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Ischemic stroke is associated with increasing morbidity and has become the

main cause of death and disability worldwide. Cerebral edema is a serious

complication arising from ischemic stroke. It causes an increase in intracranial

pressure, rapid deterioration of neurological symptoms, and formation of

cerebral hernia, and is an important risk factor for adverse outcomes after

stroke. To date, the detailed mechanism of cerebral edema after stroke

remains unclear. This limits advances in prevention and treatment strategies

as well as drug development. This review discusses the classification and

pathological characteristics of cerebral edema, the possible relationship of the

development of cerebral edema after ischemic stroke with aquaporin 4, the

SUR1-TRPM4 channel, matrix metalloproteinase 9, microRNA, cerebral venous

reflux, inflammatory reactions, and cerebral ischemia/reperfusion injury. It

also summarizes research on new therapeutic drugs for post-stroke cerebral

edema. Thus, this review provides a reference for further studies and for

clinical treatment of cerebral edema after ischemic stroke.

KEYWORDS

blood-brain barrier, cerebrovascular disease, cerebral edema, ischemic stroke,
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Introduction

Stroke places a heavy burden on society and families due to its high morbidity,
associated disability, and mortality. Ischemic stroke accounts for nearly 76% of all
stroke cases (Virani et al., 2021; Deng et al., 2022). Malignant brain edema (MBE) is
a serious complication of stroke, with a mortality rate as high as 80% (Battey et al.,
2014; Nawabi et al., 2019). Even in patients with non-life-threatening stroke, the severity
of cerebral edema is a risk factor for poor prognosis. A recent study has shown that
a midline shift greater than 3 mm can independently predict outcomes after ischemic
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stroke (McKeown et al., 2022). Cerebral edema after stroke is
an important cause of the malignant progression of stroke, and
is related to adverse outcomes. In this review, we discuss the
classification and pathological characteristics of cerebral edema,
the role of various molecules and underlying mechanisms, and
new therapeutic drugs for management of cerebral edema that
develops after stroke, to provide a basis for further studies and
for clinical treatment of this condition.

Classification and pathological
features of cerebral edema

Recent studies have focused on the scientific understanding
of the malignant progression of stroke and on improvement
of the long-term prognosis of stroke patients. The pathological
mechanisms of cerebral edema after stroke are summarized as
follows:

Edema after stroke is divided into three groups according to
the molecular pathophysiology: cytotoxic edema, ionic edema,
and vasogenic edema (Yao et al., 2020). Cytotoxic edema occurs
rapidly after stroke, and is followed by ionic edema, vasogenic
edema, and then mixed edema (Simard et al., 2007; Liebeskind
et al., 2019). Cytotoxic edema and vasogenic edema are
interdependent. The prolongation of cytotoxic edema induces
vasogenic edema and vice versa (Jha et al., 2019).

The blood–brain barrier (BBB) is closely related to
cerebral edema. It is a highly selective complex of cells
located between the luminal substances of the blood
vasculature and the brain interstitium (Stokum et al.,
2016; Jiang et al., 2018). It is composed of continuous
cerebral capillary endothelial cells, tight junctions between
these cells, a complete basement membrane, pericytes,
and a glial membrane surrounded by the end-feet of
astrocytes (Yu et al., 2020; Ji et al., 2021; Figure 1). It
contains transporters that provide nutrients to the central
nervous system (CNS), ion transporters that participate in
brain ion homeostasis, and efflux transporters that prevent
compounds from entering the brain (Jiang et al., 2018).
Cerebral ischemia can cause destruction of the BBB. Chemicals,
liquids, and blood-borne cells enter the brain parenchyma
through the damaged BBB, which destroy the water and
ion homeostasis of the brain, resulting in cerebral edema
(Keaney and Campbell, 2015).

Cytotoxic edema

Cytotoxic edema is the initial step in the pathological
process of cerebral edema. In the early stage of cerebral ischemia
and hypoxia, Na+/K+-ATPase damage and ion osmotic-
gradient changes cause the osmotically active molecules, mainly
Na+, Cl−, and H2O, to transfer from outside to inside the

cell, leading to cell swelling and providing a driving force for
the formation of ionic edema and vasogenic edema (Stokum
et al., 2016; Halstead and Geocadin, 2019; Figure 2). This
pathological change is particularly prominent in astrocytes
(Stokum et al., 2016).

