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Cerebral microbleeds (microbleeds) are small, punctuate hypointense lesions seen in T2*
Gradient-Recall Echo (GRE) and Susceptibility-Weighted (SWI) Magnetic Resonance Imag-
ing (MRI) sequences, corresponding to areas of hemosiderin breakdown products from
prior microscopic hemorrhages.They occur in the setting of impaired small vessel integrity,
commonly due to either hypertensive vasculopathy or cerebral amyloid angiopathy. Microb-
leeds are more prevalent in individuals with Alzheimer’s disease (AD) dementia and in those
with both ischemic and hemorrhagic stroke. However they are also found in asymptomatic
individuals, with increasing prevalence with age, particularly in carriers of the Apolipopro-
tein (APOE) ε4 allele. Other neuroimaging findings that have been linked with microbleeds
include lacunar infarcts and white matter hyperintensities on MRI, and increased cerebral β-
amyloid burden using 11C-PiB Positron EmissionTomography.The presence of microbleeds
has been suggested to confer increased risk of incident intracerebral hemorrhage – par-
ticularly in the setting of anticoagulation – and of complications of immunotherapy for
AD. Prospective data regarding the natural history and sequelae of microbleeds are cur-
rently limited, however there is a growing evidence base that will serve to inform clinical
decision-making in the future.

Keywords: microbleeds, intracerebral hemorrhage, stroke, cerebral amyloid angiopathy, Alzheimer’s disease, MRI
imaging, positron-emission tomography, amyloid imaging

INTRODUCTION
Symptomatic Intracerebral Hemorrhage (ICH) affects 30–40 per
10,000 annually (1), and can have devastating clinical outcomes
(2). Well-known modifiable risk factors for ICH include hyper-
tension (3), smoking (4), alcohol (5, 6), and diabetes (7). In addi-
tion, recent developments in neuroimaging have led to a greater
understanding of pathophysiology and risk of ICH (8).

Presence of hypertensive arteriolosclerosis and cerebral amy-
loid angiopathy (CAA) are contributory in an estimated 78–88%
of primary ICH (9). In both of these conditions, prior to emer-
gence of symptomatic ICH, there may be evidence of smaller,
possibly subclinical hemorrhages, reflective of underlying vascular
fragility. These lesions, termed cerebral “microbleeds” (microb-
leeds) may be an indicator of increased risk for future macroscopic
hemorrhage (10, 11).

As well as being associated with ICH, microbleeds are asso-
ciated with ischemic stroke (IS) (12), Alzheimer’s Disease (AD)
(13), and AD immunotherapy (14, 15), and they are seen with
an age-dependent higher prevalence in cognitively normal elderly
(16, 17). They are also seen secondary to trauma, inflammatory
conditions, and several genetic disorders (18, 19).

Previously considered to be clinically silent (20–22), an increas-
ing number of studies have linked presence of microbleeds and
cognitive decline (23, 24), in addition to being a putative marker
of future stroke risk (10, 25, 26).

This review recapitulates recent clinical and neuroimaging lit-
erature regarding cerebral microbleeds, in particular addressing
their associated risk factors and prognostic implications.

HISTOPATHOLOGY AND NOMENCLATURE
The terms, “cerebral microbleeds,” or “microhemorrhages,” refer
to small, round, or ovoid hypointensities, of <10 mm in diameter,
evident on T2∗ Gradient-Recall Echo (GRE) or Susceptibility-
Weighted (SWI) MRI sequences. These sequences provide high
contrast between brain parenchyma and paramagnetic mater-
ial, such as deoxyhemoglobin, superparamagnetic hemosiderin,
and diamagnetic calcium (27, 28), and are capable of detect-
ing bleeding from vessels as small as 200 µm in diameter (29).
An associated finding on these magnetic resonance imaging
(MRI) sequences is superficial siderosis (SS), presence of residual
leptomeningeal hemosiderin deposits after small vessel rupture
within the subarachnoid space (30).

The terminology distinguishes “microbleeds” seen on MRI
from small lesions visible under light microscopy at post-mortem
[also termed “mini-bleeds” (31)].

The first histopathological correlations with microbleeds were
published by Tanaka et al. (29) and Fazekas et al. (32) each
noting that sites of hypointensities seen on MRI corresponded
to areas of hemosiderin, deposited around arteriosclerotic ves-
sels (29, 32). More recently, Shoamanesh and colleagues reviewed
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the histopathology of 18 patients from five published studies: six
with dementia, seven ICH, one IS, and four with other patholo-
gies. Microbleeds on MRI were associated with evidence in prior
bleeding in 81% (e.g., hemosiderin-laden macrophages or old
hematoma). Other infrequent findings included pseudocalcifica-
tion, a microaneurysm, and a distended dissected vessel. Other
non-specific findings were seen in 13% of cases. Associated vascu-
lar pathology seen was most commonly lipohyalinosis or vascular
β-amyloid deposition, the latter seen predominantly in individuals
with dementia (33).

