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Abstract

Lesions of the cerebral white matter (WM) result in focal neurobehavioral syndromes,

neuropsychiatric phenomena, and dementia. The cerebral WM contains fiber pathways that

convey axons linking cerebral cortical areas with each other and with subcortical structures,

facilitating the distributed neural circuits that subserve sensorimotor function, intellect, and

emotion. Recent neuroanatomical investigations reveal that these neural circuits are

topographically linked by five groupings of fiber tracts emanating from every neocortical area: (1)

cortico-cortical association fibers; (2) corticostriatal fibers; (3) commissural fibers; and cortico-

subcortical pathways to (4) thalamus and (5) pontocerebellar system, brain stem, and/or spinal

cord. Lesions of association fibers prevent communication between cortical areas engaged in

different domains of behavior. Lesions of subcortical structures or projection/striatal fibers disrupt

the contribution of subcortical nodes to behavior. Disconnection syndromes thus result from

lesions of the cerebral cortex, subcortical structures, and WM tracts that link the nodes that make

up the distributed circuits. The nature and the severity of the clinical manifestations of WM

lesions are determined, in large part, by the location of the pathology: discrete neurological and

neuropsychiatric symptoms result from focal WM lesions, whereas cognitive impairment across

multiple domains—WM dementia—occurs in the setting of diffuse WM disease. We present a

detailed review of the conditions affecting WM that produce these neurobehavioral syndromes,

and consider the pathophysiology, clinical effects, and broad significance of the effects of aging

and vascular compromise on cerebral WM, in an attempt to help further the understanding,

diagnosis, and treatment of these disorders.
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The cerebral white matter (WM) was considered in antiquity to be the seat of all sensations,

movements, and intellect. It was relegated to relative obscurity as the cerebral cortex

ascended to prominence, and cerebral cortical association areas, in particular, came to be

regarded as the substrates for cognition.1–3 These notions have required revision.

Neurobehavioral disconnection syndromes occur after lesions of selected fiber bundles4,5;

dementia can result from lesions confined to the cerebral WM6; and it has become apparent

that all neurological function is subserved by distributed neural circuits, in which

geographically distant regions in cortical and subcortical nodes are linked together by axonal

connections conveyed in the fiber pathways that constitute the cerebral WM.4,5,7–14

Knowledge of the anatomical, functional, and clinical relevance of the WM is thus integral

to the understanding of neurological and neuropsychiatric disease. This development is

further emphasized by the rapid evolution in magnetic resonance imaging (MRI) techniques

that makes it possible to visualize fiber pathways in humans in health and disease.15–19 Here

we present an overview of essential anatomy of the cerebral WM; survey several diseases in

which the pathology is principally or commonly confined to it; and discuss the clinical

manifestations of WM disorders, with an emphasis on neurobehavioral impairments.

Neuroanatomy of WM Pathways

Historical Background

Galen’s (AD 129–130 to 200–201) identification of the corpus callosum20 was perhaps the

first recognition of a major fiber bundle, but it was not until the scientific renaissance of the

17th century that it became apparent that the WM was not an amorphous mass but rather

consisted of distinct fibers.2,3,21 The gross dissection methodology of investigators in the

19th century led to the identification of distinct fiber fascicles22,23 and the recognition that

these bundles could be considered association, projection, or commissural in nature.2,3,24–26

The clinical relevance of association pathways was introduced by Carl Wernicke’s (1848–

1900) description of conduction aphasia from what he believed to be the arcuate

fasciculus,27 and Joseph Jules Dejerine’s (1849–1917) account of alexia without agraphia

from lesions that involved the left occipital pole in addition to the splenium of the corpus

callosum.28 Disconnection syndromes were first emphasized in the modern era by Norman

Geschwind (1926–1984)4,5 and provided clinical and neuroanatomical impetus to the

emergence of behavioral neurology as a discipline. The distributed neural circuitry notion

has become fundamental to the understanding of the nervous system in health and disease. It

provides a conceptual underpinning to the observation of neurobehavioral deficits that arise

not only from cortical lesions but also from lesions of basal ganglia, thalamus, and

cerebellum, as well as from the fiber tracts that link cortical areas with each other and with

the subcortical nodes.2,29

Organizational Principles

To understand the effects of WM lesions on neurological function, including cognitive and

neuropsychiatric impairments, it is essential to know the anatomy of the fiber tracts that it

contains. These tracts are aggregations of axons running in close apposition to each other,

sharing common cortical and/or subcortical origins and destinations. The great complexity

of connections and pathways arising from the cerebral cortex can be reduced to a relatively

simple schema (Fig. 1). There is a general principle of brain organization2 that every area of

the neocortex is linked with other cortical and subcortical areas by pathways grouped into

five fiber bundles, identified as follows.

1. Association fibers travel to other ipsilateral cortical areas.
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2. Striatal fibers course to the basal ganglia. There is a confluence of fibers (termed

the cord) that divides into:

3. Commissural fibers that pass to the contralateral hemisphere, and another

contingent of the cord, the subcortical bundle of projection fibers, that segregates

into

4. Thalamic fibers, and

5. Pontine fiber fibers that descend to the diencephalon, pons, other brain stem

structures, and/or the spinal cord.

We now elaborate on these five classes of fiber tracts and their putative functional

properties, because this knowledge is useful when considering the clinical consequence of

WM diseases. Many of these tract tracing observations2 are supported by MRI findings in

monkey by using diffusion spectrum imaging30 and in human subjects by using diffusion

tensor imaging (DTI19,31,32), probabilistic tractrography,33,34 and functional connectivity

mapping.35,36 It is likely, therefore, that the observations in monkey will be in general

agreement with the anatomical organization of these pathways in humans. See Figure 2.

Association Fiber Tracts

Association fibers travel to other cortical areas in the same hemisphere. Local association

fibers, or U-fibers, travel to adjacent gyri, running immediately beneath the sixth layer.