Water may flow into astrocytes in three ways
(Stokum et al., 2016). Firstly, simple diffusion via the
lipid bilayer can lead to the inflow of a large amount of
water (MacAulay, 2021). Secondly, water flux is driven
by osmotic gradients through transmembrane water
channels, including the aquaporin (AQP) family and
some astrocyte transporters, such as SGLT1, GLUT1, and
GLUT2 (Zeuthen et al., 1997; MacAulay and Zeuthen,
2010). In addition, water can be translocated together
with ion fluxes, which is driven by some ion transporters
expressed by astrocytes. These transporters, such as
NKCC1 and the glutamate transporter EAAT1, can regulate
secondary water co-transport through transference of a fixed
number of water molecules and ions per transport action
(MacAulay and Zeuthen, 2010).

A study in an animal model of ischemia found that
extracellular Na+ decreased from 141 mmol at baseline to
74 mmol after cerebral ischemia (Mori et al., 2002). When
the plasma Na+ was 134 mmol, the cytotoxic edema produced
a transendothelial Na+ concentration differential of about
60 mmol (Mori et al., 2002). The Na+ gradient produced
by cytotoxic edema acts as a source of potential energy
to drive the subsequent inflow of ionic edematous fluid
(Stokum et al., 2016).

Ionic edema

Ionic edema occurs after cytotoxic edema and can develop
in the early stage of endothelial dysfunction. Due to the ion
concentration gradient formed by cytotoxic edema, Na+, Cl−,
and water are first transported into endothelial cells through
the luminal membrane, and then transported outside the lumen
through the abluminal membrane of the cerebral capillary
endothelial cells (Stokum et al., 2016; Figure 2). Na+, the
main driver of ionic edema, propels the inflow of secondary
participants, such as Cl− and water to balance the electrical and
osmotic gradients.

There are three possible ways by which water is transported
through the plasmalemma. Firstly, water can move through
simple diffusion across the endothelial cell membrane
(MacAulay, 2021). Secondly, secondary co-transport of
water can be regulated by some common transport channels
for water and ions, as well as some endothelial transporters,
such as NKCC1, KCC, MCT1, and GAT-1 (Hamann et al., 2010;
MacAulay and Zeuthen, 2010). Thirdly, cerebral endothelial
cells express some membrane proteins that can regulate passive
water transport (Stokum et al., 2016).
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FIGURE 1

Structure of blood–brain barrier (BBB). BBB locates between the luminal substances of the blood vasculature and the brain interstitium. The
capillary lumen is surrounded with endothelial cells connected by tight junctions. Pericytes and Endothelial cells are ensheathed by a basement
membrane surrounded by the end-feet of astrocytes.

Vasogenic edema

Vasogenic edema occurs after ionic edema and is
characterized by destruction of the BBB (Stokum et al.,
2016; Chen et al., 2021). With the progress of edema, cross-
endothelial permeability pores are formed, through which
water and some plasma proteins can be extravasated into
the cerebral interstitial compartment (Stokum et al., 2016;
Zhang et al., 2020a; Figure 2). Protein and water can enter
the interstitial fluid through reverse pinocytosis. Pinocytosis
is a biological process in which blood solutes are folded
and wrapped by the plasma membrane of endothelial cells
to absorb and transport substances (Swanson and Watts,
1995). It is thought that vasogenic edema can also develop
through paracellular transport of endothelial cells, which can
be triggered by inflammation and cerebral ischemia to increase
endothelial permeability (Garcia et al., 1986). There is evidence
that the BBB disruption caused by endothelial cell contraction
is not an adequate substitute for tight junction disruption

(Moy et al., 1996). Endothelial cell contraction may help to
enhance the formation of vasogenic edema rather than initiate
it. VEGF signaling can generate paracellular permeability
pores. When its expression is triggered by cerebral injury, tight
junction protein expression is decreased, vascular permeability
is increased, and edema formation is enhanced (Kovacs et al.,
1996; Skold et al., 2005; Dore-Duffy et al., 2007). A previous
study showed that early administration of recombinant VEGF
after experimental rat stroke increased edema formation
(Zhang et al., 2000).

The development of cerebral edema is a fatal risk factor
for adverse outcomes after stroke. Quantifying the severity and
evolution of cerebral edema after stroke plays an important but
challenging role in clinical studies (Kumar et al., 2022). Midline
shift is the most common measurement for cerebral edema and
is defined as the maximum deviation of midline brain structures
in the axial plane (Ropper, 1986; Vorasayan et al., 2019; Fonseca
et al., 2021). It can be assessed by computed tomography (CT),
magnetic resonance imaging (MRI), or bedside transcranial
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FIGURE 2

