
RESEARCH ARTICLE

Cerebral Hemodynamic Changes of Mild

Traumatic Brain Injury at the Acute Stage

Hardik Doshi1, Natalie Wiseman2, Jun Liu1,3, WentaoWang4, Robert D. Welch5, Brian

J. O’Neil5, Conor Zuk6, XiaoWang1,6,7, Valerie Mika1,5, Jerzy P. Szaflarski8, E.

Mark Haacke1,6, Zhifeng Kou1,2,6
*

1 Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, United States of

America, 2 Department of Psychiatry and Behavioral Neurosciences Translational Neuroscience Program,
Wayne State University School of Medicine, Detroit, Michigan, United States of America, 3 Department of

Radiology, Second Xiangya Hospital, School of Public Health, Central South University, Changsha, Hunan
Province, China, 4 College of Computer Science, South-Central University for Nationalities, Wuhan, China, 5
Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, Michigan, United

States of America, 6 Department of Radiology, Wayne State University School of Medicine, Detroit,
Michigan, United States of America, 7 Zhengzhou University First Affiliated Hospital, Zhengzhou, Henan
Province, China, 8 Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama,

United States of America

* zhifeng_kou@wayne.edu

Abstract

Mild traumatic brain injury (mTBI) is a significant public health care burden in the United

States. However, we lack a detailed understanding of the pathophysiology following mTBI

and its relation to symptoms and recovery. With advanced magnetic resonance imaging

(MRI), we can investigate brain perfusion and oxygenation in regions known to be implicat-

ed in symptoms, including cortical gray matter and subcortical structures. In this study, we

assessed 14 mTBI patients and 18 controls with susceptibility weighted imaging and map-

ping (SWIM) for blood oxygenation quantification. In addition to SWIM, 7 patients and 12

controls had cerebral perfusion measured with arterial spin labeling (ASL). We found in-

creases in regional cerebral blood flow (CBF) in the left striatum, and in frontal and occipital

lobes in patients as compared to controls (p = 0.01, 0.03, 0.03 respectively). We also found

decreases in venous susceptibility, indicating increases in venous oxygenation, in the left

thalamostriate vein and right basal vein of Rosenthal (p = 0.04 in both). mTBI patients had

significantly lower delayed recall scores on the standardized assessment of concussion,

but neither susceptibility nor CBF measures were found to correlate with symptoms as as-

sessed by neuropsychological testing. The increased CBF combined with increased ve-

nous oxygenation suggests an increase in cerebral blood flow that exceeds the oxygen

demand of the tissue, in contrast to the regional hypoxia seen in more severe TBI. This may

represent a neuroprotective response following mTBI, which warrants further investigation.
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Introduction

Over 1.7 million Americans suffer a traumatic brain injury (TBI) each year, most of which are

classified as mild TBI (mTBI), also called concussion [1]. Despite its name, mTBI is not incon-

sequential [2–5]. The prolonged post-concussive symptoms significantly affect the quality of

life of both patients and their families. However, the majority of patients with mTBI lack struc-

tural imaging correlates [6] thus making the clinical detection and outcome prediction a chal-

lenge. Following the initial traumatic insult, a series of vascular responses and perfusion

changes is set in motion. Insults to the cerebral vasculature, such as microbleeds, local perfu-

sion reduction, or oxygen metabolism changes are known to cause devastating secondary com-

plications after moderate to severe TBI [7,8]. Further, perfusion studies using either arterial

spin labeling (ASL) [9] or contrast-enhanced perfusion weighted imaging (PWI) [10] have

demonstrated reduced cerebral blood flow in the chronic stages of mTBI.

Cerebral perfusion and oxygenation are of particular interest as markers of brain function,

as neurons rely nearly completely on aerobic metabolism for their energy production. Howev-

er, decreases in perfusion or venous oxygenation in the brain could indicate either a potentially

at-risk area with unmet energy demands or a change in energy demands (a result of a change

in function), which represent two entirely different injury responses with different implications

for outcome. These hypoperfused areas can be identified by decreased CBF and oxygenation

[11]; in patients with moderate to severe TBI ischemic volume has been shown to correlate

with negative outcomes [12]. Additionally, early impairment of CBF in patients with severe in-

jury correlates with poor brain tissue oxygenation [13]. Because of this, Zwienenberg and col-

leagues [14] have suggested optimizing cerebral perfusion and blood flow in the treatment of

head injury patients. In mTBI, however, there is a lack of published data on the relationship be-

tween CBF and prognosis, as well as a lack of methods to distinguish primary alterations in

CBF from primary alterations in brain metabolic demand. In particular, there is a lack of inves-

tigation of CBF changes in patients with mTBI in the acute stage (within 48 hours) of injury.