Neighborhood association fibers are directed to nearby regions and are distinguishable from

U-fibers by their location. Long association fibers travel in discrete fascicles leading to

distant cortical areas in the same hemisphere. These named fiber tracts are the essential

anatomic substrates for the interdomain communication between cortical areas that subserve

different behaviors, and these deserve particular emphasis (Fig. 3).

The superior longitudinal fasciculus (SLF) has three subcomponents.

SLF I lies medially situated in the WM of the superior parietal lobule and the superior

frontal gyrus. It links the superior parietal region and adjacent medial parietal cortex in a

reciprocal manner with the frontal lobe supplementary and premotor areas. It is thought to

play a role in the regulation of higher aspects of motor behavior that require information

about body part location, and it may contribute to the initiation of motor activity.

SLF II is more laterally situated and occupies a position in the central core of the

hemisphere WM, lateral to the corona radiata and above the Sylvian fissure. It links the

caudal inferior parietal lobule (equivalent in human to the angular gyrus) and the parieto-

occipital areas, with the posterior part of the dorsolateral and mid-dorsolateral prefrontal

cortex. It is thought to serve as the conduit for the neural system subserving visual

awareness, the maintenance of attention, and engagement in the environment. It provides a

means whereby the prefrontal cortex can regulate the focusing of attention within different

parts of space.

SLF III is farther lateral and ventral and is located in the WM of the parietal and frontal

operculum. It provides the ventral premotor region and pars opercularis with higher-order

somatosensory input, may be crucial for monitoring orofacial and hand actions, and in the

human it may be engaged in phonemic and articulatory aspects of language.

The arcuate fasciculus (AF) runs in the WM of the superior temporal gyrus and deep to the

upper shoulder of the Sylvian fissure. By linking the caudal temporal lobe with the

dorsolateral prefrontal cortex it may be viewed as an auditory spatial bundle, important for

the spatial attributes of acoustic stimuli and auditory-related processing. The AF has

Schmahmann et al. Page 3

Ann N Y Acad Sci. Author manuscript; available in PMC 2013 August 26.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



historically been regarded as linking the posterior (Wernicke) and anterior (Broca) language

areas in the human brain and to be involved in conduction aphasia. Our anatomical studies

in monkey raise doubts about these anatomical and functional conclusions. This issue is not

yet definitively resolved.

The extreme capsule is situated between the claustrum and the insular cortex caudally and

between the claustrum and the orbital frontal cortex rostrally. In monkey, the extreme

capsule is the principal association pathway linking the middle superior temporal region

with the caudal parts of the orbital cortex and the ventral–lateral prefrontal cortex, including

area 45. These areas are homologous to the Wernicke and Broca language cortices in

human, and thus the extreme capsule (rather than the AF) may have an important role in

language.

The middle longitudinal fasciculus (MdLF) is situated within the WM of the caudal

inferior parietal lobule and extends into the WM of the superior temporal gyrus. It links

several high-level association and paralimbic cortical areas, including the inferior parietal

lobule, caudal cingulate gyrus, parahippocampal gyrus, and prefrontal cortex. In the human

the MdLF may play a role in language, possibly imbuing linguistic processing with

information dealing with spatial organization, memory, and motivational valence.

The uncinate fasciculus occupies the WM of the rostral part of the temporal lobe, the limen

insula, and the WM of the orbital and medial frontal cortex. By connecting these temporal

and prefrontal areas, the uncinate fasciculus may be a crucial component of the system that

regulates emotional responses to auditory stimuli. It may also be involved in attaching

emotional valence to visual information, is likely to be an important component of the

circuit underlying recognition memory, and is implicated in cognitive tasks that are

inextricably linked with emotional associations.37

The inferior longitudinal fasciculus (ILF) is in the WM between the sagittal stratum

medially and the parieto-occipital and temporal cortices laterally. It has a vertical limb in the

parietal and occipital lobes and a horizontal component contained within the temporal lobe.

The ILF is the long association system of the ventral visual pathways in the

occipitotemporal cortices. Visual agnosia and prosopagnosia are two clinical situations that

may arise from ILF damage.

The fronto-occipital fasciculus (FOF) travels above the body and head of the caudate

nucleus and the subcallosal fasciculus of Muratoff (Muratoff bundle [MB]), lateral to the

corpus callosum and medial to the corona radiata. It links the parieto-occipital region with

dorsal premotor and prefrontal cortices. The FOF is the long association system of the

dorsomedial aspects of the dorsal visual stream, and it appears to be an important component

of the anatomical substrates involved in peripheral vision and the processing of visual spatial

information.

The cingulum bundle (CB) nestles in the WM of the cingulate gyrus. It links the rostral and

caudal sectors of the cingulate gyrus with each other, as well as with the dorsolateral,

orbital, and medial prefrontal cortices, and the parietal, retrosplenial and ventral temporal

cortices (including the parahippocampal gyrus and entorhinal cortex). By virtue of these

connections, the CB may facilitate the emotional valence inherent in somatic sensation,

nociception, attention, motivation, and memory.2 Cingulectomy, and subsequently bilateral

stereotaxic cingulotomy, has achieved the status of established management for certain

forms of neuropsychiatric illness, such as obsessive–compulsive disorder, and for intractable

pain.38–44
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Striatal Fibers

Corticostriatal fibers to the caudate nucleus, putamen, and claustrum are conveyed mainly

by the subcallosal fasciculus of Muratoff and the external capsule.

Muratoff Bundle (Subcallosal Fasciculus of Muratoff)

The MB is a semilunar condensed fiber system situated immediately above the head and

body of the caudate nucleus. It conveys axons to the striatum principally from association

and limbic areas, with some fibers also from the dorsal part of the motor cortex. (There has

been confusion about the nature and location of the MB and the FOF. This issue has recently

been clarified.2,45)

External Capsule

The external capsule lies between the putamen medially and the claustrum laterally. It

conveys fibers from the ventral and medial pre-frontal cortex, ventral premotor cortex, pre-

central gyrus, the rostral superior temporal region, and the inferotemporal and preoccipital

regions. Projections from primary sensorimotor cortices are directed to the putamen; those

from the supplementary motor area and association cortices terminate also in the caudate

nucleus.