Status of the blood–brain barrier at three phases of cerebral edema. Cytotoxic edema is the initial step and particularly prominent in astrocytes.
Cerebral ischemia and hypoxia induced the ion influx (black arrow), which leads to osmotic gradient changes. Water may flow into astrocytes in
three ways, simple diffusion (thick blue double-headed arrows), passive transport through transmembrane channels (thin blue double-headed
arrows), and water co-transport (blue single-headed arrows). In ionic edema, ion, and water influx are mediated by plasmalemma channels and
transporters of endothelial cells. Upregulation of transporters and ion channels also occurs in astrocytes. Vasogenic edema is characterized by
destruction of the BBB. The transport of ions, water, and serum proteins such as albumin and IgG may occur directly (thick gray arrow) or via
pinocytic vesicles (dashed gray arrow). Multiple factors, including VEGF, MMPs, and pro-inflammatory cytokines such as TNF are involved. They
mediate neuroinflammation and tight junction degradation, aggravating cerebral edema.

sonography (Gerriets et al., 2001; Walberer et al., 2007).
However, it is a crude measurement that may be noticeable
to substantial cerebral edema and less sensitive to smaller
swelling changes. Relative hemispheric volume is defined as
3-dimensional volume ratio of the ischemic hemisphere to
the contralateral hemisphere, and seems to be more accurate
than midline shift in manifesting the clinical impact of post-
stoke cerebral edema (Ostwaldt et al., 2018; Ng et al., 2022a).
However, they both measure the mass effect but not water
content (Ostwaldt et al., 2018). Net water uptake (NWU) is a
CT densitometry-based method used to calculate water uptake
in ischemic tissue (Minnerup et al., 2016; Cheng et al., 2022).
It symbolizes the proportion of ischemic tissue composed of
excess water, which is promising for quantifying the progression
of cerebral edema (Broocks et al., 2020). However, the presence
of hemorrhagic transformation within cerebral infarction and
postangiographic iodine contrast staining might make the
measurement of NWU inaccurate, compromising the value of
NWU compared to volumetric edema biomarkers (Kumar et al.,
2022; Ng et al., 2022b). The entry of water into the cerebral
tissues can be visualized using MRI modalities (Obenaus and
Jacobs, 2007). T2-weighted imaging (T2WI) and diffusion-
weighted imaging (DWI) are two classical sequences used to
evaluate edema processes (Obenaus and Badaut, 2022). The
apparent diffusion coefficient (ADC), a quantitative parameter
of DWI, can be used to evaluate water mobility within the
cerebral cortex (Warach et al., 1996). Cytotoxic edema can be

observed as early changes in DWI signal intensity. T2WI can
visualize increased cerebral water content at later time points
during the development of vasogenic edema (Obenaus and
Badaut, 2022). However, these MRI techniques are expensive,
time-consuming, and cannot monitor cerebral edema in real-
time. Electrical impedance tomography (EIT) is a real-time
functional imaging technique that allows imaging of electrical
impedance changes in the volume of interest (Ke et al., 2022).
Because the electrical impedance between cerebral edema tissue
and normal cortical tissue is different, EIT could recognize
different types of cerebral edema (Yang et al., 2019). However,
the application of EIT is limited by factors such as the modeling
accuracy and reconstruction algorithms (Ke et al., 2022). The
emergence of artificial intelligence points to a new direction
for evaluating cerebral edema, but minimal efforts have been
made to detect cerebral edema (Obenaus and Badaut, 2022). The
application of artificial intelligence in future extensive studies
may facilitate the understanding and diagnosis of cerebral
edema after stroke.

Factors associated with the
formation of cerebral edema

The mechanisms of cerebral edema are based on the
principle formulated by Starling in the late 19th century
(Starling, 1896). He established the basic model of transcapillary
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FIGURE 3

Factors associated with the formation of cerebral edema after
ischemic stroke.

driving forces to promote edema formation, and proposed that
two elements are needed during the formation of cerebral
edema: the driving force, which “pushes” or “pulls” materials
into or out of the brain; and the “permeability pores,” which
regulate the flux of these materials over the capillary (Simard
et al., 2007). There are many factors that can affect these
process, and there are often intricate interactions among them
(Figure 3). Therefore, the mechanisms underlying cerebral
edema are very complex.

Below, we briefly summarize the factors that have been a
focus of research in this context.

AQP4 and cerebral edema

Aquaporin, membrane proteins that allow bidirectional
movement of water molecules across the phospholipid bilayer
plasma membrane, contain 14 different members, although
only AQP1, AQP4, AQP9, and AQP11 are expressed in
the CNS (Gorelick et al., 2006; Vella et al., 2015; Stokum
et al., 2018). AQP4, which is expressed by astrocytes, plays
a bidirectional role in water transport and participates in
the formation and elimination of cerebral edema (Stokum
et al., 2015). The expression of AQP4 is mainly located in
the following four positions in the cerebrum: the end-feet of
the paravascular astrocytes, astrocyte processes under the glia
limitans external membrane, the ependymal basolateral plasma
membrane, and the astrocyte processes under the glia limitans
external ependymal membrane (Papadopoulos and Verkman,
2013; Ji et al., 2021).

