbleeds has been observed in patients with 

CAA66.

Several vascular pathologies other than CAA also seem to impair perivascular clearance and 

could be important in the pathophysiology of AD and CAA. For example, impaired 

clearance was observed in mice after induced transient hypertension49, vessel occlusions or 

microinfarcts61,67,68, in line with observations that capillary CAA downstream of occluded 

arterioles was increased in human post-mortem tissue69. Furthermore, the detrimental effects 

of vascular pathologies on Aβ clearance from the brain are probably exacerbated by ageing, 

which involves thickening of vessel walls and reductions in vasoactivity68,70,71. Evidence 

from mouse and human studies suggests that clearance is also affected by disrupted sleep 
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cycles72,73, with sleep deprivation causing increased brain concentrations of Aβ74,75. A 

proposed explanation for these intriguing findings is that sleep induces increases in 

interstitial space volume, leading to increased efflux of solutes, including Aβ72. Therefore, 

prevention of age-related vascular dysfunction and cerebrovascular pathologies at an early 

age and promotion of healthy sleep habits are plausible approaches to maximizing 

perivascular clearance and delaying onset of Aβ accumulation in the brain. Similarly, 

therapeutic targeting of vascular smooth muscle cells is an interesting possibility for 

promoting healthy perivascular clearance, thereby reducing the risk of AD and cognitive 

decline with increasing age.

Aβ deposition

Neuropathological evidence shows that Aβ is initially deposited in the neocortex of the brain 

as CAA and as parenchymal plaques76,77. Parenchymal pathology subsequently expands 

into the allocortex, thalamus and basal ganglia, whereas vascular Aβ spreads to allocortical 

areas and the cerebellum76,77. Leptomeningeal and parenchymal blood vessel Aβ deposition 

usually affects the posterior lobar brain regions (particularly occipital) and rarely affects the 

deep grey nuclei, white matter and brainstem77. When Aβ deposition occurs in brain 

capillaries, the condition is classified as CAA type I; CAA without capillary involvement is 

classified as CAA type II78. CAA type I tends to be widespread, especially in the neocortex 

and hippocampus77,79. CAA type I has been specifically associated with neuritic plaques 

and severe AD pathology79,80.

The characteristically patchy and segmental distribution of CAA pathology81 suggests that 

vascular Aβ preferentially accumulates at sites of initial Aβ deposition, or ‘seeding’. This 

preferential accumulation has been observed directly in transgenic mice by use of serial in 

vivo imaging of CAA progression82. More explicit evidence for a prion-like role of Aβ 
seeds in triggering CAA comes from animal83 and human84,85 studies in which exogenous 

exposure to Aβ from sources such as pituitary gland extract or a cadaveric graft can trigger 

early onset CAA. These findings suggest that amyloid seeding and subsequent expansion is 

a mechanism of initiation and progression of sporadic CAA, though on the basis of 

anecdotal evidence, exposure to contaminated tissue as a cause of CAA seems to be 

extremely rare.

Aβ peptide length—Although Aβ is the main component of neuritic plaques and of CAA 

pathology, the length of Aβ peptides that form the deposits seems to differ between the 

lesions (Table 1). Peptides that extend to carboxy position 42 (Aβ42) are mainly deposited in 

neuritic plaques, whereas shorter Aβ40 peptides are the predominant forms deposited in the 

walls of leptomeningeal and cortical arteries and, occasionally, veins86–88. Vascular deposits 

also contain Aβ42, but the Aβ40:Aβ42 ratio is higher than that in plaques89. However, the 

Aβ40:Aβ42 ratio in capillary deposits is lower than in arteries and veins, and is equivalent to 

that in neuritic plaques89,90.