The MB and external capsule thus convey fibers from sensorimotor, cognitive, and limbic

regions of the cerebral cortex to areas within the striatum in a topographically arranged

manner. These corticostriatal pathways provide the critical links that enable different regions

with the basal ganglia to contribute to motor control, cognition, and emotion.

Cord Fiber System

In addition to association and corticostriatal systems, every cortical region gives rise to a

dense aggregation of fibers, termed the cord, which occupies the central core of the WM of

the gyrus. The fibers in the cord separate into two distinct segments: a commissural system

and projection fibers in the subcortical bundle.

Commissural Fibers

Anterior Commissure

The anterior commissure (AC) traverses the midline in front of the anterior columns of the

fornix, above the basal forebrain and beneath the medial and ventral aspect of the anterior

limb of the internal capsule. Its fibers link the caudal part of the orbital frontal cortex, the

temporal pole, the rostral superior temporal region, the major part of the inferotemporal

area, and the parahippocampal gyrus with their counterparts in the opposite hemisphere. In

the nonhuman primate the AC is concerned with functional coordination across the

hemispheres of highly processed information in the auditory and visual domains,

particularly when imbued with mnemonic and limbic valence.

Corpus Callosum

We divide the corpus callosum (CC) into five equal sectors conveying fibers across the

hemispheres from the following locations: (1) (rostrum and genu)—fibers from the

prefrontal cortex, rostral cingulate region, and supplementary motor area; (2) premotor

cortex; (3) ventral premotor region and the motor cortex (face representation most rostral,

followed by the hand and the leg), and postcentral gyrus fibers behind the motor fibers; (4)

posterior parietal cortex; (5) (splenium)—superior temporal fibers rostrally, inferotemporal
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and preoccipital fibers caudally. These comments regarding CC topography apply to the

midsagittal plane.

Studies of the CC have led to novel understanding of the anatomic underpinnings of

perception, attention, memory, language, and reasoning and provided insights into

consciousness, self-awareness, and creativity.46–50 Knowledge of CC topography is relevant

in the clinical context of callosal section for control of seizures.

Hippocampal Commissures

Three fiber systems link the ventral limbic and paralimbic regions across the hemispheres.

Anterior (uncal and genual) hippocampal fibers are conveyed in the ventral hippocampal

commissure—those from the presubiculum, entorhinal cortex, and posterior

parahippocampal gyrus in the dorsal hippocampal commissure. The hippocampal

decussation conveys fibers from the body of the hippocampal formation to the contralateral

septum.51

Projection Fibers

Projection (cortico-subcortical) fibers in the subcortical bundle are conveyed to their

destinations via the internal capsule (anterior and posterior limbs) and the sagittal stratum.

Each fiber system differentiates further as it progresses in the WM into two principal

systems: one destined for thalamus, the other for brain stem and/or spinal cord.

Internal Capsule

The anterior limb of the internal capsule (ICa) conveys fibers from the prefrontal cortex,

rostral cingulate region, and supplementary motor area (coursing through the genu of the

capsule), principally to the thalamus, hypothalamus, and basis pontis.

The posterior limb of the internal capsule (ICp) conveys descending fibers from the

premotor and motor cortices. Face, hand, arm, and leg fibers are arranged in a progressively

caudal position. The ICp also conveys descending fibers from the parietal, temporal, and

occipital lobes, and the caudal cingulate gyrus. These are topographically arranged within

the capsule, in the rostral–caudal and superior–inferior dimensions.

Focal motor and sensory deficits follow infarction of the ICp, and complex behavioral

syndromes result from lesions of the genu of the ICa and genu.52–54 Deficits include

fluctuating alertness, inattention, memory loss, apathy, abulia, and psychomotor retardation,

with neglect of contralateral space and visual–spatial impairment from lesions of the genu in

the right hemisphere, and severe verbal memory loss after genu lesions on the left. Deep

brain stimulation has been successfully applied to the ICa in some patients with obsessive–

compulsive disorder55 and intractable pain.56

Sagittal Stratum

The sagittal stratum (SS) is a major cortico-subcortical WM bundle that conveys fibers from

the parietal, occipital, cingulate, and temporal regions to thalamus, basis pontis, and other

brain stem structures. It also conveys afferents principally from thalamus to cortex. The SS

comprises an internal segment conveying corticofugal fibers efferent from the cortex and an

external segment that contains incoming corticopetal fibers. The rostral sector of the SS

corresponds to the anteriorly reflected fibers of the Flechsig–Meyer loop, whereas the

ventral parts of the midsection of the SS contain the optic radiations and thalamic fibers of

the caudal inferior temporal and occipitotemporal areas.
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The SS is the equivalent of the internal capsule of the posterior part of the hemispheres. The

functional implications are also analogous to those of the ICa and ICp. Whereas damage to

the optic radiations in the ventral sector of the SS lead to hemianopsia, damage to the dorsal

part of the SS may result in distortion of high-level visual information.

Thalamic Peduncles

Cortico-subcortical fibers enter the thalamus in locations determined by their site of origin.

The afferent and efferent fibers between thalamus and cerebral cortex are arrayed around the

thalamus and are collectively termed the thalamic peduncles.2

Intrinsic and Extrinsic Cerebellar WM Tracts

There are surprisingly few published details regarding the anatomical organization of

cerebellar WM at the systems level, that is, which parts of the cerebellar WM convey

afferent and efferent fibers to which specific cerebellar lobules. Further, it has long been

suspected that nuclei in the rostral part of the basis pontis project via the middle cerebellar

peduncle (MCP) to the posterior lobe of the cerebellum, and those in the caudal basis pontis

project to the anterior cerebellum,57 but more precise information concerning MCP

organization remains to be elucidated. Similarly, the degree to which there is anatomical and

functional differentiation within the superior cerebellar peduncle efferents to thalamus is not

presently known. There appears to be topographical organization of function within motor,

cognitive, and affective domains in cerebellum,58,59 and therefore defining the WM

arrangement of the cerebellar connections with extracerebellar structures is of great interest.