The end-feet of astrocytes and AQP4 play a vital role in
clearance and regulation of cerebral edema (Stokum et al., 2016).
AQP4 can also promote the flow of the glymphatic system to
eliminate toxic substance deposition in the brain and regulate
formation of cerebral edema (Liu et al., 2020). The significantly
high expression of AQP4 after ischemic stroke may promote
the formation of cerebral edema (Yu et al., 2015; Kitchen
et al., 2020; Mestre et al., 2020; Ji et al., 2021). When AQP4
is knocked-out or inhibited, formation of cerebral edema after
ischemic stroke is reduced. A study has shown that thyroid
hormone therapy can weaken brain edema by inhibiting AQP4
and may have neuroprotective effects on post-stroke patients
(Sadana et al., 2015). It has been reported that rat cerebral
edema can be reduced by inhaling hydrogen sulfide, involving
AQP4 inhibition (Wei et al., 2015). Cerebral edema was found
to be alleviated by a combination therapy of AQP inhibitors and
cerebrolysin in a permanent middle cerebral artery occlusion
(MCAO) animal model (Catalin et al., 2018). After treatment
with TGN-020, an AQP4 inhibitor, cerebral edema was reduced
at 3 and 7 days in a rat MCAO model after ischemia (Pirici
et al., 2017). AQP4 plays a complex dual role during the
cerebral edema process after stroke, aggravating cerebral edema
formation in the early stage and reducing edema in the later
stage (Loh et al., 2019; Clement et al., 2020). However, the
mechanisms of this function remain unclear. The use of AQP4
inhibitors after ischemic stroke has become a research hotspot.
As the time limit for the formation of cytotoxic edema, ionic
edema, and vasogenic edema remains unclear, the timing of
initiation and termination of APQ4 inhibitor treatment remains
an urgent unanswered question.

Sulfonylurea receptor 1-transient
receptor potential melastatin 4 and
cerebral edema

Sulfonylurea receptor 1 (SUR1) belongs to the adenosine
5′-triphosphate (ATP)-binding cassette superfamily encoded by
ABCC8 and is a critical mediator of cell swelling in the CNS
through the transient receptor potential melastatin 4 (TRPM4)
channel (Aittoniemi et al., 2009; Jha et al., 2021; Alquisiras-
Burgos et al., 2022). SUR1-TRPM4 is not expressed normally in
the CNS, but expressed only after a CNS injury (Stokum et al.,
2016; Gerzanich et al., 2019; Alquisiras-Burgos et al., 2020). In
all central neurons, CNS injury triggers the activation of the
hypoxia-inducible factor 1 transcription factor, which induces
the binding of SUR1 to TRPM 4, increases its Ca2+ sensitivity,
and makes the channel sensitive to ATP depletion (Woo et al.,
2012, 2013; Mehta et al., 2013). The SUR1-TRPM4 channel
contributes to the formation of ionic edema by regulating
the Na+ inflow over the luminal membrane and the Na+

outflow over the abluminal membrane. In the case of severe
CNS injury and ATP depletion, maladaptive cell swelling and
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cytotoxic edema can be caused by excessive Na+ inflow via
the SUR1-TRPM4 channel (Stokum et al., 2016). Since the
SUR1 regulatory mechanism depends on gene transcription and
ATP, it plays a significant role in cerebral ischemia–reperfusion
(Stokum et al., 2016). It has been proposed that SUR1-TRPM4
and AQP4 can form a novel heteromultimeric water/ion channel
complex, which synergistically regulates rapid and high-volume
water flow and astrocyte swelling (Stokum et al., 2018; Jha et al.,
2021).

A large number of studies have shown that SUR1-TRPM4
expression is upregulated in ischemic stroke. In a rat model,
TRPM4 was upregulated in cerebral endothelial cells 2 h after
stroke reperfusion, and inhibition of TRPM4 by siRNA therapy
reduced infarct volume and cerebral edema (Chen et al., 2019b).
In addition, administration of a TRPM4-specific antibody could
prevent the swelling of cells exposed to hypoxia, by inhibiting
the channel current (Chen et al., 2019a). In view of the
specific driver role of the SUR1-TRPM4 channel in cytotoxicity
and ionic edema, pharmacological research on SUR1-TRPM4
has become a hotspot in stroke therapeutic research. Animal
experimental studies have shown that glimepiride, a SUR1-
TRPM4 channel inhibitor, can reduce stroke in mice and is as
effective as glibenclamide in reducing cerebral edema in wild-
type mice (Wang et al., 2020c). Currently, a SUR1-TRPM4
channel inhibitor is the only drug that has entered clinical trials
for the treatment of cerebral edema after ischemic stroke (Yao
et al., 2020). The results of phase II clinical trials have shown
that intravenous glibenclamide can reduce cerebral edema and
midline displacement (Sheth et al., 2016; Pergakis et al., 2019).
Subsequent exploratory studies have shown that glibenclamide
can alleviate water accumulation, abate the mass effect, improve
the survival rate, reduce midline deviation, and weaken matrix
metalloproteinases 9 (MMP9) expressions (Kimberly et al.,
2018a; Sheth et al., 2018; Vorasayan et al., 2019). In a clinical
study evaluating the efficacy of oral glibenclamide for the
treatment of cerebral edema after ischemic stroke, the drug did
not increase early death or hypoglycemia, and could prevent
cerebral edema (Huang et al., 2019). These findings facilitated
the large scale of the phase III clinical trials in large-scale
cerebral infarction.