The mechanisms that underlie preferential deposition of Aβ40 in vessel walls and Aβ42 in 

plaques and capillaries have not yet been elucidated. One hypothesis is that vascular Aβ 
originates from a different source to Aβ in plaques and is generated locally, principally in 
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smooth muscle cells91,92. However, evidence from transgenic mouse models demonstrates 

that Aβ with a common neuronal origin can cause CAA and parenchymal Aβ plaques93,94, 

indicating that neuron-derived Aβ can migrate to and accumulate in the vasculature far from 

its production site. Given that Aβ42 is less soluble and forms fibrils faster than shorter Aβ 
peptides95, it is more likely to be retained in the parenchyma and initiate insoluble plaque 

nucleation. By contrast, the more soluble Aβ40 can diffuse along perivascular drainage 

pathways to accumulate in the walls of vessels. Nevertheless, evidence suggests that Aβ42 is 

still the first species to be deposited in the vessel wall96. Other Aβ variants, including N-

terminal and C-terminal truncated Aβ peptides and species that contain post-translational 

modifications (Table 1), have also been identified in human brain tissue, though no specific 

pathogenic role in CAA has yet been identified for any of these variants. Various analytical 

methods suggest that truncated Aβ species and Aβ that is pyroglutamate-modified at Glu-3 

segregate similarly to full-length, unmodified peptides, whereas species that end at position 

41 or before are preferentially deposited in vessels88,97.

Genetic influences—Mutations in the APP gene that encodes amyloid precursor protein 

can also determine the conformation and deposition sites of Aβ (Table 1). Mutations in APP 

that flank the Aβ coding region generally increase relative or total levels of Aβ42 and 

therefore predispose to formation of neuritic plaques and phenotypes associated with early 

onset AD98. By contrast, APP mutations located within or just outside the Aβ coding region 

induce a clinicopathological phenotype of prominent CAA. Such a mutation causes the 

autosomal dominant disorder of Dutch-type hereditary CAA (D-CAA, also known as 

hereditary cerebral haemorrhage with amyloidosis — Dutch type), which is clinically 

characterized by early-onset recurrent haemorrhagic strokes and dementia99. The cause is a 

nucleotide change at APP codon 693 that results in a single amino acid substitution 

(Glu693Gln) at Aβ position 22 (ref.100). In patients with D-CAA, leptomeningeal and 

cortical blood vessels are affected by severe CAA with diffuse parenchymal Aβ deposits but 

few or no dense-core plaques101.

Other mutations have also been identified at Aβ position 22, including the Artic mutation 

(Glu693Gly)102, the Italian (Glu693Lys)103 mutation, and mutations have also been 

identified at Aβ positions 21, 23 and 34 within the Aβ sequence, — the Flemish 

(Ala692Gly)104, Iowa (Asp693Asn)27 and Piedmont (Leu705Val)105 mutations, respectively. 

Each of these variants causes a common neuropathological phenotype characterized by 

severe CAA, and the Arctic and Flemish mutations also result in parenchymal fibrillar Aβ 
deposits106,107. Notably, in patients who carry these familial variants, predominant 

deposition of Aβ40 species is usually seen in cortical and leptomeningeal arteries without an 

overall increase in Aβ production103,107–109, also the case in sporadic CAA. The clinical 

spectrum of these familial CAA forms varies, and includes cerebral haemorrhages, 

ischaemic brain injury and dementia103,105,110,111.

Extensive investigations have been conducted to determine the pathogenic mechanisms that 

explain the differences in phenotypes induced by the vasculotropic Aβ peptides112–116. This 

work has shown that the Aβ peptide that contains the Dutch substitution (AβDutch) forms 

more fibrils in vitro than the wild-type peptide112,117 and assembles on the surface of 

cerebrovascular smooth muscle cells, where it induces a pathological response, owing the 
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abnormal charge of the peptide113. Results of other studies have shown that AβDutch is 

more resistant to proteolytic degradation118,119 and less efficiently cleared across the BBB 

than wild-type Aβ120. Observations from a transgenic mouse model of D-CAA further 

suggest that the Dutch mutation promotes Aβ deposition in the cerebral vasculature, 

possibly by increasing the Aβ :Aβ42 ratio94,115 through a currently undefined mechanism.

Increased APP gene dosage also seems to be sufficient to induce CAA; the condition 

develops with high penetrance and relatively early onset among individuals with APP 

duplication121,122 or Down syndrome (in which the chromosome that carries AAP is present 

in three copies)123. In addition, prominent vascular Aβ deposition has been observed in 

some patients with familial AD who have mutations in the PSEN1 or PSEN2 genes, which 

encode presenelin-1 and presenelin-2, respectively124–126. Evidence suggests that mutations 

in PSEN1 at positions beyond codon 200 cause more severe CAA pathology127 and more 

parieto-occipital white matter hyperintensities on MRI128 than do mutations at positions 

before codon 200, raising the possibility that particular alterations in presenilin activity 

favour vascular Aβ pathology.