Evidence from both clinico-pathological correlations and large
epidemiological studies also support differing patterns of distri-
bution of microbleeds according to their etiology. MB in deep
subcortical or infratentorial areas are usually associated with the
presence of hypertensive disease or vascular risk factors (VRF)
(16, 34), with lipohyalinosis being the predominant finding at
post-mortem (33). Hemorrhages in a lobar, cortico-subcortical
distribution are associated with Apolipoprotein E (APOE) ε2 (35)
and APOE ε4 carrier status (16, 34), β-amyloid burden on 11C-
PiB positron emission tomography (PET) (36), and evidence of
CAA at post-mortem (32). In the setting of trauma, microbleeds
have been reported more frequently in mid-subcortical cerebrum,
above the corpus callosum, whereas non-traumatic microbleeds
were found in lateral subcortical areas, basal ganglia, and thal-
amus (37). Microbleeds in the cerebellum have been associated
with both presence of CAA and with arteriosclerotic disease (38).

In individuals presenting with symptomatic ICH, criteria to
support diagnosis of CAA have been proposed (1) and vali-
dated with histopathology, known as the Boston Criteria (39),
outlined in Table 1. Inclusion of microbleeds (40) and SS (41)
have been suggested to improve the sensitivity of the Boston Cri-
teria for detection of CAA, particularly with lesions detected in
asymptomatic individuals.

In patients with probable CAA, lobar microbleeds occur more
frequently in posterior structures (43). This corresponds to the
distribution of CAA-laden vessels described at post-mortem (44).
A similar pattern of distribution has been observed in AD patients,
supporting that that CAA also underlies a majority of these lesions
in AD (13). Other studies have reported discordant findings, or
variability according to clinical groups or definition of anatomi-
cal landmarks. In one study of community-dwelling elderly, lobar
microbleeds were most prevalent in posterior temporal and pari-
etal, but not occipital lobes, while the large, population-based
Age, Gene/Environment Susceptibility study (AGES) showed no
regional predominance at all (17). One study of patients with sub-
cortical vascular dementia (VaD), with high prevalence of VRF
and Lacunar Infarction (LI) (in whom one might expect to find
deep MB) the majority of lesions detected were actually lobar
microbleeds (45) However, this study did not include a β-amyloid
biomarker [e.g., cerebrospinal fluid (CSF) or PET imaging] and
so it is possible that many of these patients may have had mixed
pathologies (e.g., LI with concomitant AD-pathology).

GENETIC ASSOCIATIONS OF MICROBLEEDS
Genetic factors associated with microbleeds include polymor-
phisms linked with sporadic microbleeds and less common
mutations seen with familial conditions.

Table 1 | Boston criteria for cerebral amyloid angiopathya.

DEFINITE CAA

Full post-mortem examination demonstrating

Lobar, cortical, or cortico-subcortical hemorrhage

Severe CAA with vasculopathyb

Absence of other diagnostic lesion

PROBABLE CAA WITH SUPPORTING PATHOLOGY

Clinical data and pathologic tissue (evacuated hematoma or cortical biopsy)

demonstrating

Lobar, cortical, or cortico-subcortical hemorrhage

Some degree of CAA in specimen

Absence of other diagnostic lesion

PROBABLE CAA

Clinical data and MRI or CT demonstrating

Multiple hemorrhages restricted to lobar, cortical, or cortico-subcortical

regions (cerebellar hemorrhage allowed)

Age≥55 years

Absence of other cause of hemorrhagec

POSSIBLE CAA

Clinical data and MRI or CT demonstrating:

Single lobar, cortical, or cortico-subcortical hemorrhage

Age≥55 years

Absence of other cause of hemorrhagec

aCriteria established by the Boston Cerebral Amyloid Angiopathy Group: Steven

M. Greenberg, MD, Ph.D., Daniel S. Kanter, MD, Carlos S. Kase, MD, and Michael

S. Pessin, MD.
bAs defined in Ref. (42).
cOther causes of intracerebral hemorrhage: excessive warfarin (INR 3.0);

antecedent head trauma or ischemic stroke; CNS tumor, vascular malformation,

or vasculitis; and blood dyscrasia or coagulopathy. (INR 3.0 or other non-specific

laboratory abnormalities permitted for diagnosis of possible CAA.)

The most common gene polymorphism associated with spo-
radic microbleeds is the Apolipoprotein E (APOE) gene on chro-
mosome 19. The APOE ε2 and ε4 alleles have each been inde-
pendently associated with lobar microbleeds (16, 35), APOE ε4
associated with greater vascular Aβ deposition, with loss of smooth
muscle and vessel wall thickening (46–48), whereas ε2 with fibri-
noid necrosis (49). In their meta-analysis of over 7000 subjects,
Maxwell and colleagues found that ε4 was also associated with
deep microbleeds, but also that there was no increase in odds of
microbleeds in ε2 compared with ε3 (50).

In addition, genome-wide association studies (GWAS) have
identified polymorphisms associated with more severe CAA
include neprilysin (a proteolytic enzyme responsible for Aβ

catabolism (51)) and single-nucleotide polymorphism rs6656401
within the Complement Receptor-1 gene (52). It could be inferred
that these also represent higher risk of microbleeds, although this
remains to be demonstrated.