Having completed this overview of cerebral WM anatomy, we now proceed to a

consideration of diseases that afflict the cerebral WM either in isolation or as the principal

site of pathology.

Diseases of the Cerebral WM

Disorders of cerebral WM are common at any age and in many clinical settings. The history

in a particular patient, the results of the clinical examination, and specifically targeted

laboratory investigations will often lead to the correct diagnosis. MRI has proven invaluable

in the study of these disorders because it discloses structural aspects of WM systems in vivo

with great clarity. The most useful means of classifying WM disorders is by careful analysis

of the specific neuropathology, which reveals an impressive range of diseases, injuries, and

intoxications to which the WM is vulnerable (Table 1). Few disorders damage only the WM,

and there is usually some combination of gray matter (GM) and WM neuropathology.

However, all the entities we discuss here feature prominent or exclusive WM involvement,

and we highlight the contribution of these changes while not dismissing the importance of

GM pathology. Neuropathology is central for understanding etiology and improving

treatment, but the location of the WM damage is more directly pertinent than its etiology for

studying brain–behavior relationships. The categories of WM disorder and selected

examples of each are discussed, along with an account of their salient neurobehavioral

manifestations, followed by consideration of the effects of aging and vascular disease on

cerebral WM.

Genetic Diseases

The leukodystrophies are a heterogeneous group of genetic diseases involving

dysmyelination as a result of substrate accumulation due to enzymatic defects. This group

includes adrenoleukodystrophy, inherited in an X-linked recessive manner, and

metachromatic leukodystrophy, globoid cell leukodystrophy, and vanishing WM disease,

which are autosomal recessive (Table 2). These disorders are more common than previously
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recognized, in large part because of the improved detection with advances in MRI

techniques and appropriate genetic analyses. Collectively, their incidence rivals that of

multiple sclerosis. The prevalence of adrenoleukodystrophy alone is 1 in 17,000, about

20,000 patients in the United States.60 Other inherited disorders we consider here are adult-

onset leukodystrophy with neuroaxonal spheroids, mitochondrial encephalopathy with lactic

acidosis and stroke-like episodes, and fragile X–associated tremor ataxia syndrome.

X-linked adrenoleukodystrophy (X-ALD) is characterized by impaired ability to degrade

very long-chain fatty acids (VLCFAs) that causes malfunction of the adrenal cortex and

nervous system myelin.61 It presents in childhood in approximately 35% of patients.

Affected boys develop normally until 4–8 years of age and then suffer dementia and

progressive neurologic decline that leads to a vegetative state and death. More than 90%

have adrenal in-sufficiency. The disorder presents as adreno-myeloneuropathy in young

adulthood in 35%–40% of patients, characterized by progressive paraparesis and sphincter

disturbances due to involvement of the long tracts in the spinal cord. Rapidly progressive

inflammatory demyelination develops in 20% of these patients, leading to death in 1–2

years,62,63 a pattern that is similar to that encountered in the childhood form of cerebral X-

ALD. This presentation of cerebral X-ALD in adulthood may manifest with impaired

psychomotor speed, spatial cognition, memory, and executive functions, whereas those with

MRI evidence of severe cerebral disease have global and language impairment as well.64

These deficits are highly correlated with degree of brain MRI involvement. We have seen

this disease (Schmahmann, Eichler unpublished) produce a relentlessly progressive

dementia in a man in his sixth decade, with inattention, amnesia, impaired cognitive

flexibility and problem-solving skills, and visual spatial disorganization, progressing to

stereotyped nonmeaningful but complex behaviors, relentless wandering, perseveration,

apraxia and posterior aphasia with fluent jargon, impaired comprehension, and poor

repetition. In this case there was relative sparing of elementary motor features, normal

reflexes, and plantar responses, but striking release phenomena (palmar grasp, snout, root,

suck) were present.

Presymptomatic cerebral involvement in X-ALD can be detected on neuroimaging.65 Eighty

percent of patients show symmetric, posterior parietal, and occipital periventricular WM

lesions,66 with a characteristic garland of gadolinium contrast enhancement67 (Fig. 4A), and

increased choline (Ch) and decreased N -acetyl aspartate (NAA) on MRI spectroscopy

(MRS) in WM that appears normal on conventional MRI or DTI.68,69 Inflammatory

demyelination of the brain is prominent, commencing in the center of the CC where the fiber

bundles are most tightly packed, and spreading into the periventricular WM70 in a parieto-

occipital (about 80%) or frontoparietal (20%) distribution. The inflammation lies behind the

leading edge of demyelination and therefore is probably a response to the primary

dysmyelinative process. Recent evidence suggests that microglial apoptosis may precede the

demyelination.71

Metachromatic leukodystrophy (MLD) is a lysosomal storage disorder resulting from a

deficiency of aryl sulfatase A leading to a defect in the desulfation of 3-0-sulfogalactosyl

lipids and intracellular accumulation of sulfatides.72 It occurs in about one per 40,000 live

births.73 Late infantile MLD is most common, usually appearing between 18 and 24

months.74 The juvenile form emerges between 4 and 16 years.75 The adult form begins after

16 years of age.76 Symptoms vary by age of onset (Mahmood and Eichler, unpublished).