APOE is the only susceptibility locus for sporadic CAA that has been identified consistently 

in genetic analyses129,130. In these analyses, CAA has generally been identified according to 

lobar location of intracerebral haemorrhage rather than by MRI detection of strictly lobar 

microbleeds, as the requirement for MRI would limit sample size. As a consequence, the 

results might be affected by diagnostic misclassification. Another approach has been to 

analyse correlates of CAA pathology in postmortem brains, but two such studies have 

produced discordant results.

Analysis of 2,807 brains with pathologically graded CAA found an association with APOE 

but no other loci identified in genome-wide association studies (GWAS) and none of 21 AD-

linked loci identified in previous GWAS131. Another candidate-gene analysis of 29 AD risk 

loci in 256 brains from individuals aged ≥85 years found at least nominal (P <0.05) 

associations (including results from imputed genotypes) of 20 loci with noncapillary CAA 

and 15 with capillary CAA; both pathological measures were strongly associated with 

APOE132. Determining the basis for the differences in these results represents an important 

question for future large-scale studies.

Co-deposited proteins and apolipoproteins—Aβ that is deposited in neuritic plaques 

and vessels is accompanied by Aβ-associated proteins, including complement proteins, 

serum amyloid P component, α1-antichymotrypsin, glycosaminoglycans, matrix 

metalloproteinase 9 (MMP9) and various apolipoproteins, such as apolipoprotein E, 

apolipoprotein J (also known as clusterin) and apolipoprotein A-I133–145 (Table 1). When, 

how and at what concentrations these associated proteins are co-deposited with Aβ remain 

to be determined, but some of these components can accelerate or inhibit the formation of 

Aβ fibrils146–150.

Apolipoprotein E is a principal component of both neuritic plaques and CAA151,152 and has 

been implicated in the pathogenesis of these disorders by evidence that the APOE*ε4 allele 

is a major risk factor for both AD153,154 and CAA155,156, that APOE*ε4 is associated with 
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total and vascular Aβ levels157 and that APOE* ε2 is a risk factor for haemorrhagic 

CAA153–155. The APOE*ε2 allele is protective in AD158. The mechanistic basis of these 

associations might relate to the fact that binding of Aβ to apolipoprotein E modulates 

clearance of the peptide across the BBB159. Evidence suggests that this process is 

apolipoprotein E isoform-specific — apolipoprotein E ε4 tends to change the pathway of Aβ 
clearance from the low-density lipoprotein receptor-related protein 1 (LRP1) pathway to the 

less efficient very-low-density lipoprotein (VLDL) receptor, whereas apolipoprotein E ε2 

and ε3 mediate faster clearance via both LRP1 and VLDL receptor159. Other proposed 

mechanisms for apolipoprotein E isoform-specific effects on Aβ deposition include direct 

competition for clearance pathways160, effects on peptide aggregation and fibrillogenesis161, 

and inhibition of Aβ-induced MMP9 activity162.

The absence of murine apolipoprotein E in a mouse model of cerebral β-amyloidosis 

delayed parenchymal deposition of fibrillar Aβ and development of CAA163,164, but the 

expression of human apolipoprotein E in other transgenic mouse lines prevented Aβ 
accumulation through a mechanism that depended on the apolipoprotein E isoform165,166. 

Further studies found that expression of mutant amyloid precursor protein and human 

apolipoprotein E ε4 in mice led to redistribution of Aβ deposition to the cerebral vessels167, 

and analysis of mouse apolipoprotein E and human apolipoprotein E ε4 in the same 

transgenic mouse brain showed that mouse apolipoprotein E co-localized with plaques 

whereas human apolipoprotein E ε4 co-localized with and promoted cortical (though not 

leptomeningeal) CAA168. In addition to confirming that mouse and human apolipoprotein E 

differ, the latter study suggests that apolipoprotein E is differentially involved in the 

formation of plaques or CAA in blood vessels at different locations. Interestingly, APOE 

genotype seems to influence Aβ deposition in different blood vessel types in the human 

brain—APOE*ε4 expression is associated with capillary CAA type I, whereas APOE*ε2 

expression is associated with CAA type II78,169.