Mutations associated with microbleeds in familial conditions
include NOTCH-3 in Cerebral Autosomal Dominant Arteriopathy
with Subcortical Infarcts and Leukoencephalopathy (CADASIL)
(53), APP E693Q and D694N in Dutch-type (40, 54) or Iowa-
type (55) CAA, and APP and presenilin mutations in familial AD
(56, 57).
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MICROBLEEDS AND NEUROIMAGING
MRI: ON SEQUENCES AND FINDINGS
The most commonly used sequences to demonstrate microb-
leeds are T2∗ Gradient-Recall Echo (T2∗GRE) and Susceptibility-
Weighted (SWI) MRI. These provide high contrast between brain
parenchyma and highly paramagnetic material, such as deoxy-
hemoglobin, superparamagnetic hemosiderin, and diamagnetic
calcium (27, 28), and are sensitive to rupture of blood vessels as
small as 200 µm in diameter (29).

The choice of sequence and imaging parameters – such as echo
time, field strength, and slice thickness – affects the size, clarity, and
number of lesions identified (58, 59). This represents a source of
heterogeneity between studies, and as such, can limit direct com-
parison of findings. For example, increasing field strength from 1.5
to 3 T increases the contrast to noise, “visibility rating,” and num-
ber of microbleeds detected by approximately 30% (60, 61). Recent
work using 7 T MRI may further improve reliability of detection
of MB (62), however one study with post-mortem correlation
has suggested that at this field strength, non-hemorrhagic iron
deposition may mimic microbleeds, resulting in poorer diagnostic
specificity (63).

SWI increases the effect of conventional T2∗GRE by image
post-processing, multiplying magnetic resonance signal magni-
tude with the signal pulse shift. This provides greater contrast
compared with T2∗ GRE, resulting in detection of 50–70% more
lesions (59, 64, 65). However, whether this increase in lesion identi-
fication translates to a clinically meaningful difference is debated.
Goos et al. found that although SWI enabled identification of
nearly twice as many lesions as T2∗ GRE, this did not alter any of
the clinical associations in multivariate analyses (64).

As differences in assessment of microbleeds can contribute to
considerable heterogeneity in the literature, efforts have been made
to standardize approaches to their reading and definition Inter-
observer agreement for identification of microbleeds varies in the
literature from k = 0.3–0.97 (66). To address this, rating scales
divide lesions into certain or uncertain, as well as by location, with
significant improvement in inter-rater reliability (66, 67). Greater
reader confidence has also been reported when microbleeds are
present on serial images, read sequentially (68). Microbleeds may
also “disappear” over time – although it is unknown how often this
is due to true physiological resorption, as opposed to an imaging
artifact (69–72).

Attempts have also been made to improve detection of microb-
leeds using automated algorithms. Although these may be useful
in screening for multiple lobar microbleeds, to date they have not
replaced manual assessment as although sensitive, they tend to lack
specificity (73, 74).

Microbleeds are frequently identified in association with other
MRI evidence of cerebrovascular pathology, in particular markers
of cerebral small vessel disease (SVD). Lobar and deep ICH, IS,
particular LI, and white matter hyperintensities [WMH, seen with
T2/Fluid Attenuated Inversion Recovery (FLAIR) MRI sequences],
have each been demonstrated in association with microbleeds in
diverse populations (69, 75, 76).

A relationship between microbleeds and severity of WMH,
or leukoaraiosis, has been demonstrated in ischemic and hem-
orrhagic stroke patients (12, 69, 75–77), AD (13, 78, 79), VaD (80),

and community-dwelling elderly (16, 23). Deep (16), diffuse (deep
and lobar) (76), and strictly lobar MB (70) have each been asso-
ciated with greater WMH. Just as the distribution of microbleeds
appears to vary according to the etiology and severity of SVD, so
too may the pattern of WMH. A posterior-predominant distribu-
tion of WMH has been reported in AD patients with microbleeds,
and in individuals with lobar ICH, reflecting the predilection of
CAA pathology in these areas at post-mortem (13, 81). These
findings have not been universally reported, however, with some
finding no difference in WMH distribution between CAA, AD,
and NC individuals (82). This may be explained by the fact that
WMH have been correlated with a spectrum of post-mortem find-
ings from tissue rarefaction, to myelin and axonal loss and mild
gliosis (83), and a diverse list of possible contributing pathologies,
including neurodegeneration, inflammation, and hypoxia (84).

Microbleeds have also been associated with presence of
hippocampal atrophy in a large study of cognitively normal
individuals, an association possibly mediated by CAA in the pres-
ence of underlying AD-pathology (85). More recently, an associa-
tion has also been reported between lobar microbleeds and promi-
nent perivascular spaces in cerebral white matter, but not deep
brain structures (86). They hypothesized that abluminal accumu-
lation of β-amyloid may mediate dilatation of the perivascular
space in patients with CAA.

AMYLOID IMAGING WITH POSITRON EMISSION TOMOGRAPHY
Positron Emission Tomography imaging with N -methyl-[11C]2-
(4-methylaminophenyl)-6-hydroxybenzothiazole, also known as
Pittsburgh Compound B, or “PiB” was first used to demonstrate
presence of fibrillar β-amyloid in vivo in individuals with AD (87).
PiB can also highlight presence of β-amyloid in cerebral vessel
walls, even in the absence of parenchymal plaques, both in vitro
(88) and in vivo with subsequent post-mortem follow-up (89, 90).
Patients with symptomatic ICH meeting criteria for probable CAA
present with PiB retention midway between AD patients and con-
trols (91, 92), with higher PiB retention in the occipital region
(relative to other cortical regions) than AD patients, consistent
with a previously reported predilection of CAA for posterior brain
structures (43, 44).