Further, there is paucity of data on blood oxygenation investigation in TBI patients and the

extent of neurovascular compromise in mTBI, particularly of the early hemodynamic response

in the acute stage, is still largely unknown. Due to the decoupling of cerebral blood supply and

metabolic demand, measurement of CBF alone may not reflect the metabolic status of brain tis-

sue. Ischemic/hypoxic brain tissue will have increased oxygen extraction, which results in de-

creased blood oxygenation in draining veins. Together with CBF, a measurement of venous

blood oxygenation may help to paint a comprehensive picture of the hemodynamics of the

brain tissue.

There have been attempts to extract oxygen saturation using T2, T2� or T2' approaches

[15–31]. MR phase-based methods [32–37] have also been used on individual veins in an at-

tempt to extract venous susceptibility and oxygen saturation. Another method is quantitative

susceptibility mapping (QSM) which provides measures of oxygen extraction fraction [38,39].

Recently, Haacke et al have developed a method called susceptibility weighted imaging and

mapping (SWIM), which is a form of QSM, for quantification of venous blood oxygenation

[40]. Unlike other phase-based methods, the application of a regularized inverse filter to the

frequency domain of the phase images results in susceptibility maps that are unaffected by the

orientation of the blood vessels [40], providing a strong advantage over other phase-based

measurements of susceptibility.

By pairing ASL with SWIM, it is possible to assess both perfusion and oxygenation of the in-

jured brain. Thus, in the present study, we have assessed both CBF and venous oxygenation of

several brain regions in which abnormalities are known to correlate with symptoms, including

frontal, parietal, and temporal gray matter [41], cingulate cortex [42], and the basal ganglia
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[41], as well as occipital gray matter, thalamus, and striatum. We sampled the susceptibility of

major veins that drain these and other areas including septal, thalamostriate, internal cerebral,

and the basal veins of Rosenthal. We hypothesized that, after concussion, patients with mTBI

may demonstrate reduced cerebral blood flow and decreased venous blood oxygenation in the

acute stage. Additionally, we administered a short neurocognitive assessment, the standardized

assessment of concussion (SAC) [43], to examine the correlation between the cognitive deficits

and the imaging abnormalities.

Methods

Subject selection

This study was approved by both the Human Investigation Committee of Wayne State Univer-

sity and the Institutional Review Board of Detroit Medical Center. Written informed consent

was obtained from each subject before enrollment.

A cohort of patients was prospectively recruited from the Detroit Receiving Hospital Emer-

gency Department (ED), which is part of the Level-1 trauma center in the Detroit Medical Cen-

ter. Patient eligibility was based on the mTBI definition by the American Congress of

Rehabilitation Medicine [44] with the following inclusion criteria: Patients aged 18 or older

with the initial Glasgow Coma Scale (GCS) score of 13–15 in ED with any period of loss of con-

sciousness less than 30 minutes or any post traumatic amnesia less than 24 hours, or recorded

change of mental status (confused, disoriented or dazed). All patients required a CT scan as

part of their clinical evaluation. All patients were be able to communicate in English. The exclu-

sion criteria included patients under the age of 18 years, pregnancy, medically documented his-

tory of previous brain injury, neurological disorders or psychoactive medications, history of

substance abuse, CT indication of any metal in the brain and body, known contraindication to

MRI (such as a pacemaker or other non-MR compatible implanted device) as identified by

safety screening, or presentation without a clear history of trauma as their primary event (e.g.,

seizure, epilepsy, etc.). The patients' records were retrospectively screened as well to exclude

any patient who does not fit our inclusion criteria.

A total of 14 patients with mTBI were recruited from the ED and 18 healthy controls were

recruited via local advertising and from patients’ friends and relatives, as part of a study spon-

sored by the Department of Defense. Among them, SWI and structural images were acquired

for all subjects and ASL data were obtained for 7 patients and 12 controls (Table 1), as the scan-

ning protocol was amended to include the ASL sequence shortly after the initial study began.

ASL data from two patients were excluded from the final analysis due to excessive motion dur-

ing the scan. For mTBI patients, neurocognitive status was measured using the SAC question-

naire, which includes measures of attention, orientation and memory status.