MMP9 and cerebral edema

Matrix metalloproteinases (MMPs) are a group of zinc
endopeptidases that can degrade almost all types of extracellular
membrane proteins (Kurzepa et al., 2014). There are over 23
different types of MMPs in the human body. According to
their substrate specificity, they are divided into collagenase,
gelatinase, matrix metalloelastase, enamel proteinase, and so
on (Klein and Bischoff, 2011; Turner and Sharp, 2016). MMPs
can mediate the destruction of basement membrane proteins,
leading to increased permeability of the BBB, exudation of

leukocytes, cerebral edema, and hemorrhagic transformation
(Sifat et al., 2017). MMP expression levels are very low
under normal conditions, but the levels of MMP2 and
MMP9 increase significantly within hours of cerebral ischemia
(Zhang et al., 2020d).

A meta-analysis showed that MMP9 levels were higher
in patients who suffered a stroke with severe cerebral edema
and hemorrhagic transformation (Wang et al., 2020b). The
expression of MMPs, and particularly that of MMP9, increases
after ischemia. This is strongly associated with extracellular
matrix disruption and subsequent vascular permeability (Turner
and Sharp, 2016; Beker et al., 2022). MMP9 increases rapidly
after cerebral ischemia and hypoxia, destroying the integrity
of the vascular wall by degrading tight junctions and the
extracellular matrix to increase the BBB permeability, and
further leading to neuronal death, cerebral edema, and
hemorrhagic transformation (Yang and Rosenberg, 2011; Shi
et al., 2016; Bernardo-Castro et al., 2020). Some studies found
that MMP9 is involved in maintaining the structural integrity
of the AQP4 water channel and participates in the regulation
of cerebral edema (Wang et al., 2014; Datta et al., 2022). An
in vitro study showed that MMP9 silencing downregulated the
expression of AQP4 in astrocytes (Li et al., 2020). It has also been
suggested that MMP9 is related to the inflammation induced
by ischemic stroke and participates in the destruction of the
BBB (Bellut et al., 2021; Kim et al., 2021). MMP inhibitors
can reduce cerebral edema associated with ischemia by partially
preventing the degradation of tight junction proteins (Turner
and Sharp, 2016; Datta et al., 2022). Another study has shown
that downregulation of MMP9 can reduce destruction of the
BBB and cerebral edema in a murine middle cerebral artery
occlusion–reperfusion model (Xiong et al., 2022). Some studies
have reported that MMP9 may be one of the most promising
biomarkers for assessing the BBB permeability and predicting
hemorrhage transformation in ischemic stroke (Bernardo-
Castro et al., 2020; Mechtouff et al., 2020). However, further
research is needed in this regard.

MicroRNAs and cerebral edema

MicroRNAs (miRNAs), a class of non-coding single-
stranded RNA molecules approximately 22 nucleotides in
length, encoded by endogenous genes, can regulate gene
expression at the transcriptional level and have become
promising targets for disease treatments (Carleton et al., 2007;
Li et al., 2018). The expression of MiR-1 has been shown to
be related to ischemic injury and apoptosis (Chen et al., 2006).
The volume of cerebral infarction can be decreased after anti-
MiR-1 treatment (Selvamani et al., 2012). The application of
a MiR-1 antagonist significantly reduced cerebral edema and
BBB damage (Talebi et al., 2019). Notably, studies have shown
that other miRNAs, such as miRNA-132 and miRNA-1906,
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are potential targets for the treatment of cerebral edema (Zuo
et al., 2019; Yu and Li, 2020). However, the mechanisms remain
unclear and further research is required.