In individuals with CAA, regions of increased PiB retention
have been shown to coincide with sites of microbleeds, and with
incident microbleeds at follow-up (93, 94). In cognitively normal
controls, PiB retention has also been shown to correlate with lobar,
but not deep microbleeds (36) (Figures 1 and 2). In multivariate
analysis, PiB and age were independent predictors of lobar microb-
leeds, whereas presence of VRF, gender, and APOE were not. APOE
ε4 carriage, a predictor of Lobar microbleeds in large population
studies, is less strongly associated with LMB when adjusted for
Aβ-burden, suggesting that the association between APOE ε4 and
microbleeds may be mediated by Aβ (36, 95).

Use of molecular imaging for β-amyloid has shed new light
on disease processes that were previously only identifiable at post
mortem. However, currently available Aβ PET ligands are known
to bind to fibrillar Aβ in both plaque and vessel walls. Hence, the
relative contribution of each to the PET signal cannot be distin-
guished. A recent correlation observed between PiB and WMH
volume in patients with probable CAA (but not AD or cognitively
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FIGURE 1 | Diffuse (predominantly non-lobar) Microbleeds in an
81-year-old lady referred with AD-type dementia (MMSE 22/30, CDR 1,
CDR-SOB 5.5). SWI image (A), with coregistered FLAIR (B), T2 (C) and
11C-PiB PET (D) images demonstrating severe deep white matter
hyperintensities but no significant beta-amyloid burden (neocortical
SUVR=1.2), suggesting that the presentation is due to severe cerebral
small vessel disease, rather than Alzheimer’s disease.

normal controls), might indicate that in some cases, much of the
PiB signal may indeed be due to vascular, rather than parenchymal
Aβ (96). Future work involving novel radioligands, selective for Aβ

within vessel walls, have potential to clarify this (97, 98).
Use of other Aβ biomarkers, such as plasma and CSF assays have

also been used to correlate with microbleeds. Profiles of Aβ40/42,
total-tau, and phospho-tau may distinguish between AD, CAA,
and NC (99) and between CAA and other causes of vascular disease
(100).

CLINICAL FEATURES OF MICROBLEEDS
While microbleeds had previously been considered to be clin-
ically silent, recent contributions to the literature have led to
reassessment of their clinical and prognostic relevance.

PREVALENCE AND INCIDENCE
Table S1 in Supplementary Material outlines the preva-
lence of microbleeds in different clinical conditions, from
community-dwelling elderly, free from cognitive impairment and
neurologic disease, to ischemic and hemorrhagic cerebrovascular
disease, different forms of dementia and genetic diseases.

In population studies, microbleeds are more prevalent with
increasing age, from 6% aged 45–50 years, to 36% aged 80 or more

FIGURE 2 | Lobar Microbleed (red arrow) and Superficial
Hemosiderosis (white arrows) in a 66-year-old lady referred initially
with amnestic MCI (MMSE 22/30, CDR 0.5, CDR-SOB 4.5),
subsequently diagnosed with AD-type dementia. SWI image (A), with
coregistered FLAIR (B), T2 (C) and 11C-PiB PET (D) images demonstrating
severe deep white matter hyperintensities with elevated beta-amyloid
burden (neocortical SUVR=1.7).

(16). Individuals with no known vascular disease or risk factors
may be at lower risk of microbleeds (prevalence 2.3%) (85).

In the setting of stroke, microbleeds are reported more fre-
quently in ICH (prevalence 19–83%) than IS (15–35%) (10, 22,
29, 76, 77, 101–106). Of the IS subtypes, microbleeds occur more
often in those with LI (LI, 26–62%) than atherothrombotic (21–
46%) or cardio-embolic infarctions (4–30%) (22, 75, 76, 80, 104,
107). This is in keeping with post-mortem findings of small vessel
lipohyalinosis in many individuals with microbleeds (33).

In comparison with cognitively normal controls (0–19%),
microbleeds are more frequent in individuals with Mild Cogni-
tive Impairment (MCI) (20–43%), patients with AD (18–32%),
and VaD (65–85%) (13, 45, 72, 79, 80, 100, 108, 109). Microbleeds
are also more prevalent individuals with progressive (31–54%),
rather than stable MCI (36%) (72, 108), perhaps reflecting more
severe SVD or AD-related pathology in these individuals.

Microbleeds have been reported in between 19 and 70% of indi-
viduals with CADASIL (19, 110, 111), and 67% of individuals with
familial CAA (40). MB have also been reported in the setting of
autoimmune encephalitides (112) and head trauma (65, 71, 113).

Few studies report rates of accumulation or incidence for
microbleeds to date, with none that separate incident microbleeds
by location. Lee prospectively reviewed 224 patients presenting
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with stroke or TIA over 3 years, reporting an incidence of 0.8
new microbleeds/year overall, increasing to 5.4/year in patients
with multiple (≥5) baseline microbleeds (69). Another study of 26
patients with possible or probable CAA reported new microbleeds
at 1 year in 46% of individuals (114), whereas the Rotterdam study
of community-dwelling elderly reported an increase of prevalence
of microbleeds from 24.4% at baseline to 28% at 3 years (70),
although neither specify incidence per se.