As is the case for apolipoprotien E, apolipoprotein J is co-deposited with fibrillar Aβ in 

cerebrovascular and parenchymal lesions141,170,171. Apolipoprotein J interacts with Aβ to 

prevent Aβ aggregation146,172,173, an effect that reportedly depends on the 

Aβ:apolipoprotein J ratio174. In a study of the APP–presenilin 1 transgenic mouse model, 

apolipoprotein J deficiency reduced the number of parenchymal Aβ plaques and increased 

vascular Aβ deposition175. Apolipoprotein J also regulated Aβ clearance from the brain, as 

previously proposed176, and its absence could impair Aβ clearance across the BBB, leading 

to its accumulation in perivascular drainage spaces and more CAA pathology175. In other 

transgenic AD mouse models, apolipoprotein J deficiency decreased parenchymal fibrillary 

Aβ, but the shift to cerebrovascular Aβ deposition in the absence of apolipoprotein J was not 

seen177,178.

Quantitative proteomic analysis of isolated neuritic plaques from patients with AD have 

verified the involvement of proteins previously associated with Aβ and also identified novel 

components179,180, most of which have not yet been investigated in CAA. Proteomic 

analysis of vascular amyloid has confirmed the presence and abundance of apolipoprotein E 

or apolipoprotein J in leptomeningeal and cortical vessels from the brains of patients with 

CAA150,181,182. Other potentially important proteins that were identified in these studies as 
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being associated with vascular amyloid but not with neuritic plaques include 

metalloproteinase inhibitor 3181, norrin, collagen α-2 (VI) chain182 and sushi repeat-

containing protein 1 (SRPX1)183. Some of these co-localized proteins suggest mechanisms 

that contribute to vessel injury, such as the ability of SRPX1 to increase Aβ40-induced 

caspase activity183, but the pathogenic roles of these proteins, if they have any, are unknown. 

Deposition of fibrinogen — a precursor of fibrin and a principal contributor to haemostasis 

— has also been detected in CAA-positive vessels in AD184, and the extent of deposition 

was greatest in people who were homozygotic for APOE*ε4 (ref.185). In transgenic mouse 

models, depletion of fibrinogen decreased CAA pathology and cognitive decline184, further 

suggesting a contribution to vascular amyloid deposition.

CAA and ARIA

ARIA, which can be detected with MRI, are vascular abnormalities that have been seen as a 

consequence of Aβ-targeted immunotherapy in trials in AD186–187. ARIA are classified into 

two subtypes186: ARIA-E is characterized by fluid attenuation inversion recovery (FLAIR) 

MRI hyperintensities that are consistent with vasogenic oedema and sulcal effusions with 

occasional gyral swelling, whereas ARIA-H is characterized by parenchymal microbleeds 

and superficial haemosiderin deposition in the leptomeninges, seen on T2*-weighted MRI. 

ARIA-E typically resolves on imaging over the course of weeks, whereas ARIA-H typically 

remains on subsequent MRIs. The mechanisms that underlies ARIA are not fully 

understood, but the available evidence suggests that antibody-mediated breakdown of 

neuritic plaques releases Aβ that is then deposited in vessels, leading to increased CAA, 

perivascular inflammation, and/or impaired perivascular clearance.

ARIA and amyloid-β clearance

ARIA have now been observed in multiple passive immunotherapy trials, most prominently 

in trials of antibodies that target N-terminal or conformational forms of Aβ and that have 

cleared neuritic plaques. In trials of bapineuzumab, gantenerumab and aducanumab, the 

incidence of ARIA-E was dose-dependent and APOE*ε4-dependent187–188. In the trial of 

bapineuzumab, the incidence among people without the APOE*ε4 allele reached 14.2% 

with the highest dose, whereas the incidence among APOE*ε4 carriers was 15.3%, even 

though these patients received only the lowest dose187. A higher incidence (~40%) of ARIA-

E was reported with use of aducanumab and was most common among APOE*ε4 

carriers189. Lower rates of ARIA-E have been reported with use of antibodies that target 

mid-peptide and C-terminal regions of Aβ190–192, possibly because these antibodies tend to 

bind to monomeric or specific oligomeric Aβ193, thereby mobilizing less Aβ from neuritic 

plaques than do antibodies against the N-terminus. A low incidence (< 1%) of ARIA-E has 

been seen in placebo-treated trial participants and in screening populations and observational 

studies of autosomal dominant and sporadic AD patients; in these contexts, the condition has 

primarily been observed in APOE*ε4 carriers190,194,195.