Children usually present with gait disturbance and develop ataxia, spastic quadriplegia, and

optic atrophy as they progress to a decerebrate state. Progression in adults is slower, and

psychosis, behavioral disturbances, and dementia are the major presenting features.77,78

MRI reveals involvement of the periventricular WM, centrum semiovale, genu and splenium

of the CC, ICp, descending pyramidal tracts, claustrum, and occasionally cerebellar WM
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(Fig. 4B). Subcortical U-fibers are usually spared.79 Active lesions do not enhance, although

areas that have previously undergone massive dysmyelination can show punctuate striated

(tigroid) enhancement,79 corresponding to patchy areas of preserved myelin.80

Globoid cell leukodystrophy (GLD), also known as Krabbe’s Disease, is caused by

deficiency of the enzyme galactosyl ceramidase (GALC) that is responsible for converting

galactosylceramide into galactose and ceramide. The absence of GALC leads to the

accumulation of galactosylceramide as well as psychosine, a cytotoxic byproduct of

galactosylceramide. Galactosylceramide accumulation prompts a macrophagocytic

response.81 Psychosine accumulation is thought to poison cells and lead to oligodendrocyte

cell death.82 Incidence is estimated at one per 100,000 births.83 Infantile GLD presents in

the first 6 months of life with hyperirritability, increased muscular tone, fever, and

developmental arrest, leading to further cognitive decline, myoclonus, opisthotonus,

nystagmus, and optic atrophy. Patients rarely survive beyond 2 years. In an estimated 10%

of cases83 symptoms begin after the patient has begun to walk; these are considered late

onset.84,85 Reports of adult-onset cases have increased in recent years, presenting with

slowly evolving hemiparesis, intellectual impairment, cerebellar ataxia, and visual failure,

and, in a few instances, with spastic paraplegia and increased T2 MRI signal along the

corticospinal tracts.86 Early imaging reveals symmetrical involvement of the basal ganglia,

thalami, and posterior aspect of the centrum semiovale87 (Fig. 4C). The later stages of the

disease are characterized by dramatic cerebral and cerebellar atrophy. In the cerebellum, the

dentate nuclei and WM are usually involved. Contrast enhancement has been reported in the

lumbosacral nerve roots, but not elsewhere, setting this entity apart from X-ALD.88

In the neuropathology of both MLD and GLD, central WM is reduced to the point of

cavitation, replaced by marked gliosis.75,89–91 Both disorders show dysmyelination of

peripheral nervous system with histiocytic infiltration. In MLD the cerebellar WM is also

affected, together with loss of granule and Purkinje cells.91 MLD acquires its name from the

abundant sulfatide granules in macrophages that take on their characteristic metachromatic

hue after treatment with acidified cresyl violet. In GLD, the pathognomonic multinucleated

globoid cells are actually dysmorphic macrophages, engorged with undigested

galactosylceramide.

Vanishing white matter disease (VWMD) can be caused by a defect in any one of the five

subunits of eukaryotic initiation factor 2B (eIF2B),92,93 a highly conserved, ubiquitously

expressed protein that plays an essential role in the initiation of protein synthesis. Clinical

symptoms begin in the first few years, after normal or mildly delayed early development.

Symptoms include ataxia and seizures, often occurring after fever or minor head trauma.

The course is chronic and progressive, with episodic declines after stressors such as fever,

head trauma, or periods of fright. Patients usually survive only a few years past the clinical

onset, although survival into adulthood has been described.94,95 MRI shows vanishing of

WM over time, best recognized on proton density and fluid-attenuated inversion recovery

(FLAIR) images (Fig. 4D). Contrast enhancement has not been reported. The cerebellar WM

and brain stem show varying degrees of involvement. Imaging abnormalities are found even

in presymptomatic individuals.96 Autopsy confirms WM rarefaction and cystic

degeneration. The cerebral WM is diffusely affected with a consistency that ranges from

gelatinous to cavitary.97 The frontoparietal regions are most severely affected, with myelin

pallor, thinning, and cystic changes. Axonal loss varies with the degree of cavitation. GM is

largely unaffected. An inflammatory response is notably absent—a failure of astrogliosis

may be responsible for the cavitated appearance.

Adult-onset leukodystrophy with neuroaxonal spheroids (AOLNS) is a familial or sporadic

disorder characterized radiographically by symmetric, bilateral, T2-hyperintense, and T1-
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hypointense MRI signal involving frontal lobe WM (Fig. 5A). Neuropathologic examination

demonstrates a severe leukodystrophy with myelin and axonal loss, gliosis, macrophages,

and axonal spheroids, with early and severe frontal WM involvement, and complete sparing

of cerebral cortical neurons98,99 (Fig. 5B–D). The etiology is unknown, although in our

series we detected abnormalities in some mitochondrial enzymes, and in one patient,

electron transport chain analysis revealed equivocal complex 1 deficiency, suggesting

mitochondrial dysfunction.

The disorder usually presents with executive system dysfunction and other neurobehavioral

deficits, progressing to dementia. The extent and degree of change outside the frontal lobe

correlates with disease duration. The WM containing long association tracts interconnecting

parietal, temporal, and occipital lobes with the frontal lobe are affected early and most

severely. In contrast, projection pathways are spared until late in the illness, as exemplified

in a patient whose cortical blindness corresponded to the late pathological changes in the SS

that contains the optic radiations.99 This dichotomy of early dementia, but late failure of

gait, strength, dexterity and sensation, provides an interesting glimpse into the

clinicopathological distinction between association and projection fiber tract involvement in

AOLNS, and the functional contributions of these different WM tracts.