It remains to be clarified whether microbleeds, once present,
remain indefinitely, or if they regress over time. The majority of
lesions appear to persist over serial scans, with only 1.4–2.3%
of lesions “disappearing” (70, 115–117). However, others have
reported lesions that appear to resolve progressively over time (69,
71). However, it is unclear whether microbleeds truly resolve, or
if their “disappearance” is due to artifact or erroneous interpreta-
tion of baseline images (70). In one study of acute stroke patients,
MB disappeared in a considerable 14.5% of cases, interestingly
with disappearing lesions being associated with higher levels of
LDL-cholesterol. The authors hypothesized that cholesterol lev-
els may influence clearance of hemosiderin-laden macrophages,
however also cautioned that these findings required validation in
other studies (69).

In several longitudinal observational studies, the development
of new microbleeds has been shown to be associated with presence
of baseline microbleeds, markers of associated SVD (e.g., LI, ICH,
WMH severity). These associations appear to hold true, despite
diverse clinical populations studied (e.g., IS, ICH, or general pop-
ulation) (11, 69, 70, 114). In addition, in individuals with CAA,
new microbleeds are associated with carriage of both APOE ε2 and
ε4 (11).

When microbleeds are stratified by location, elevated systolic
blood pressure (70, 118, 119), LI, and larger WMH volume predict
incident deep or infratentorial microbleeds (70), whereas APOE
ε4/ε4 genotype and larger WMH volume predict incident lobar
microbleeds (70). Liu and colleagues noted that variability in
blood pressure predicted microbleeds progression in deep and
infratentorial regions only. They hypothesized that in deep and
infratentorial regions, penetrating artery branches arise directly
from large vessels and hence are more vulnerable to blood pres-
sure variability than cortical vessels, where no association was seen
(119).

MICROBLEEDS AND ALZHEIMER’S DISEASE
Microbleeds are of significant interest in AD, both as an indica-
tion of risk of future hemorrhage, possible mediator of cognitive
impairment, and more recently, as a marker of immunotherapy-
related adverse events (Amyloid-Related Imaging Abnormalities,
ARIA) (15).

In AD patients, while microbleeds have been associated with
imaging markers of small vessel pathology such as WMH, they
are less associated with strokes or VRF (78, 79). Microbleeds in
AD are most often seen in cortico-subcortical distributions, and
most individuals with AD have at least some CAA at post-mortem
(44), which would implicate underlying CAA in the majority of
microbleeds in AD.

Microbleeds are also recently described findings in treatment
trials for AD, termed “Amyloid-Related Imaging Abnormalities”

(“ARIA”). This term incorporates microHemorrhage and Hemo-
siderosis (ARIA-H) and vasogenic Edema and Effusions (ARIA-E),
suggested to relate to altered Aβ trafficking in these individuals.
ARIA gained attention following publication of phase I and II
studies of bapineuzumab, a humanized monoclonal antibody spe-
cific to the N-terminal region of Aβ (14, 120, 121) although similar
findings were also previously noted in human and animal reports
with active immunotherapy and rarely, spontaneous inflammatory
CAA (122–126).

Overall in the bapineuzumab study, ARIA-E were identified
in 17% of cases, of whom 78% were asymptomatic. Coincident
hemorrhage or hemosiderosis occurred in 47%. There was an
increased risk of ARIA-E in patients treated with higher doses
and in APOE ε4 homozygotes. There was no association between
ARIA-E and age, gender, or WMH, and presence of microbleeds
at baseline did not increase risk of incident ARIA-E (although
participants with multiple microbleeds were excluded from par-
ticipation). Although ARIA-E commonly preceded or coincided
with ARIA-H, the two findings were not necessarily co-located,
suggesting a generalized disruption of vascular integrity, rather
than a focal insult. It is hypothesized that immunotherapy may
precipitate failure of saturable perivascular Aβ clearance mech-
anisms by massive mobilization of soluble from sequestered Aβ.
Hence, waste that is otherwise soluble (e.g.,Aβ) accumulates, caus-
ing altered vascular permeability, and leakage of plasma and blood
products (127).

ARIA-E has also been reported with other Aβ immunothera-
peutic agents, albeit less frequently (128) and a gamma-secretase
inhibitor (129), whereas by contrast, “spontaneous ARIA-E” is
uncommon. Of 2762 baseline or screening MRI of mild-moderate
AD patients enrolling in clinical trials, there were only four cases
of VE, only one of which was associated with microbleeds (130).

Aside from being an incidental finding in AD patients, there is
growing evidence that microbleeds may confer increased risk of
cognitive impairment, and future cognitive decline. The effect of
microbleeds may be due to focal damage or dysfunction, or be rep-
resentative of more generalized processes, such as SVD from HT
or CAA, or widespread β-amyloid pathology (24). Rosidi and col-
leagues proposed a model whereby microbleeds themselves, while
not directly causing neuronal injury, leads to a sustained local
inflammatory response, characterized by initial activation and per-
sistent increase in microglia and macrophages, due to leakage of
blood plasma into brain parenchyma. This inflammatory response
appears to coincide with the extent of plasma leakage, supporting
the hypothesis that this leakage may be the initiating event in
the process, with ongoing inflammation then leading to neuronal
dysfunction and cell death (131).