Data on patients’ blood alcohol levels, drug use, ED-administered medications, and blood

pressure (BP) were collected from clinical records for inclusion in the final analyses as

possible confounders.

Imaging

All imaging was performed on a Siemens 3T VERIO magnet with a 32 channel head coil. The

imaging protocol included a standard 3D T1 MPRAGE, T2 Fluid-attenuated inversion recov-

ery (FLAIR), diffusion tensor imaging (DTI), SWI, ASL, and resting state functional MRI. This

paper focuses on the hemodynamic analysis of brain injury using SWI and ASL data. All struc-

tural MRI images, including SWI images, were reviewed by two board-certified neuroradiolo-

gists to identify other conditions that could confound the results of the study. The
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Table 1. ASL-assessed patients’ and controls’ demographic data and cause of injury.

Case ID Age (Years) Sex Race Delay to Scan ER GCS Injury Mech. ASL SWI Structural findings

Patients

001 27 F Caucasian 41 hr MVA X X

2 29 M Caucasian 10 d 15 MVA X

002 24 M Caucasian 46 hr Fall X

4 20 M Caucasian 27 hr 15 Fall X Moderate bleed, scalp edema

6 21 M Black 4 d MVA X

7 25 M Black 17 hr 15 Assault X X Nonsp hyperint, scalp edema

9 56 M Indian 26 hr 15 MVA X Nonsp hyperint, 2 small bleeds

11 35 M Black 36 hr Fall X

14 30 M Caucasian 7 d 15 Fall X X

15 36 F Black 9 hr 15 MVA X X Arachnoid cyst

16 19 M Black 3 hr 15 MVA X X Pericallosal lipoma

17 23 M Black 9 hr 15 MVA X X

18 21 F Caucasian 2 d 15 MVA X

19 30 F Asian 8 hr 15 SBV X X

Mean 27.14 55.29

SD 5.52 68.82

Median 26 31.5 hr

Range 19–56 3 hr—10 d

Controls

1 24 F Asian X X

2 23 M Indian X

3 45 M Caucasian X Nonsp hyperint

5 22 M Caucasian X Capillary telangiectasia

6 27 M Asian X X

7 23 F Asian X X

8 22 F Asian X X

9 65 F Asian X Pineal gland cyst, Nonsp hyperint

36 52 F Caucasian X X Nonsp hyperint

37 44 M Caucasian X X Calcification of falx

38 41 M Caucasian X X

39 28 F Caucasian X

40 27 F Arabic X X

41 29 M Caucasian X X

42 33 M Caucasian X X

43 66 F Caucasian X Nonsp hyperint

44 38 M Hispanic X Nonsp hyperint

45 28 M Caucasian X

46 21 M Black X X

Mean 30.08

SD 10.24

Median 28

Range 21–66

hr = hours, d = days, nonsp hyperint = nonspecific hyperintensity, SBV = pedestrian struck by vehicle.

doi:10.1371/journal.pone.0118061.t001
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neuroradiogists were blinded to the medical history and clinical condition of the subjects to

avoid bias.

Arterial spin labeling. A pulsed ASL sequence was used, with a repetition time (TR) of 2830

milliseconds and echo time (TE) of 11 milliseconds, flip angle of 90 degrees, field of view of

384x384, and in-plane resolution of 4x4x4. After acquisition, the perfusion data were processed

automatically by the Siemens online software to produce motion corrected relative CBF (rCBF)

images for off-line post-processing.

SWI. The SWI sequence was a T2� Gradient Recalled Echo (GRE) based sequence with long

TE and 3D flow compensation. The SWI data were collected with a TR/TE of 39/20 millisec-

onds, flip angle of 20 degrees, field of view of 256x256, and in-plane resolution of 0.5x1x2. It

was later interpolated to 0.5x0.5x2 in-plane resolution.

Image processing

ASL processing and analysis. A semi-automated process was used to select the regions of inter-

est (ROIs) to avoid errors in manual selection of the ROIs (Fig. 1). Untagged T2-weighted im-

ages in ASL dataset and rCBF images were skull-stripped. T2 images were normalized to the

T1-weighted International Consortium for Brain Mapping (ICBM) template, and a transfor-

mation matrix was applied to the relative rCBF images to bring them into the same standard

space. A MATLAB-based Statistical Parametric Mapping 8 (SPM8) package was used for nor-

malization [45–47].