Mitochondrial encephalopathy with lactic acidosis and strokelike episodes (MELAS) was

initially described in patients with normal early development and short stature, who

developed seizures, hemiparesis, and hemianopia or cortical blindness, and in whom ragged

red fibers were evident on muscle biopsy.100 Criteria for diagnosis101 are strokelike episodes

before age 40 (not confined to vascular territories); encephalopathy characterized by

seizures, dementia, or both; with lactic acidosis and/or ragged-red fibers. Recurrent

headache or vomiting may be present. The disease is most commonly maternally inherited

through the mitochondrial DNA, and in 70%–80% of MELAS patients the enzymatic defect

is a complex I deficiency and, to a lesser degree, a complex IV deficiency, associated with a

point mutation at 3243 in the tRNA Leu (UUR) region. Periventricular and diffuse WM

hyperintensities, as well as areas of cortical infarction and cerebral edema, are seen on

MRI102 (Fig. 6), consistent with the pathology showing diffuse gliosis of cerebral and

cerebellar WM, and diffuse atrophy of the cerebral and cerebellar cortices.103 Dementia and

psychosis may be the initial clinical manifestation of MELAS. In one published case104 a

young woman presented with headaches, confusion, aphasia, and apraxia, followed some

years later by temper tantrums, aggressive and paranoid behavior, disinhibition, and ideas of

reference. In our patient,105 a man in his 40s presented with memory loss, social withdrawal,

hallucinations, paranoia, impaired planning and strategy formation, and a right homonymous

hemianopsia. Over the ensuing decade, his frontal lobe syndrome remained problematic and

the dementia progressed, but only mild motor slowing appeared. MRI currently shows

volume loss with multiple scattered WM T2 and FLAIR hyperintensities.

Fragile X–associated tremor ataxia syndrome (FX-TAS) is an adult-onset neurodegenerative

disorder that affects carriers, principally males, of premutation alleles (55–200 CGG repeats)

of the fragile X mental retardation 1 (FMR1) gene, with a powerful predictive relationship

between the length of the CGG repeat and the neurological and neuropathological

involvement.106–108 Patients present in older adulthood primarily with gait ataxia and

intention tremor. Progressive cognitive decline is characterized by impaired executive

function, working memory, intelligence, declarative learning and memory, information

processing speed, temporal sequencing, and visuospatial functioning, but language is

spared.109 The MRI pattern of WM pathology in FXTAS is distinctive (Fig. 7): increased T2

signal in the MCP is typical, and cerebellar and cerebral WM changes are also consistently

observed.107 Neuropathology reveals marked abnormalities in cerebral and cerebellar WM,

dramatically enlarged inclusion-bearing astrocytes in cerebral WM, and widespread
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intranuclear and astroglial inclusions in brain, cranial nerve nuclei, and autonomic neurons

of the spinal cord. Spongiosis is present in the MCPs. Cerebral WM can be severely affected

both grossly and microscopically, with parenchymal pallor and spongiosis. Periventricular

WM is generally spared.108 Greco et al.108 postulate that in the setting of normal cortical

thickness and neuronal counts, neuronal and/or glial dysfunction causes or contributes to the

clinical presentation. Involvement of the MCP is interesting in light of the fact that the MCP

conveys essentially all cerebral cortical input (including associative and paralimbic) to the

cerebellum,110 and the cerebellum contributes not only to motor control but also to the

modulation of cognition and emotion.58,59 When the deafferentation of cerebellum by the

MCP lesions is added to the massive disruption of cerebral long association fiber tracts

evident in pathological studies of FXTAS, the cognitive decline becomes readily

understandable.

Demyelinative Diseases

Multiple sclerosis (MS) is an inflammatory disease of myelin, but it may also damage axons,

conferring a worse prognosis.111 In terms of higher function, MS has recently been better

appreciated as a source of cognitive and emotional impairment, recalling the initial insights

of Jean-Martin Charcot (1825–1893).112 As recently as 1970, cognitive impairment of any

degree in MS was thought to occur in about 5% of patients,113 but community-based

neuropsychological studies place this figure in the 40%–50% range.114 Dementia may

occur, with an estimated prevalence as high as 23%.115 Cognitive impairments in MS also

include a wide range of focal neurobehavioral syndromes and neuropsychiatric

disturbances.116 The source of cognitive impairment appears to be related primarily to WM

involvement (Fig. 8), because many studies find at least modest correlations between extent

of MRI WM damage and the degree of cognitive loss.116 Subtle WM pathology may not be

detected by conventional MRI, but more sophisticated MRI techniques (diffusion-weighted

imaging [DWI], FLAIR sequences, ultrahigh field strength, magnetization transfer, and

magnetic resonance spectroscopy [MRS]117,118) have documented abnormalities in the

normal-appearing WM. Cerebral cortical demyelination is also present in MS,119 raising the

possibility that cognitive impairment may result from this aspect of the disease. Whereas a

contribution of cortical demyelination is plausible, this remains uncertain because the

cortical lesion load in MS may be limited and therefore have minimal effect on cognition.120

Given that demyelination in large fiber tracts probably exerts a far greater effect on the

distributed neural networks subserving higher functions,121 the main determinant of

cognitive dysfunction in MS appears to be WM demyelination.

Acute disseminated encephalomyelitis (ADEM) is another inflammatory demyelinative

disease, probably postinfectious and autoimmune in origin. It is generally monophasic, but

repeated episodes have been described. Diagnostic criteria do not reliably distinguish

ADEM from first presentations of relapsing diseases such as MS and neuromyelitis

optica,122,123 but ADEM can be aggressive, massively disseminated, and life threatening.124

Four patterns of cerebral involvement in ADEM have been described based on MRI

findings: (1) lesions of less than 5 mm; (2) large, confluent, or tumefactive lesions, with

perilesional edema and mass effect; (3) additional bithalamic involvement; and (4) acute

hemorrhagic encephalomyelitis (AHEM) with hemorrhage identified in the large

demyelinative lesion.125 ADEM can be treated, sometimes with dramatic success, using

immune-modulating agents such as intravenous immunoglobulin (IVIG). The presentation

depends on the location of the pathology. One of our recent patients presented with inability

to find her shoe with the left foot, the beginning of a hemineglect syndrome from a right

parieto-occipital WM lesion that heralded disseminated, asymmetric, bihemispheric

demyelination; her deficits responded immediately to IVIG (Fig. 9). A second young woman

with AHEM presented with hemianopsia related to the posterior location of the initial
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pathology. She evolved to hemispheric edema requiring craniotomy for herniation before

she came to our attention and recovered with IVIG treatment.

Infectious Diseases

Some nervous system infections have a predilection for the cerebral WM and include

prominent neurobehavioral sequelae.