Cerebral veins and cerebral edema

The intracranial venous system comprises 70–80% of the
intracranial circulating blood volume and is the main blood
storage and reflux system (Pang, 2001). In recent years, studies
of intracranial veins have attracted increasing attention. An
increasing number of studies have shown that, during acute
ischemic stroke (AIS), the functional reflux of the cerebral vein
may be as important as the arterial flow, and that the status
of cerebral venous reflux may provide additional information
about patients, such as prognosis prediction.

A clinical study showed that hypoplasia or occlusion of
the transverse sinus is related to prolongation of intracranial
circulation time and impairment of brain autonomous
regulation and is positively associated with severe cerebral
edema after massive middle cerebral artery infarction (Yu et al.,
2009). A clinical study showed that, regardless of the status of
the collateral vessels on CT angiography (CTA) after treatment
of AIS, the venous outflow was associated with cerebral edema
formation. A good venous outflow was related to a reduction
of the NWU and good functional outcomes (Faizy et al.,
2021b). The team also showed that good venous outflow before
treatment was associated with successful reperfusion, favorable
tissue-level collaterals, and a good prognosis in AIS patients
who received intravascular treatment (Faizy et al., 2021a,c).
A previous study has shown that the ipsilateral medullary vein
can be an important predictor of adverse clinical outcomes after
AIS and is related to hypoperfusion (Yu et al., 2016). In patients
with acute large artery occlusion, the absence of the ipsilateral
cortical vein as a specific imaging marker of cerebral midline
shift contributes to the estimation of the baseline core volume of
ischemic stroke in the prediction of a midline shift (Zhang et al.,
2020c). A midline shift is more likely to develop in patients with
dural sinus hypoplasia (Volny et al., 2016). However, to date,
most of these have been clinical studies, and the underlying
mechanisms remain unclear.

Inflammatory response and cerebral
edema

Recently, the role of inflammatory response in the BBB
destruction in ischemic stroke has been increasingly recognized.
Cerebral ischemia manifests as decreased inflammation
inhibitory signals and increased alert signals from dead or
necrotic neurons cells and glial cells, which may activate
quiescent brain immune cells (Liesz et al., 2015; He et al.,
2019). Cerebral immune cell activation further upregulates

pro-inflammatory factor and chemokine expressions, activates
MMPs to damage the integrity of the BBB, enlists peripheral
immune cells to the damaged site, promotes the development
of irreversible injury in the infarct core area, and results in
secondary BBB injury (Malone et al., 2019; Mulder et al., 2021;
Qiu et al., 2021). Immune cells, including cerebral immune cells
(CICs) and peripheral immune cells (PICs) play a vital role.

After ischemic stroke, PICs, including neutrophils,
monocytes, and T lymphocytes, lead to microvascular diseases
and the secretion of inflammatory molecules, thereby increasing
BBB permeability. In the late stage of ischemic stroke, these
contribute to BBB repair and angiogenesis (Qiu et al., 2021).
Specifically blocking the adhesion of neutrophils to endothelial
cells in venules in the mouse MCAO model was found to
significantly reduce the volume of cerebral infarction and
neurological deficit and improve both short-term and long-
term functional outcomes (Dhanesha et al., 2020). Other studies
have shown that neutrophils may express anti-inflammatory
phenotypes; the N2 polarization of neutrophils contributes to
the phagocytosis of neutrophils by microglia/macrophages,
resulting in a reduction of cerebral edema and infarct
volume (Garcia-Culebras et al., 2019; Hou et al., 2019).
Therefore, neutrophils may play a dual role in the evolution of
ischemic stroke.

Similarly, CICs, including microglia, astrocytes, and
pericytes of the BBB, play a profound immunomodulatory
role in ischemic stroke. Microglia and astrocytes are activated
within minutes after cerebral ischemia and release some
pro-inflammatory factors, such as TNF-α, NF-κB, IL-1β, and
IL-6 (Bonaventura et al., 2016; Kim and Cho, 2016). They
promote the inflammatory response, destruction of the BBB
structure, increase of the BBB permeability, and uncontrolled
MBE or symptomatic intracerebral hemorrhage (Kanazawa
et al., 2017). In a rat permanent MCAO model, preconditioning
with a TNF-α receptor inhibitor had a protective effect against
neurological impairment, cerebral infarction, and edema after
stroke (Lin et al., 2021). NF-κB, generally considered as the
“central link” of inflammation in vivo, is an important mediator
in the process of ischemia–reperfusion injury. Inhibition of NF-
κB expression can reduce the inflammatory cascade and protect
the structure and function of the BBB (Wu et al., 2018; Howell
and Bidwell, 2020). After cerebral ischemia, pericytes express
an inflammatory phenotype (CD11b-positive), upregulate
pro-inflammatory cytokine expression, and promote increased
BBB permeability (Zhou et al., 2018). It is thought that the
phagocytosis of pericytes may contribute to the regression of
inflammation and repair of the BBB in ischemic stroke (Qiu
et al., 2021). Therefore, pericytes may play a bidirectional role in
ischemic stroke, which needs to be confirmed by further studies.