Treatment with anti-amyloid immunotherapy is also associated with ARIA-H, though the 

increased incidence compared with the incidence among people who receive placebo is less 

pronounced than that for ARIA-E196,188,189. ARIA-H can also occur in the aftermath of 
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ARIA-E196. In the trial of aducanumab, the APOE*ε4 allele was associated with higher 

rates of co-occurring ARIA-H and ARIA-E (35% at the highest dose)189. A meta-analysis of 

immunotherapy trials found that treatment was associated with an increased risk of any 

ARIA and of ARIA-E but not of ARIA-H197. The lack of an association with ARIA-H 

might reflect the fact that participants with more than four microbleeds are typically 

excluded from immunotherapy trials and that the rate of spontaneous incident microbleeds in 

observational studies is substantial198.

Risk factors for ARIA

The risk factor profile for ARIA could provide insight into the underlying pathophysiology. 

The risk of ARIA-E is dependent on the antibody dose, but whether the risk is driven 

primarily by the highest antibody concentration reached or the rate of increasing dose is 

unclear; limited data suggest that dose titration reduces the risk199,200. Multiple studies have 

demonstrated an association between a higher APOE*ε4 allele dose and a greater risk of 

ARIA-E and ARIA-H196,201,202. Furthermore, APOE*ε4 carriers are at substantially 

increased risk of symptomatic ARIA, which can manifest as headache, lethargy, confusion, 

neuropsychiatric symptoms and, in rare cases, seizures. Symptomatic ARIA occurs in 1–

20% of patients with ARIA-E, and this variability depends on the antibody used, the dose 

and the prevalence of APOE*ε4188,189,201.

Hypertension, hyperlipidaemia and diabetes seem not to be risk factors for ARIA-E203, and 

no associations have been found between ARIA and baseline biomarkers of brain amyloid 

on PET, volumetric MRI measures or most CSF biomarkers, although lower baseline CSF 

levels of Aβ42 in people without APOE*ε4 was associated with a higher risk of ARIA204.

ARIA and CAA

A plausible explanation for ARIA, first proposed on the basis of postmortem studies of 

people who received the original active immunotherapy AN1792 (refs205), is that 

solubilization of Aβ overwhelms the capacity for Aβ clearance via the perivascular CSF 

bulk flow pathways, leading to amyloid deposition in the arterial wall and accelerated 

development of CAA (Fig. 3). The fact that the number of microbleeds at baseline and the 

APOE*ε4 allele are risk factors for both ARIA and CAA support this interpretation, as 

microbleeds suggest the presence of Aβ in vessel walls and the APOE* ε4 allele suggests a 

high Aβ burden. Autopsy studies of individuals who received immunotherapy have 

demonstrated that CAA develops to a greater extent in cortical and leptomeningeal vessels 

(the locations where ARIA occurs) than untreated individuals and revealed treatment-

associated concentric vessel wall splitting206, a key element of CAA-associated 

vasculopathy207. Therapeutic antibodies against Aβ might not only accelerate vascular 

deposition but also bind to accessible vascular Aβ and consequently further disrupt vessel 

integrity, contributing to leakage of proteinaceous fluid (ARIA-E) and red blood cells 

(ARIA-H).