AIDS dementia complex (ADC) commonly has WM abnormalities on MRI, and WM pallor

is an early neuropathological finding.126 Rarely, fatal and fulminant leukoencephalopathy

can be seen as the only manifestation of human immunodeficiency virus (HIV) infection.127

Involvement of the basal ganglia is also evident in ADC, and the initial reports of dementia

in AIDS stressed the subcortical profile of the dementia syndrome,128 analogous to that in

patients with subcortical dementias such as Huntington’s and Parkinson’s diseases. The role

of WM dysfunction is not easily dismissed, however, in light of evidence that MRI WM

changes (Fig. 10) improve in parallel with cognitive decline in patients with successful

treatment of dementia.129–131 Advanced neuroimaging illuminates this issue. Tensor-based

morphometry in HIV/AIDS patients showed that, whereas atrophy was widespread in the

brain, only WM tissue loss correlated with cognitive impairment.132 The neuropathology of

ADC is still being elucidated, but evidence supports the role of WM dysfunction in

neurobehavioral dysfunction. This issue highlights a more general need for studies that

delineate the relative contributions of subcortical GM and WM dysfunction to the

pathogenesis of dementia.

Progressive multifocal leukoencephalopathy (PML) is an opportunistic demyelinative

infection of immunocompromised patients, caused by a human polyomavirus, JC virus, that

attacks the myelin-producing oligodendrocyte.133,134 PML was previously recognized in the

setting of immune compromise after organ transplantation, bone marrow–derived tumors,

and chemotherapy, until the worldwide HIV/AIDS pandemic produced an explosion of

cases. Interest in the relevance of this disorder for a new patient demographic has emerged

with the report that PML occurred in some MS patients treated with the adhesion-molecule

α-integrin inhibitor natalizumab.135 The clinical manifestations vary greatly, depending on

the location of the demyelination. Focal elementary findings include hemianopsia, cortical

blindness, hemiparesis, and cerebellar motor symptoms of ataxia and dysarthria. Cognitive

presentations include frontal lobe syndromes and aphasia, progressing to quadriparesis,

mutism, and unresponsiveness. The virus has a predilection for subcortical U-fibers, but

cortical demyelination appears to be integral to the process, together with macrophage and

microglial activation.136 MRI findings of widespread, asymmetric, nonenhancing infiltrative

lesions without mass effect137 (Fig. 11) may also be located in subcortical gray nuclei,

because the axons conveyed in WM tracts course to, and terminate in, these GM

destinations, and because there is probably intrinsic pathology of axons and neurites in the

GM. Cerebellar WM may be involved early,138 and brain stem disease is also described.139

Multiple locations of abnormal findings on MRI and pathological observation are expected,

and the disease has a relentlessly progressive course, although limited advances have been

made in AIDS patients by using highly active antiretroviral therapeutic regimens.140

Autoimmune Inflammatory Diseases

These central nervous system diseases are similar to infectious diseases in that their

pathology cannot be assigned only to the cerebral WM. Nevertheless, growing evidence

implicates a role for WM involvement in neurobehavioral dysfunction.

Systemic lupus erythematosus (SLE) is the best-studied example and proves illustrative.

Neuropsychiatric lupus refers to a diverse group of syndromes in SLE patients that includes
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cognitive dysfunction,141 and milder cognitive impairment can be noted even in SLE

patients without overt neurologic disease.142 MRI WM hyperintensities are common, related

to vasculopathy and presumably autoimmune factors, and a relationship between dementia

and leukoencephalopathy in SLE has been suggested.143 Data from studies with MRS have

shown that, even in SLE patients with normal WM on conventional MRI and no

neuropsychiatric features, subtle cognitive impairment correlates with increased WM Ch,

but not with the neuronal marker NAA or hippocampal atrophy.144 Support is thus

accumulating for a contribution of cerebral myelin damage to cognitive impairment in SLE.

Other proposed pathogenic factors in SLE, such as autoimmune mediators including

antiphospholipid antibodies, proinflammatory cytokines, and anti–N -methyl-D-aspartate

receptor antibodies, also merit study.

Toxic Leukoencephalopathy

Many toxic brain disorders preferentially affect the cerebral WM.145 A spectrum of severity

has been described, ranging from mild, reversible confusion, to coma and death, with

concomitant MRI and neuropathological WM changes.145 Cranial irradiation and cancer

chemotherapeutic drugs, most notably methotrexate146,147 (Fig. 12), are leukotoxic, an

effect that complicates the treatment of many malignancies.

Toluene leukoencephalopathy (TL) is an intriguing disorder that convincingly illustrates the

ability of pure WM damage to produce dementia.148–152 Toluene (methylbenzene) is a

common household and industrial solvent and is the major solvent in spray paint. It is

abused by millions of people worldwide for its euphorigenic effect, an abuse that has a

lifetime prevalence in the United States estimated at 18%.152 The intentional inhalation of

toluene, often for years without respite, results in a dramatic syndrome of dementia, ataxia,

and other neurologic signs.149,150 The effects are readily detectable on MRI and include

diffuse cerebral and cerebellar WM hyperintensity (Fig. 13). The degree of cerebral

involvement strongly correlates with the severity of dementia, which is the most prominent

manifestation of the syndrome.148,150 Autopsy studies of TL reveal selective myelin loss

that spares the cerebral cortex, neuronal cell bodies, and even axons in all but the most

severe cases.151,152 TL thus ex-emplifies the toxic WM disorders and stands out as a

convincing example of WM dementia (WMD).6,116,153

Inhalation of heated heroin vapor (colloquially termed “chasing the dragon”) produces a

devastating, progressive spongiform leukoencephalopathy. The MRI appearance154–156 is

highly suggestive, if not pathognomonic (Fig. 14). Cocaine use may produce similar

findings, including symmetric and widespread involvement of the posterior cerebral

hemispheric WM, cerebellar WM, splenium of the CC, and brain stem (medial lemniscus

and lateral brain stem), with sparing of the deep cerebellar nuclei. MRS in areas of

parenchymal damage demonstrates elevated lactate and myoinositol, reduced NAA and

creatine, normal to slightly decreased Ch, and normal lipid peak. Neuropathologically this is