Studies into cognitive sequelae of microbleeds have been lim-
ited by heterogeneity in imaging parameters, sensitivity of cog-
nitive measures, study demographics, and consequently, different
patterns in distribution of microbleeds.

The majority of cross-sectional studies of the cognitive impact
of microbleeds report finding impairments in executive func-
tion, with some also reporting decrements in attention, processing
speed, and global cognition (132–135).

However, not all studies report cognitive associations according
to location of microbleeds, which impedes comparison between

www.frontiersin.org January 2014 | Volume 4 | Article 205 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Stroke/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Yates et al. Cerebral microbleeds: a review

cohorts. The Rotterdam Study reported independent associa-
tions between multiple (≥5) lobar microbleeds and all cognitive
domains except memory. However deep microbleeds were not
significantly associated with cognition, after adjusting for other
possible confounding variables such as age and education (136).
In the RUN-DMC study, deep microbleeds were associated with
global cognition, psychomotor speed, and attention, whereas lobar
microbleeds were associated with global cognition, memory, and
executive function. Temporal lobe microbleeds were most asso-
ciated with memory and attention, whereas frontal microbleeds
were associated with memory, psychomotor speed, concept shift-
ing, and attention (132). In a third study, Gregoire et al. reported
that strictly lobar, but not deep microbleeds were associated with
executive impairment in IS/TIA patients (137). In each study, the
cognitive associations of microbleeds were independent of other
markers of arteriosclerotic SVD, although there was no mecha-
nism to adjust for presence of concomitant AD-pathology. It has,
however, been shown with post-mortem histopathology that pres-
ence of moderate to severe CAA is linked with poorer cognitive
scores (perceptual speed and episodic memory) during life even
after correcting for presence of parenchymal Aβ-plaques (138). It
could therefore be expected that some of the cognitive association
of microbleeds may also be robust to adjustment for presence of
parenchymal Aβ.

In AD patients, one study reported no difference in cognition
between those with and without microbleeds (although there was
a trend to poorer processing speed) (13), whereas in Subcorti-
cal VaD, microbleeds have been associated with impairment in
numerous cognitive domains, including attention, verbal mem-
ory, visual memory, language, visuospatial function, and executive
function. The large number of parietotemporal lesions in this
cohort does suggest that some lesions may well be due to pres-
ence of CAA, and that parenchymal Aβ could be an important
potential confounder driving some of these findings (45).

Microbleeds may also manifest in other cognitive or behavioral
symptoms, according to their location. In 517 patients with IS,
Tang (103) found an association between post-stroke emotional
lability and microbleeds in the thalamus, but not other regions.
No association was shown between emotional lability and WMH
or infarcts.

There are few studies to date with illustrating the prognostic
implication of microbleeds on cognition over time. Presence of
microbleeds may predict the development of cognitive impair-
ment in ICH patients (11), and conversely, in individuals with
cognitive impairment post-stroke, those without microbleeds are
four times more likely to revert to normal cognition than those
with microbleeds (139).

Microbleeds have been predictive of cognitive deterioration in
individuals with MCI in two studies (68, 72) but not another (108).

MICROBLEEDS, STROKE, AND VASCULAR DISEASE
Overall, microbleeds are associated with many risk factors for cere-
brovascular pathology, including advancing age (23, 75, 140, 141),
hypertension (10, 29, 75, 76, 111, 142), diabetes (111, 140), ciga-
rette smoking (143). In one meta-analysis, hypertension, and dia-
betes remained significantly associated with microbleeds, whereas
gender and smoking were not (144). Hypercholesterolemia is less

strongly associated with microbleeds. In one study of ICH patients,
low cholesterol level was associated with microbleeds (10), whereas
other studies show no association (101, 142). In several stud-
ies, statin therapy for hypercholesterolemia has been implicated
in increased risk of ICH (145, 146), although this has not been
supported in a more recent meta-analysis (147).

Not all studies support an association between VRF and
microbleeds. Both the large Framingham and AGES-Reykjavik
cohorts failed to find any association (17, 141). The regional pre-
dominance of microbleeds in each study may have influenced these
findings – for example, lobar microbleeds are not generally asso-
ciated with VRF (16, 36) – although as these studies did not report
lesion topography this can only be postulated.

Microbleeds are frequently identified in the setting of ICH, both
in lobar or deep locations (11, 77, 148). Risk factors for microb-
leeds in ICH include advanced age, advanced leukoaraiosis, and
lacunar infarcts (149). In individuals with ICH, a bimodal dis-
tribution of hemorrhage volume has been reported, with lesions
tending to either <5 mm or >29 mm in diameter. Histopathologi-
cally, individuals with greatest microbleeds burden have increased
vessel wall thickness compared with those with fewer microbleeds,
however the prevalence of CAA-affected vessels does not differ
(150).

Microbleeds are also common in individuals with IS, particu-
larly with deep brain or lacunar infarcts, and atherosclerotic but
not cardio-embolic disease (140). In IS patients, microbleeds are
associated with advanced age, diabetes and prior use of antithrom-
botic drugs (140), and deep microbleeds have also been associated
with hypertension (76). They are about four times more likely to
be found in individuals with recurrent stroke than primary stroke,
suggesting that they could be used as a prognostic marker (12,107).