Another line of evidence that links ARIA to CAA is the resemblance of ARIA to the 

syndrome of CAA-related inflammation (CAA-ri). CAA-ri occurs in a subset of patients 

with CAA, and its clinical presentations, neuroimaging features and association with 
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APOE*ε4 (refs208,209) are similar to those of ARIA-E. CAA-ri involves infiltration of 

microglia, T cells and Aβ-containing multinucleated giant cells around CAA-positive vessel 

segments21, suggesting that spontaneous anti-Aβ autoimmune response occurs. In addition, 

CSF concentrations of autoantibodies against Aβ are increased during the active phase of 

CAA-ri210, supporting the hypothesis that the process involves an anti-Aβ autoimmune 

response and that immunotherapy-related ARIA-E is an iatrogenic version of CAA-ri. CAA-

ri is typically treated with immunosuppression, which generally improves clinical symptoms 

and vasogenic oedema208 and leads to normalization of CSF anti-Aβ antibody 

concentrations210.

The analogy between ARIA and with CAA-ri suggests that repeated or prolonged 

immunotherapy would increase the inflammatory response, but ARIA seems to decrease 

with longer treatment, indicating a more complex relationship. Prolonged immunotherapy 

treatment might lead to a progressively lower plaque burden, which would reduce amyloid 

mobilization and subsequent deposition in vessel walls, potentially reducing vascular 

inflammation and risk of ARIA.

Capillary amyloid deposition and BBB alterations are also likely to be involved in ARIA. 

Ultrastructural analysis of mice treated with anti-Aβ immunotherapy has revealed disruption 

of the vascular units that comprise the BBB; for example, the normally tight configuration of 

astrocyte endfeet that envelop endothelial cells is altered as a result of capillary Aβ211. The 

same study showed that capillary Aβ was associated with local loss of aquaporin 4 channels 

that affect extracellular–intracellular fluid flux, which could also contribute to ARIA-E. Loss 

of apolipoprotein J might also disrupt perivascular drainage pathways, which could, as noted 

above, shift amyloid deposition to the cerebrovasculature175. In an MRI study of APP-

overexpressing mice that had been treated with a mouse analogue of bapineuzumab, 

transient BBB leakage was associated with microbleeds during early treatment, 

recapitulating some features of ARIA such as the frequent co-occurrence of ARIA-E and 

ARIA-H; this effect was not seen in saline-treated transgenic mice or immunotherapy-

treated wild-type mice212. These results are consistent with a complex model in which 

ARIA results from mobilization of aggregated Aβ from the neuritic plaques of AD, which 

leads to vascular and perivascular Aβ deposition (that is, increased CAA), but also 

concurrent Aβ mobilization from vessels, which leads to disruption of smooth muscle 

integrity and the BBB.

Vessel recovery after ARIA

Limited evidence suggests that vessels affected by ARIA are capable of some degree of 

recovery. Postmortem examination of brains from people who received long-term treatment 

with AN1792 did not reveal vascular smooth muscle cell loss or vessel wall thinning206. 

Similarly, in transgenic mice that were exposed to an analogue of bapineuzumab for a 

prolonged period, variance in vascular smooth muscle cell and collagen IV extracellular 

matrix thickness returned to wild-type levels when treatment was stopped211. These results 

raise the (still unproven) possibility that morphology and, consequently, perivascular 

clearance can recover (Fig. 3). In most individuals who are diagnosed with CAA-ri and are 

treated with immunosuppressive drugs, clinical symptoms improve and MRI signs of 
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vasogenic oedema resolve,208, which further supports the possibility of vessel recovery 

following anti-Aβ immune response.

Conclusions and future directions

The evidence reviewed above demonstrates that complex interactions at multiple levels exist 

between CAA and AD pathophysiology. Major commonalities between the conditions are 

the shared roles of Aβ production, metabolism and convective clearance from the interstitial 

fluid via the perivascular and intramural pathways. Within these intersecting pathways, 

multiple factors favour vascular or parenchymal Aβ deposition; these factors include 

Aβ40:Aβ42 ratio, Aβ mutations, and the presence and composition of apolipoprotein E and 

apolipoprotein J. The AD and CAA pathways seem to diverge with respect to how they 

cause tissue injury: AD pathology promotes neuronal and synaptic loss via undefined 

mechanisms, whereas CAA generates focal tissue lesions via haemorrhagic and ischaemic 

vascular brain injury.

The interactions between CAA and AD pathophysiology have several implications for 

treatment. The apparently central role of perivascular drainage suggests that preserving 

vascular structure and function would improve amyloid clearance and reduce deposition. 