After bringing all the images into the ICBM standard space, ROIs were automatically select-

ed using the Wake Forest University PickAtlas (WFU pickatlas) [48]. Using these predefined

ROIs in the ICBM space, regional rCBF values from the striatum, caudate nucleus, thalamus,

globus pallidus, putamen, and frontal, occipital, parietal and temporal lobes of each subject

were recorded.

SWIM processing and analysis

Based on the previously described procedure [40,49], the following steps were taken for SWIM

processing: a) skull stripping to remove the artifacts caused by skull and brain tissue interface

by using the software package MRIcro (MRIcro, Version 1.40) with the Brain Extraction Tool

(BET) [50]; b) phase unwrapping to extract SWI phase signal; c) background field removal to

correct the background field inhomogeneity according to the method by Pandian et al. in 2008

[51]; d) inverse filtering to extract susceptibility signal; and e) iterative reconstruction to re-

move remnant ringing of potential microhemorrahges. This resulted in a high resolution sus-

ceptibility map of the venous structures of the brain.

The SWIM data provided a means by which oxygen saturation (Y) in the veins can be mea-

sured from the bulk susceptibility difference (ΔΧ) between tissues [33] (ΔΧ is expressed in

parts per billion; ppb). The susceptibility difference ΔΧ of major veins is directly related to the

venous blood oxygen saturation (Y) through the following relationship:

DX ¼ DXdo � Hct � ð1� YvÞ ð1Þ

where ΔΧ is the susceptibility measurement of major veins, Yv is venous oxygenation, ΔΧdo is

the susceptibility difference per unit hematocrit between fully deoxygenated blood and fully ox-

ygenated blood (4π�0.27 ppm [52]), and Hct is the fractional hematocrit in the vein, which is

approximately 40% [33].
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Fig 1. Diagram of the ASL analysis workflow. T2 images were skull-stripped and normalized to the ICBM
T1-weighted template. A transformation matrix was applied to skull-stripped rCBF images with SPM8, to
bring them into the same template. ROIs were selected automatically in the lobes and in deep brain
structures using theWake Forest University (WFU) PickAtlas.

doi:10.1371/journal.pone.0118061.g001
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The relative changes of oxygen saturation in mTBI patients can be calculated using the fol-

lowing simplified equation where all constants have cancelled out:

DY

1� Yn

¼
DXp

Xn

ð2Þ

where ΔY is the oxygenation difference between mTBI patients and normal controls, Δχp is the

susceptibility difference between mTBI patients and normal controls, and χn is the susceptibili-

ty value of normal controls. If the oxygen saturation of veins in the normal healthy controls

(Yn) is assumed to be 0.7 [53,54], then relative oxygenation change ΔY could be found from

this relationship.

Major veins were selected for analysis (Fig. 2). These included the left, right and central sep-

tal veins, the left and right thalamostriate veins, the internal cerebral vein, and the left and right

basal veins of Rosenthal. A semi-automated approach was adapted to obtain the relative sus-

ceptibility values. Baseline values were selected for each subject by taking the average of 3 mea-

sures of means of background brain tissue intensities. ROIs were manually selected for each

vessel with a low pass filter cut off of 25% of the baseline value. For each ROI, minimum, maxi-

mum, mean, standard deviation and total number of pixels were recorded.

Neurocognitive testing

At the acute setting, once a patient was conscious and deemed to be clinically capable of partic-

ipating in the study, neurocognitive testing and a survey with a focus on post-concussion

symptoms (PCS) were administered. Given the emergency care setting, it was not feasible to

perform a full battery of neuropsychological assessment. Instead, a short instrument called

Standardized Assessment of Concussion (SAC) [43] was used to assess the patients’ neurocog-

nitive status. The SAC instrument was originally developed for onsite testing of subject’s neu-

rocognitive performance after sports concussion [55]. SAC is sensitive to the acute changes

following concussion and it only requires limited training to administer [56]. The SAC assesses

4 cognitive domains including orientation, attention, immediate memory and delayed recall,

and the resulting scores are added to give a patient score between 0 and 30, with a lower score

indicating greater cognitive deficit. Previous studies reported SAC to be sensitive to brain inju-

ry in the emergency care setting, particularly the delayed recall [57]. The Emergency Room

Fig 2. Major veins selected for susceptibility analysis. 1) Left spetal vein; 2) right septal vein; 3) central
septal veins; 4) left thalamostriate vein; 5) right thalamostriate vein; 6) internal cerebral vein; 7) left basal vein
of Rosenthal; and 8) right basal vein of Rosenthal.

doi:10.1371/journal.pone.0118061.g002
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Edition of the SAC instrument also has a graded symptom checklist with all PCS symptoms

listed. Patients were asked to grade each symptom from none, mild, moderate, to severe, (rated

from 0 to 3, respectively). The points were added to give the overall PCS score.