In longitudinal studies, microbleeds are predictive of future
cerebrovascular events both in individuals with stroke, and in
community-dwelling elderly (25, 104, 148, 151–153). Patients with
IS or TIA with microbleeds are as much as three times more
likely to have subsequent ICH (104, 140, 151, 152) including
hemorrhagic transformation (154) or recurrent IS (152, 153).
Other predictors of ICH in acute IS include age, NIHSS score,
DM and lobar, cortico-subcortical distribution of microbleeds,
with 2-year risk for ICH increasing from 0.5% if no baseline
microbleeds, to 8% if ≥5 microbleeds (140, 155). ICH-related
mortality also is associated with greater baseline numbers of
microbleeds, and based on this study, the authors concluded
that in individuals with multiple (≥5) microbleeds, the risk of
ICH-related mortality (3.8%) may outweigh the potential ben-
efit of antithrombotic therapy (Adjusted Risk Ratio 2.5–6%)
(155). In individuals presenting with symptomatic ICH, pres-
ence of microbleeds are associated with increased risk of recur-
rent hemorrhage (10, 11), which may be at sites of prior MB,
particularly in deep ICH (156). In community-dwelling elderly,
microbleeds also are predictive of future stroke, particularly ICH.
In one study with 3.6-year follow-up, 19% of subjects with
baseline microbleeds had strokes, compared with 1% of those
without (148).

Evidence from the PROGRESS trial suggests that blood
pressure-lowering treatment in the setting of cerebrovascular dis-
ease is protective against both deep and lobar ICH. This suggests

Frontiers in Neurology | Stroke January 2014 | Volume 4 | Article 205 | 6

http://www.frontiersin.org/Stroke
http://www.frontiersin.org/Stroke/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Yates et al. Cerebral microbleeds: a review

that as well as reducing risk of hypertensive ICH, antihyperten-
sive therapy also reduces risk for ICH due to CAA (157). Although
microbleeds were not analyzed, it could be inferred that individuals
with microbleeds due to either process might similarly benefit.

Shortly after early studies reporting prevalence of microbleeds
in patients with ICH and stroke, early data emerged to suggest
that the natural history of these lesions may be influenced by use
of antiplatelet, antithrombotic, and thrombolytic therapies. Sev-
eral studies have identified increased frequency of microbleeds in
antiplatelet medication users presenting with ICH (158–160), IS
(80, 140, 161), and VaD (80). Subsequently a large population-
based study also reported a higher prevalence of microbleeds in
antiplatelet users, but not anticoagulant users (162).

In addition, prevalence of microbleeds has been noted to be
higher in those with longer duration of antiplatelet use (161), and
higher in those on aspirin than other agents (162, 163). However,
other studies have not shown any association (36, 149).

Increasing evidence is emerging in studies with longitudinal
follow-up, although overall the evidence is limited by number
of studies and relative scarcity of incident hemorrhage. Huang
et al. tracked IS patients for 18 months, all were treated with
antiplatelet agents, either aspirin or cliostazol. Of 719 patients,
11 developed ICH, all of whom had prior microbleeds. In addi-
tion, aspirin users had higher ICH rates than those on cliostazol,
suggesting that not all agents share the same risk (163). Biffi et al.
followed 104 primary lobar ICH survivors prospectively for 15–
57 months. Recurrent lobar ICH was associated with aspirin use,
previous microbleeds, and posterior white matter hypodensity
on CT (164). The most recent meta-analysis of antithrombotic
and antiplatelet use with microbleeds included 1460 patients with
ICH and 3817 with IS/TIA. Microbleeds were more common in
ICH patients on either warfarin or antiplatelet agents, but not in
IS/TIA patients. In 768 patients with longitudinal follow-up (90
ICH, 123 TIA, 555 IS), ICH were more common among users of
(any) antithrombotic agents, but warfarin use specifically was not
significant. The authors acknowledged several caveats, including
significant heterogeneity between studies, and that adjustments

had not been made for some potential confounders (e.g., presence
of hypertension) (165).

The safety of newer antithrombotic agents (e.g., direct throm-
bin inhibitor, dabigatran, or factor Xa inhibitors rivaroxaban and
apixaban) for non-valvular atrial fibrillation in individuals with
microbleeds is at this stage unclear. To date, there is insufficient evi-
dence to mandate withdrawal of any anticoagulant or antiplatelet
agents, or use of alternative antithrombotic agents. Newer antico-
agulants may confer reduced risk of ICH (166–168) however their
lack of reversibility in setting of a putative bleeding event, and
relative paucity of data in older patients is of some concern (169).
Similarly, different antiplatelet agents may confer reduced ICH
risk in IS patients with microbleeds [e.g., cliostazol versus aspirin,
(163)], although more prospective data are urgently required to
inform clinical decision-making (Table 2).

Several prospective studies [e.g., Clinical Relevance Of Microb-
leeds In Stroke study, CROMIS-2, (170)] have been proposed to
address this evidence gap, aiming to recruit large cohorts with
non-valvular atrial fibrillation and ICH, comparing incidence of
cerebrovascular events according to presence of microbleeds and
anticoagulant therapies. Results from these and similar studies are
awaited with great interest.