Candidate approaches to maintaining vascular health and perivascular clearance pathways 

include reducing mid-life vascular risk factors213 and improving sleep structure73. Effective 

treatment of CAA might also have the dual benefit of preventing direct CAA-related brain 

injury and the self-reinforcing cycle of vascular Aβ deposition that worsens Aβ clearance 

(Fig. 2). Interventions that worsen CAA, however, such as anti-Aβ immunotherapies that 

mobilize Aβ from neuritic plaques214, might worsen vascular physiology and perivascular 

clearance, feeding into this self-reinforcing cycle. Clearance of Aβ from plaques into vessels 

is a possible mechanism for ARIA and for the observation that cerebrovascular reactivity to 

visual stimulation (without extensive ARIA) worsened in patients with probable CAA who 

were treated with the anti-Aβ antibody ponezumab192.

These considerations indicate key steps that would substantially accelerate our 

understanding of the inter-relationship between CAA and AD and the role of CAA–AD 

crosstalk in human disease. Development of imaging methods that distinguish between 

plaque and vascular Aβ in living patients would enable identification of the genetic, 

environmental and treatment factors that favour Aβ deposition in one compartment versus 

the other. This goal is clearly challenging, given the close structural relationship between the 

two types of Aβ deposits. In experiments in an APP transgenic mouse model, the 

phenoxazine derivative resorufin preferentially bound to vascular Aβ215, but this finding has 

been taken no further in mouse or human studies.

A second key goal for translational research is development of a non-invasive method for 

reliably measuring clearance of brain interstitial fluid. Indirect approaches, such as the 

somewhat invasive method of isotope labelling of Aβ216 and PET imaging of ventricular 

tau217 have suggested that clearance of interstitial fluid is reduced in patients with AD. 

However, these approaches are limited by the binding of isotope labeled-Aβ and the tau 

tracer THK5117 within the brain — an ideal ligand would exit the interstitial fluid via 
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perivascular drainage pathways without binding or uptake of any sort. If these challenges 

can be overcome, measurement of interstitial fluid clearance would enable testing of 

candidate treatments for slowing CAA and AD progression and possibly that of other brain 

diseases associated with impaired solute clearance.
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Key Points

• Amyloid-β (Aβ) in the brain interstitial fluid can be cleared via perivascular 

drainage pathways or deposited as neuritic plaques in the brain parenchyma or 

as cerebral amyloid angiopathy (CAA) along vessel walls.

• Vascular dysfunction caused by CAA reduces perivascular Aβ clearance in 

animal models, creating a vicious cycle of vascular and parenchymal Aβ 
accumulation.

• Factors that favour vascular Aβ deposition over parenchymal deposition 

include termination of Aβ at or before position 41, missense mutations within 

the Aβ coding region, and some co-deposited proteins, such as fibrinogen.

• Amyloid-related imaging abnormalities observed in trials of anti-Aβ 
immunotherapy, might result from mobilization of plaque Aβ into the 

perivascular drainage system or from antibody targeting of vascular Aβ 
deposits.

• Development of methods for imaging perivascular drainage in humans would 

be a key step towards identifying treatments for enhancing Aβ clearance and 

reducing vascular and parenchymal deposition.
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Figure 1 |. 

Co-existing amyloid-β in neuritic plaques and vessel walls. Anti-amyloid-β immunostaining 

(clone 6F/3D, Agilent, 1:200) of a postmortem section of the occipital lobe from a 67-year-

old man (left) reveals co-existing neuritic plaques (right, top) and cerebral amyloid 

angiopathy (CAA; right, bottom) in leptomeningeal and cortical vessels.
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Figure 2 |. 

Impairment of perivascular drainage in cerebral amyloid angiopathy and Alzheimer disease. 

Healthy perivascular amyloid-β (Aβ) clearance occurs along the walls of arteries and relies 

on intact vessels and normal vasoactivity (top). Interference of perivascular clearance by 

cerebral amyloid angiopathy (CAA) could establish a self-reinforcing cycle of Aβ 
deposition, loss of vascular smooth muscle cells and vasoactivity, and further reduction in 

clearance (bottom). This self-reinforcing mechanism would exacerbate both Alzheimer 

disease pathology by reducing Aβ clearance and CAA-related vascular lesions, such as 

haemorrhages, and tissue injury.
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Figure 3 |. 