Results

Structural MRI findings

Most patients and controls had no findings on T1 and T2 FLAIR imaging. Two patients and

three controls had non-trauma-related findings: arachnoid cyst, pericoallosal lipoma, pineal

gland cyst, capillary telangiectasia, and calcification of the falx, respectively. A moderate sized

bleed was identified in the gray matter of the right parietal lobe in patient number 4, opposite

of scalp edema, and patient 9 showed two small bleeds in the ventrical and cortical parenchy-

ma. Nonspecific hyperintensities were found in 2 patients and 5 controls. These results are

summarized in Table 1.

Susceptibility and blood oxygenation differences between patients and
controls

A group comparison between the patients with mTBI and the controls was conducted. A two-

tailed student’s t-test was performed. The left thalamostriate vein (p = 0.03) and right basal

vein of Rosenthal (p = 0.05) showed significantly decreased susceptibility values in patients

with mTBI when compared to the control group. Fig. 3 shows the comparison of mean values

with standard error bars for mTBI patients and controls. Table 2 shows the group mean values

for each vein and student’s t-test comparison between control and patient groups.

Fig 3. Mean susceptibility values and standard error in major veins. * indicates statistically significant difference between controls and acute visit; †
indicates statistically significant difference between acute visit and one-month follow up. R: right, L: left, Int: internal.

doi:10.1371/journal.pone.0118061.g003
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Inter-rater reliability

Intra-rater and inter-rater correlations were performed for SWIM analysis in 8 randomly chosen

patients, to assess the reliability and reproducibility of the method. For inter-rater reliability, a

fresh rater was trained on the same process and unaware of the previous results. The correlation

(R2 value) was 0.98, demonstrating that this study can be repeated with consistency across users.

The intra-reader consistency was checked by the same user one week after the first analysis. The

intra-reader tests showed correlation of 0.99 indicating excellent reliability of the analysis method.

ASL differences between patients and controls

We observed significantly higher rCBF values in left striatum of mTBI patients as compared to

controls (p = 0.01, student t test). In particular, the caudate, putamen, and pallidum rCBF were

significantly increased. We also observed elevated rCBF values in left frontal and occipital

lobes (p = 0.03 for both, student t test; Table 3, Fig. 4). No significant changes in the thalamus,

globus pallidus, or temporal or parietal lobes were found (all p>0.05 for student t-tests).

Table 2. Group mean values for each vein and student’s T-test comparison between control & patient groups and between control and follow-
up groups.

Controls mean (SD) Patients mean (SD) T-Test patient vs. control Patient ΔYp (%)

R Septal 86.58 (23.87) 77.36 (22.31) 0.272 3.19

L Septal 78.33 (25.88) 68.77 (22.71) 0.294 3.66

C Septal 68.85 (17.34) 58.91 (13.26) 0.098 4.33

R Thalamostriate 144.79 (33.10) 135.65 (28.80) 0.423 1.89

L Thalamostriate 136.70 (30.58) 115.06 (22.83) 0.037* 4.75

Int Cerebral 123.58 (18.68) 122.06 (27.77) 0.874 0.37

R Basal 137.78 (34.46) 114.46 (20.58) 0.039* 5.08

L Basal 140.38 (38.50) 125.80 (35.85) 0.279 3.12

* and bold font indicates significant difference. L = left, R = right.

doi:10.1371/journal.pone.0118061.t002

Table 3. Comparison of mean CBF values (in mL/100g/min) between control and patient groups.

Region Controls mean (SD) Patients mean (SD) p value

Left thalamus 30.03 (6.25) 41.61 (6.71) 0.22

Right thalamus 37.33 (6.17) 49.44 (8.77) 0.28

Left striatum 17.49 (4.01) 32.27 (3.72) 0.01*

Right striatum 21.4 (4.31) 33.69 (6.38) 0.14

Frontal lobe 24.38 (6.83) 37.54 (13.09) 0.03*

Temporal lobe 33.88 (10.81) 47.31 (17.97) 0.11

Occipital lobe 31.27 (5.02) 52.42 (19.63) 0.03*

Parietal lobe 42.14 (9.8) 53.66 (15.33) 0.10

p value shows level of significance for student’s t-test.