In patients treated with thrombolysis for stroke or myocar-
dial infarction, ICH is a feared complication, occurring in as
many as 5.9% of cases (171). Concerns about safety of throm-
bolysis in individuals with microbleeds were raised with early
series (172, 173). Subsequently, the large BRASIL (Bleeding Risk
Analysis in Stroke Imaging before thromboLysis) study which ana-
lyzed MRI data from 570 IS patients in 13 centers in Europe,
North America, and Asia, failed to find a significant association
between baseline microbleeds and thrombolysis-associated ICH
(102). However, there has been some criticism leveled at the study’s
conclusions, including that it was underpowered, and did not
stratify microbleeds by distribution. The prevalence of microb-
leeds was only 15%, somewhat lower than the majority of other
IS studies, and there were few patients (only six) with multiple
microbleeds.

Table 2 | Key points.

Microbleeds occur most commonly in the presence of cerebral small vessel disease, either arteriosclerosis or cerebral amyloid angiopathy

Although incidence rates for microbleeds have not been frequently described, microbleeds incidence relates to markers of severity of underlying

disease, e.g., number of baseline microbleeds, severity of other SVD markers (e.g., lacunar infection and white matter hyperintensity)

Microbleeds are predictive of cognitive decline, intracerebral hemorrhage, ischemic deep brain infarction and death, however not all studies report

location of microbleeds

As well as specifying MRI parameters, reporting of number and location of microbleeds is fundamental to interpretation of their clinical implications

and enabling comparison across studies

The clinical outcome of microbleeds may be influenced by the use of antithrombotic medications, although prospective data are still limited. Current

recommendations do not suggest withholding or changing therapy on basis of microbleeds, however future studies to address these questions are

urgently required

Evidence suggests that adequate blood pressure control is important for reducing risk of ICH in individuals with microbleeds

Microbleeds in Alzheimer’s disease may signify presence of greater amounts of vascular Aβ deposition and loss of blood-brain barrier integrity. It is

currently recommended that patients with four or more microbleeds are excluded from trials of Aβ immunotherapy
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In two recent meta-analyses, presence of microbleeds was asso-
ciated with a trend to increased risk of ICH post-thrombolysis,
and there was a significant relationship between microbleeds bur-
den and symptomatic ICH. However to date, interpretation of
the literature is limited by heterogeneity in study size and design,
and overall, each conclude that there is currently insufficient evi-
dence to exclude patients with microbleeds from thrombolysis
(174, 175).

A relationship between microbleeds and other manifestations
of hypertensive vascular damage has also been reported, includ-
ing peripheral arterial stiffness (176) (in a sample with a greater
proportion of deep microbleeds), and left ventricular hypertrophy
with deep (but not lobar) microbleeds (177). Impaired cerebrovas-
cular reactivity with 7 T functional MRI has also been reported
with microbleeds in patients with atherosclerotic disease. Inter-
estingly, the majority of microbleeds in this sample were in a
lobar distribution, implicating CAA, rather than deep arterioscle-
rosis, as the underlying mechanism behind this reduction in
vasoactivity (62).

MICROBLEEDS AND MOTOR CHANGES
Deep brain microbleeds have also been linked with gait distur-
bance, such as reduced stride length, and impaired timed-up-
and-go test. In particular, microbleeds proximal to major motor
pathways, such as in the basal ganglia, thalamus, and frontal lobes,
showed the strongest association with gait change. However, a link
between temporal lobe microbleeds and reduced gait speed is also
reported, a finding not directly explicable by anatomical path-
ways, which suggests that more widespread neuronal disruption
may be present in these subjects (178). Individuals with mul-
tiple microbleeds due to CAA may present with cortical motor
symptoms such as hemiparesis, dysphasia, or seizures (179–181),
with associated findings of white matter change on MRI sugges-
tive of vasogenic edema. These symptoms may be responsive to
corticosteroid therapy (123).

MICROBLEEDS AND MORTALITY RISK
Prospective data on the microbleeds and mortality are limited. In
2004, Greenberg et al. identified and association between base-
line hemorrhage burden (including microbleeds) and a com-
posite endpoint, including death, cognitive impairment, or loss
of independent functioning (11) in patients with ICH. In the
PROspective Study of Pravastatin in the Elderly at Risk (PROS-
PER), 435 individuals with VRF or vascular disease were followed
for 7 years. Over the study period, microbleeds were associated
with a sixfold increased risk of stroke-related death. Individuals
with non-lobar microbleeds had double the risk of cardiovascular
disease-related death (but not stroke-related death), independent
of VRF, whereas those with lobar microbleeds had a sevenfold
increase in the risk of stroke-related death, but not cardiovascular
death (142).

CONCLUSION
Only relatively recently identified, microbleeds are increasingly
appreciated as a marker of underlying disease states and risk for
ischemic and hemorrhagic sequelae, and cognitive decline. How-
ever several questions remain to be clarified, including the rate

of incidence for these lesions in aging and different disease states,
and to what extent different therapies modify this rate. Further, it is
still not clear whether microbleeds themselves are responsible for
altered cognition in AD and cerebrovascular disease, or if they are
simply a marker for the underlying pathology, namely hyperten-
sive SVD (in cerebrovascular disease), or fibrillar β-amyloid depo-
sition (in AD). Our understanding of their prognostic implications
will continue to improve with ongoing longitudinal assessment.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at: http://www.frontiersin.org/journal/10.3389/fneur.2013.00205/
abstract
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