Mechanisms of amyloid-related imaging abnormalities. a | In the normal physiological state, 

amyloid-β (Aβ) is cleared from the brain in part via perivascular pathways. b | In Alzheimer 

disease, accumulation of Aβ in brain parenchyma and vessels results in disrupted vascular 

integrity and impaired clearance. c | Anti-Aβ immunotherapy mobilizes parenchymal Aβ, 

which moves into already impaired perivascular drainage pathways, and initiates an immune 

response to vessels. These effects worsen cerebral amyloid angiopathy and render vessels 

transiently leaky to proteinaceous fluid and blood products, leading to amyloid-related 

imaging abnormalities (ARIA; ARIA-E and ARIA-H, respectively). d | Limited evidence 

suggests that with repeated immunization and continued clearance of vascular Aβ, the 

structural integrity of vessels and the efficiency of perivascular clearance can improve and 

the risk of ARIA consequently decreases.
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Table 1 |

Features associated with vascular or plaque amyloid-β deposition.

Feature Primarily associated 
with vascular Aβ 
deposition

Primarily associated 
with plaque Aβ 
deposition

Associated with 
vascular and plaque Aβ 
deposition

Refs

Aβ subtype Aβ40, Aβ36, Aβ37, 
Aβ38, Aβ39, Aβ41, 
N3pE-Aβ40

Aβ42, Aβ43, N3pE-
Aβ42(43)

N/A 86–90

88, 97

Genetic 
alterations

APP missense 
mutations within the Aβ 
sequence

APP missense 
mutations that increase 
Aβ42:Aβ40 ratio

APP missense mutations 
within the Aβ sequence

27,100–105

(Dutch (Glu693Gln), 
Italian

(London (Val717Ile) (Arctic (Glu693Gly), 
Flemish

218,219

(Glu693Lys), Iowa PSEN1 missense 
mutations

(Ala692Gly)) 121,123,220, 221

(Asp693Asn), Piedmont (generally before 
codon 200)

APP missense mutations 
that increase Aβ 
production without 
increasing Aβ42:Aβ40 

ratio

125–127

(Leu705Val)) (Swedish (Lys-
Met670-671Asn-Leu)

APP duplication or 
trisomy 21

PSEN1 missense 
mutations

(generally after codon 
200, including 
Leu282Val, Leu286Pro

APOE 
allele

APOE*ε2 (CAA-
associated 
haemorrhagic 
phenotype)

N/A APOE*ε4 155,156222,223

Co-
deposited 
proteins 

(selected
a
)

Fibrinogen Heparan sulfate 
proteoglycans

Apolipoprotein E 141,150–152

Matrix 
metalloproteainase 9

Syndecan-1 and 
syndecan-3

Apolipoprotein J 
(clusterin)

141,150,170, 171,181

Metalloproteinase 
inhibitor 3)

Heat shock proteins 
Hsp20 and HspB8

Apolipoprotein A-I 140,145

Norrin α1-antichymotrypsin Complement proteins 
C1q, C3c, C4d, C5–9

133,141,144

Collagen-α-2(VI) chain α 2-macroglobulin) Vitronectin 150,170

Sushi repeat-containing 
protein 1

Intercellular adhesion 
molecule 1)

Serum amyloid P 
component

135,182

Collagenous Alzheimer 
amyloid plaque 
component precursor)

Glypican-1 134,224,225

Syndecan-2 226–228136,141137,141,141,229142,143184,185181,230

Agrin 182

Collagen XVIII 183
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Feature Primarily associated 
with vascular Aβ 
deposition

Primarily associated 
with plaque Aβ 
deposition

Associated with 
vascular and plaque Aβ 
deposition

Refs

Heat shock protein 
HspB2

a
Limited to proteins that co-deposit with Aβ and have been investigated in human brain vascular and parenchymal Aβ deposits. Aβ, amyloid-β; 

CAA, cerebral amyloid angiopathy; N3pE, pyroglutamate-modified at Glu-3.
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