* and bold font indicates significant difference.

doi:10.1371/journal.pone.0118061.t003
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Neurocognitive testing

Given the small sample size, mTBI patients’ SAC scores were compared with a normalized

dataset reported by McCrea et al., of 568 healthy controls [43]. mTBI patients' delayed recall

scores were significantly lower than the normalized dataset on the delayed recall score (p =

0.04; Table 4, Fig. 5). Other measures were not significantly different from controls.

No significant correlations were found between SAC/Post Concussion Syndrome (PCS)

scores and the rCBF values of all of the above mentioned regions.

Potential confounders

Patients’ blood alcohol levels were tested at the discretion of the attending emergency physi-

cians in any case of suspected alcohol intoxication. Of the 14 patients in this study, one patient

out of five tested had detectable alcohol in the blood in the ED, at 46 mg/dl. Eight patients re-

ceived opiates as part of their the ED treatment, four of whom had tested positive for opiates or

benzodiazepines and two of whom tested positive for cannabinoids, and one patient received

Fig 4. Mean regional rCBF in the thalamus and striatum and cortical lobes of control and patient groups, with standard error bars. * p< 0.05.

doi:10.1371/journal.pone.0118061.g004

Table 4. mTBI patients' SAC scores compared with normalized SAC scores.

Orientation mean
(SD)

Memory mean
(SD)

Concentration mean
(SD)

Delayed Recall mean
(SD)

Total Score mean
(SD)

Controls (N = 568) 4.82 (0.43) 14.51 (0.98) 3.40 (1.27) 3.84 (1.11) 26.58 (2.23)

Patients (N = 7) 5 (0) 14 (1.15) 3.29 (1.11) 2 (1.91) 24.28 (2.98)

2-tailed T-Test (p
value)

0.00 0.28 0.8 0.04* 0.08

* and bold font indicates significant difference.

doi:10.1371/journal.pone.0118061.t004
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benzodiazepines. No other patients tested positive for opiates or benzodiazepines. Three pa-

tients received intravenous (IV) normal saline, and another received IV potassium chloride.

Three reported a diagnosis of hypertension, while five had a systolic BP over 140 in the ED, in-

cluding two patients with a systolic BP over 160.

Because of the small sample size, there was exceedingly low power for detecting effects of

any of these as confounders, but there were no significant differences in susceptibility between

patients with mTBI who did (n = 8) or did not receive (n = 6) opiates in ER (left thalamostriate

vein p = 0.84, right basal vein of Rosenthal p = 0.70), between subjects who did (n = 3) or did

not (n = 11) receive normal saline (left thalamostriate vein p = 0.46, right basal vein of

Rosenthal p = 0.07), or between subjects who did (n = 4) or did not have (n = 10) positive opi-

ate or benzodiazepine drug screen (left thalamostriate vein p = 0.24, right basal vein of

Rosenthal p = 0.67). For the patients who received ASL imaging, there were no significant dif-

ferences in rCBF between subjects who did (n = 2) or did not receive (n = 5) opiates in ER (left

striatum p = 0.60, frontal lobe p = 0.73, and occipital lobe p = 0.96) or between subjects who

did (n = 2) or did not receive (n = 5) normal saline (left striatum p = 0.29, frontal lobe p = 0.61,

and occipital lobe p = 0.45). In summary, none of these possible confounders were found to

have a significant effect on measured rCBF or susceptibility.

Discussion

To the best of our knowledge, this is the first study reporting cerebral hemodynamic changes

using a non-invasive MRI method in the acute stage of mTBI. Our have demonstrated that, as

a result of concussion, the brain has increased rCBF and consequently higher venous oxygen-

ation. This finding is in opposition to our original hypothesis that the brain may have de-

creased rCBF and decreased venous oxygenation. This is a novel finding in patients with mTBI

in the acute post-TBI stage.

Fig 5. Group differences in SAC scores between controls andmTBI patients. * p< 0.05.

doi:10.1371/journal.pone.0118061.g005
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Results of ASL data analysis indicate that the left striatum has significantly higher rCBF in

the patient than in the control group. This is in contrast to several studies indicating decreased

rCBF after moderate-severe TBI [57–60]. This is likely the result of the differences between

these studies and ours in both severity of the injury and timing of the scanning. All of our pa-

tients were classified as having mTBI and most were scanned at the acute stage (within 48

hours after injury), which may be expected to show different pathophysiology than the sub-

acute or chronic stages of moderate or severe TBI. To our knowledge, such ultra-early scanning

in this population has not been attempted in the past.