CICs and PICs are interwoven in a subtle and complex
network (Qiu et al., 2021). Moreover, the phenotypes of
inflammatory response involved by immune cells are different
in the initiation, progression, and regression stages of cerebral
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ischemia (Mulder et al., 2021). Treatments that target only one
kind of immune cell may affect another kind of immune cell and
even lead to poor outcomes in ischemic stroke. Therefore, more
studies are needed to explore the mechanisms of inflammatory
response of cerebral edema after ischemic stroke.

Cerebral ischemia/reperfusion and
cerebral edema

The most effective treatment for AIS is to achieve
the recanalization and reperfusion of ischemic brain tissue.
Intravenous thrombolysis and mechanical embolectomy are two
widely recognized treatment strategies (Rabinstein, 2017; Feng
et al., 2019). It is true that many patients benefit from the above
treatments, but some patients who receive the above treatments
have a poor prognosis. Scholars gradually put forward the
concept of cerebral ischemia/reperfusion injury. It is caused
by a series of pathological cascade reactions triggered by the
recovery of oxygenated blood flow into the ischemic brain tissue
(Eltzschig and Eckle, 2011; Fisher and Savitz, 2022; Wang et al.,
2022). At present, the relationship between reperfusion and
cerebral edema is still not clear, as the views on the effect of
reperfusion on cerebral edema are different.

In secondary analysis of a multicenter prospective clinical
trial of endovascular treatment for patients with AIS, Kimberly
et al. (2018b) showed that successful reperfusion was linked to
a reduced midline shift and that reperfusion therapy reduced
cerebral edema. However, this analysis was performed in
patients using a baseline non-contrast CT and CTA, a follow-
up CTA, or magnetic resonance angiogram only, and no
perfusion imaging was used to assess core infarct volumes.
A meta-analysis of seven randomized controlled trials for AIS
reperfusion therapy in 2021 showed that reperfusion therapy
was associated with maximal midline shift as a measure of
space-occupying cerebral edema in patients with a large baseline
core infarct volume (> 130 mL) (Ng et al., 2021b). Ng et al.
(2021a) performed a post hoc analysis of randomized trials
of endovascular therapy for patients with anterior circulation
strokes and explored the relationships between pretreatment
core and mismatch volume, reperfusion, and cerebral edema
after stroke. The patients underwent baseline CT perfusion
imaging. Cerebral edema was measured in the midline shift
on a 24-h follow-up CT or MRI. Most patients had a small
to moderate core volume. This study showed that successful
reperfusion was associated with a reduced cerebral edema in
patients with small to medium cerebral infarction. Ng et al.
(2021a) also found that a large core volume and small mismatch
volume were associated with increased cerebral edema after
reperfusion, indicating that the effect of reperfusion on post-
stroke cerebral edema may vary. To assess the role of ischemic
lesion volume after reperfusion treatment in cerebral edema, Ng
et al. carried out further research to overcome the limitations of

imaging technology and midline shift. They used midline shift
and relative hemispheric volume to measure the cerebral edema.
The patients underwent 24-h follow-up MRI with dynamic
susceptibility contrast-enhanced perfusion-weighted imaging
(Ng et al., 2022a). Ng et al. (2022a) found that continuous
hypoperfusion for 24 h after reperfusion treatment was related
to worse cerebral edema, even though some patients successfully
achieved reperfusion. Their series of studies showed that the
development of cerebral edema in response to reperfusion may
depend on the physiological state of brain tissue, while the
irretrievable infarcted tissue swells significantly after reperfusion
and the salvable tissue does not swell nor has a low risk of
swelling after reperfusion.

In animal experiments, the transient MCAO model showed
that there was significant cerebral edema after reperfusion,
suggesting that reperfusion injury promoted the formation
of cerebral edema (Pillai et al., 2009; Winkler et al., 2021).
This may be related to the oxidative/nitrosative stress reaction
after reperfusion, in which free radicals play an important
role (Sun et al., 2018). An animal experiment in 2022 showed
that preventive inhibition of free radical production could
reduce cerebral edema in reperfused MCAO rats (Xing et al.,
2022). Excessive nitric oxide levels after reperfusion can
affect activation of the MMP pathway and the distribution
of tight junctions, leading to destruction of the BBB and
cerebral edema aggravation (Sun et al., 2018). Oxidative stress
promotes the release of pro-inflammatory cytokines, leading
to a neuroinflammatory response (as described above), directly
or indirectly resulting in destruction of the BBB and cerebral
edema (L et al., 2016; Jurcau and Simion, 2021). The mechanism
is complex and requires further investigation.