Although the increase in rCBF contradicts some of the earlier publications, there are a few

studies indicating higher CBF after trauma [61–67]. Marion et al., observed that CBF peaked to

a significant high at the 24 hour time point after injury [61], but studied a diverse range of inju-

ry pathologies at a wide range of times after injury. Obrist et al., studied the cerebral metabolic

rate of oxygen (CMRO2) and CBF in 75 severely-injured patients and observed a positive corre-

lation between GCS score and CBF in patients with far lower GCS scores than ours. They also

found that CBF reached its highest peak at 24 hours after injury [68], supporting the same

timeline as seen in Marion's study. Muizelaar et al., suggested that CMRO2 is significantly posi-

tively correlated with GCS scores [64], though the study was limited to severe cases and there-

fore did not include patients with GCS scores as high as our patients had. Bouma et al., also

observed that relative CBF reaches its peak between 24 to 48 hours after injury [62,65], which

was supported by another study by the same group [63] and also by the results of the study by

Mendelow et al., [69]. In an animal study, Prat et al., observed that the animals impacted with

less weight (producing a less severe injury) showed an increase in CBF between one and three

hours after injury, which was followed by a decrease in CBF thereafter [60].

SWI analysis indicates that relative susceptibility values in the veins of patients are lower

than in the control group. In particular, the left thalamostriate vein and the right basal vein of

Rosenthal had significantly lower susceptibility. This implies that there is more oxygen left in

the veins in patients as compared to the control group, in contrast to earlier animal studies

[70]. A study by Shen et al., found increased susceptibility induced by head injury using the

Marmarou rat model [71]. However, the severity and mechanism of the injury in Shen's study

differs from ours. Considering this, there could be several explanations for the decreased rela-

tive susceptibility. One is that the decreased susceptibility could represent a deficit in oxygen

consumption at tissue level after injury. In several studies it has been shown that the coupling

between CMRO2 and CBF has been disrupted following injury [72–75]. Decreased CMRO2 has

been observed in these studies, suggesting that either the tissue is unable to absorb the optimal

amount of oxygen or that there is a reduction in oxygen demand. Another proposition that

might explain the lower relative susceptibility value is that there might be increased rCBF in

the regions drained by those veins; an increase in rCBF with stable CMRO2 would result in de-

creased oxygen extraction and more oxygen left in the veins.

A fourth option is that the brain is utilizing another source of energy, such as lactate, instead

of glucose. Several studies have shown this to occur in extreme conditions such as starvation

and trauma [76], using substrates such as b-hydroxybutyrate (bHB) [77] or lactate [78]. A pos-

sible mechanism behind this could be efforts by the brain to maintain energy production in the

presence of mitochondrial dysfunction and decreased CMRO2. There have been few studies

showing decreased CMRO2 after TBI [79]. In the absence of any structural damage visible on

CT or MRI, this could represent a temporary inability of the brain to use oxygen efficiently via

glucose uptake. It is possible that the brain is attempting to overcome mitochondrial dysfunc-

tion and lowered CMRO2 by increasing CBF.

It is also possible that this increase in CBF is a neuroprotective mechanism that is hindered

by or lost in more severe injuries in which CBF is found to be decreased. Mild mitochondrial
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dysfunction leads to an increase in anaerobic ATP production in order to meet demands. The

brain attempts to maintain the energy equilibrium in the acute stage, which requires an in-

crease in CBF to offset a decrease in efficiency of ATP production in affected areas of the brain.

This decoupling of CBF and CMRO2 explains the combination of increased CBF and increased

venous oxygenation.

Unfortunately, the strong similarity between patient and control group SAC scores led to

relatively low sensitivity to detect a correlation between rCBF or SWIM abnormalities and

symptom presence or severity. Despite the advantage in ease of administering the SAC ques-

tionnaire, a more sensitive questionnaire or neuropsychological test should be applied in the

future to more accurately characterize the deficits experienced by patients with mTBI.

There are several approaches to extracting oxygen saturation, including T2, T2� or T2' ap-

proaches [15–31,33,80–86], phase-based methods [32–37,52], and susceptometry [49]. All

these methods have advantages and disadvantages. All of these methods are interesting, but

they all meet with difficulties, such as with phase wrapping. Additionally, none of these are in

common clinical use today except for susceptibility weighted imaging (SWI) and the phase ap-

proach leading to SWIM. By evaluating each major vein inside the brain parenchyma, we will

be able to determine the blood oxygenation at a regional level. Similar to a brain catheter probe

measuring surrounding brain tissue oxygenation, SWIM uses the major veins of the brain like

embedded catheter probes for detecting surrounding brain tissue oxygenation, as well.