It is apparent that there are inconsistencies between the
results of clinical studies and animal experiments. Moreover,
some conclusions from animal experiments have not been
verified in clinical practice. This may be because the transient
MCAO model used in animal experiments rapidly forms a large
cerebral infarction in the middle cerebral artery distribution
area, demonstrating the adverse effects of reperfusion on
cerebral edema. However, in clinical studies, the volume of
the core infarction in many patients is relatively small, which
reflects the different effects of reperfusion on cerebral edema
(Ng et al., 2021b). It is crucial to study the relationship
between reperfusion and cerebral edema, clarify the influence of
reperfusion on cerebral edema, and explore effective treatment.

Treatment of cerebral edema

At present, osmotic diuretics, particularly mannitol and
hypertonic saline, remain the main drugs used clinically
to reduce cerebral edema. The main mechanism involves
establishment of an intravascular osmotic gradient, resulting in
water flowing from the intercellular space to the intravascular
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space. The main function of this intervention is to reduce
intracranial hypertension and alleviate the mass effect,
but it may lead to serious complications, such as kidney
injury and water and electrolyte disorder (Zhang et al.,
2019; Stokum et al., 2020). Decompressive craniectomy
is an effective method for the treatment of MBE, which
can reduce mortality and improve prognosis, but most
surviving patients are left with severe disability (Shah et al.,
2019). Moreover, these interventions can only be applied
after complete development of destructive edema, and are
high-risk and low-efficacy approaches (Torre-Healy et al.,
2012; Gopalakrishnan et al., 2018). Treatments targeting
multiple pathways involved in the formation of edema in
the CNS, with a view to prevention, may be more valuable
than those that eliminate edema once it has developed
(Jha et al., 2019).

It is currently a research hotspot to select targets and
study new drugs to prevent and treat cerebral edema, based
on the underlying molecular mechanisms. A large number
of studies have been conducted to investigate these targets.
These studies included treatment with SUR1-TRPM4 channel
inhibitors (Vorasayan et al., 2019; Wang et al., 2020c),
AQP4 blockers (Darabi and Mohammadi, 2017; Catalin et al.,
2018), MMP9 inhibitors (Cui et al., 2012; Kimberly et al.,
2018a), ion channel blockers, such as NKCC1 and NHE
(Spasov et al., 2016; Zhang et al., 2020b), VEGF-related
drugs (Yang et al., 2018; Wang et al., 2019), miRNAs (Talebi
et al., 2019; Zuo et al., 2019), and some other protective
agents, such as edaravone, calcitriol, and 3-aminobenzamide
(Liu et al., 2019; Sadeghian et al., 2019; Wang et al.,
2020a). However, most of these studies involved animal
experiments and few involved clinical trials. Glibenclamide,
a potent SUR1-TRPM4 channel inhibitor, is known to enter
clinical trials for the treatment of post-stroke cerebral edema.
GAMES-Pilot (NCT01268683) is a phase II trial that used
intravenous glibenclamide in patients with anterior circulation
stroke. A post-exploratory analysis of this trial suggested
that glibenclamide was related to decreased water diffusivity
and MMP-9 levels, indicating vasogenic edema reduction
(Sheth et al., 2014). GAMES-RP (NCT01794182) was a phase
II trial that used intravenous glibenclamide to verify the
efficacy of intravenous glibenclamide compared with placebo
in patients with large anterior hemisphere infarctions at risk
of MBE. Post-exploratory analyses of this trial showed that
intravenous glibenclamide reduced the midline shift, NWU,
and MMP9 expression (Kimberly et al., 2018a; Sheth et al.,
2018; Vorasayan et al., 2019). CHARM (NCT02864953), a phase
III trial to assess the efficacy and safety of glibenclamide in
large hemispheric infarctions for cerebral edema, is currently
underway. A phase I trial of AER-271, an aquaporin inhibitor,
is currently in progress for its eventual use in patients with AIS
(NCT03804476). No specific new drugs have been approved for
clinical application.

Conclusion and perspective

Cerebral edema after ischemic stroke has a high morbidity,
mortality, and disability, and is increasingly focused on in
research. At present, the treatment of cerebral edema is
mainly based on clinical experience, and mostly involves
symptomatic treatment after cerebral edema has developed.
Such treatment cannot curb the occurrence and development of
malignant edema from its basis. Therefore, it is essential
to clarify the mechanisms underlying cerebral edema
development after ischemic stroke, in order to identify
patients prone to MBE early, to find effective therapeutic
targets, to determine more effective forms of diagnosis
and treatment, and to carry out effective prevention and
treatment in time.
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