Veins vary in size from roughly 1 cm in diameter for the dural sinuses, to a few millimeters

for pial veins, to only several hundred microns for medullary veins [87]. Our susceptibility

measurements of major veins (between 70 and 150ppm) are significantly lower than that in su-

perior sagittal sinus (SSS) measured in susceptometry approach. The different susceptibilities

in veins with different sizes are due to its partial volume effects [88]. In looking at the relative

changes of venous oxygenation between patients and controls, this partial volume effect may

downplay the group difference instead of exaggerating the confounding factors. In comparison,

a susceptometry approach using the SSS does not suffer partial volume effect but it only offers

global oxygenation instead of regional information. Furthermore, since the SSS is located at the

interface of brain tissue and skull, the strong artifact on phase images makes the SSS not ideal

to evaluate on the current 3D SWI data. Additionally, the brain extraction step during SWIM

processing often removes a small portion of the outer cortex along with the skull, as this area is

generally noisy in the phase images. Part of the SSS is usually removed along with this, while

the deeper veins of the brain are unaffected. For these reasons, we chose to analyze the deeper

veins instead of the SSS; while they offer slightly lower SNR, we have greater confidence in the

accuracy of the values obtained.

Our current study has several limitations that need to be discussed. First, our relatively

small sample size provides low power. With a larger sample size, some of the relationships that

are present in the data may turn out to be not significant. We are currently in the process of ex-

panding this data set, and intend to investigate these relationships further. In addition, while

the recruitment of the first few patients had a wide range delays between injury and MRI (with

one subject having their first scan 10 days after injury, potentially confounding the results),

subjects recruited later had their MRI within a much shorter time window, which should re-

duce some of the variability. The initial patients are still being followed up, as well, which will

allow for a more longitudinal analysis of their recovery. Additionally, we will acquire more de-

tailed neuropsychological data in our control group for a more relevant comparison. We also

acknowledge that the SAC is considered as a sideline test to supplement a full battery of neuro-

psychological test. In a typical acute setting, it is not possible to hold the patient for an hour-

long full battery neuropsychological test, which is also a confounding factor of the study. Final-

ly, we must consider that the increase in rCBF could be a result of some other difference
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between the patients with mTBI and the control group like, for example, the stress related to in-

jury present in patients with mTBI but not healthy controls enrolled in the study. Further, be-

cause of the difficulties in recruiting orthopedically injured controls from the ED, as well as

increased difficulties with follow up as compared to control subjects recruited from the sur-

rounding community, the patients may have received interventions which affect CBF that the

controls have not. While none of the possible confounders identified were found to have a sig-

nificant effect in this dataset, this possibility should be considered in a larger dataset that would

provide more power for detecting or disproving the presence of such differences. One notable

possible confounder is IV administration of normal saline, commonly given to most patients in

the ED. Some studies have shown this to have an effect on CBF [89,90], but these studies have

been performed in humans and animals with far different conditions than the patients in this

study, including subarachnoid hemorrhage and cardiac arrest. What we are currently lacking

are studies of the effects of normal saline on rCBF in normovolemic, non-hypoxic patients

with normal intracranial pressure. We do not anticipate that standard, IV-administered saline

will have a significant effect on CBF, which is supported by the changes in CMRO2; if the CBF

changes were artifacts from volume expansion or increased cardiac output, we would not ex-

pect the CMRO2 to change.

In the future, we plan to take these analyses a step further and to calculate the cerebral meta-

bolic rate of oxygen (CMRO2) for all patients scanned. This will require the addition of several

2D SWI sequences with higher resolution, in order to obtain absolute quantification while

avoiding partial volume effects in very small veins. This measurement will allow us to better de-

scribe the metabolic status of the tissue.

In summary, imaging of changes in hemodynamics and metabolism following mTBI can

clearly provide us with more information about the pathophysiology that underlies the symp-

toms, progression, and recovery of brain injury. In this study, we demonstrated that patients

with mTBI have increased cerebral blood supply as a potential compensatory mechanism to

cope with brain injury at the acute stage. Further investigation in larger cohort is needed to es-

tablish the relationship between rCBF and tissue oxygenation and its

neurocognitive underpinnings.
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