WM spongiform degeneration with relative sparing of U-fibers, whereas electron

microscopy reveals intramyelinic vacuolation with splitting of intraperiod lines. Preservation

of axons with no evidence of Wallerian degeneration, inflammatory cellular reaction, or

demyelination is taken to indicate that axons may be relatively spared, consistent with the

degree of recovery in some cases.154 Clinical manifestations include cerebellar motor

findings of ataxia, dysmetria and dysarthria, bradykinesia, rigidity, and hypophonia, and the

syndrome may progress over weeks to pseudobulbar palsy, akinetic mutism, decorticate

posturing, and spastic quadriparesis. Death occurs in approximately 20% of cases. Clinical

and MRI findings can progress after cessation of drug use, indicating that the toxic exposure

precipitates an evolving injury. The lack of concordance between MRI perfusion and

spectroscopy may reflect impaired energy metabolism at the cellular level. The lactate peak

on MRS; mitochondrial swelling and distended endoplasmic reticulum in oligodendrocytes
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on autopsy; and apparent response to antioxidants and mitochondrial cofactors such as

vitamin E, vitamin C, and coenzyme Q suggest mitochondrial dysfunction as a basis for this

entity.154,155,157

Other toxin-induced spongiform leukoencephalopathies with fluid accumulation restricted to

myelin sheaths include those precipitated by cuprizone, ethidium bromide, actinomycin D,

triethyl tin, hexachlorophene, isonicotinic acid, hydrazine, and cycloleucine.154,158

Metabolic Disorders

A diverse group of metabolic disturbances features WM neuropathology and a variety of

neurobehavioral syndromes. In some patients, metabolic disturbances coexist with toxic

disorders (including methotrexate) to produce a clinical and MRI picture known as posterior

reversible leukoencephalopathy syndrome159 that also occurs in patients with hypertension,

including those with preeclampsia.

Deficiency of cobalamin (vitamin B12) can lead to dementia with a prominent WM

component radiologically and pathologically. Cobalamin is important in the maintenance of

normal myelin, and its deficiency results in subacute combined degeneration (SCD) of the

spinal cord. Cobalamin deficiency may also cause perivascular degeneration of myelinated

fibers in the cerebrum that is identical to the WM pathology in SCD, and these brain lesions

probably account for dementia.160 Because cobalamin deficiency may produce dementia

that is easily correctable with treatment, vitamin B12 screening is routine in the evaluation of

dementia. Well-documented cases of WM lesions and dementia have improved after

parenteral treatment with vitamin B12.
161,162

Hypoxic ischemic encephalopathy itself may produce a delayed, diffuse

leukoencephalopathy.163,164 We described a woman who suffered presumed cardiac arrest,

was reportedly comatose for 2 days, and then recovered well, only to develop confusion, gait

difficulty, and incontinence over the ensuing 2 weeks. She was mute and unable to follow

commands and had right hemianopsia, arms held in a flexion, although she could move her

legs, with spasticity and hyperreflexia in all extremities. MRI showed extensive, symmetric

WM T2 and FLAIR hyperintensities, and DWI and apparent diffusion coefficient mapping

revealed restricted diffusion of the WM165 (Fig. 15). Demyelination has been proposed as a

pathophysiological mechanism in these cases, accounting for both latency to onset and

variable prognosis. A proposed mechanism is that the demyelination might be triggered by

selective vulnerability of the WM to hypoxic injury, resulting from its widely spaced

arterioles and lack of anastamoses.165 Delayed leukoencephalopathy in the setting of

hypoxic encephalopathy has also been associated with carbon monoxide poisoning,166,167

but exposure to the toxin is not a prerequisite.

Trauma

Traumatic brain injury (TBI) is a major source of neurobehavioral disability estimated to

affect 1.4 million Americans per year.168 Of all the major neuropathological complications

of TBI (cortical contusion, intracerebral hemorrhage, subdural hematoma, epidural

hematoma, penetrating injury, hypoxic–ischemic damage), arguably the most important is

the WM lesion known as diffuse axonal injury (DAI),169,170 or WM shearing injury. DAI

involves primarily the brain stem, cerebral hemispheres, and CC and is likely to be

ubiquitous in TBI.116,171 Both myelin and axons are highly vulnerable to DAI, and this

injury disrupts distributed neural networks by disconnecting widespread cortical and

subcortical regions. DAI has been linked with acute effects such as loss of consciousness, as

well as chronic sequelae including persistent attentional, executive, comportment, and

memory disturbances. These deficits may occur with DAI in all degrees of TBI severity,
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from concussion to the vegetative state.172,173 Damage to the frontal lobe WM appears to be

particularly detrimental to long-term outcome, interfering with comportment, occupational

function, and community reintegration.116

Neoplasms

Central nervous system tumors have been considered problematic for investigating brain–

behavior relationships because their often wide extent, mass effect, and associated edema

can complicate precise localization of the neuropathology. However, with improved

neuroimaging, neurobehavioral effects of many cerebral tumors can be studied using

detailed clinical–neuropathological correlations.174

Gliomas can be particularly illustrative in terms of their effects on WM tracts because they

originate primarily in WM and spread via WM tracts to other regions.175,176 Gliomatosis

cerebri (GC), a diffusely infiltrative astrocytic malignancy with a clear predilection for

cerebral WM, can be seen by MRI to spread via inter- and interhemispheric WM

pathways177 (Fig. 16). Neurobehavioral features leading to progressive dementia are the

most common presenting, and persistent, clinical manifestations of this tumor. This scenario

underscores the conclusion that selective WM dysfunction is sufficient to produce clinically

significant cognitive and emotional disturbances.

Cerebral lymphoma may demonstrate a clinical propensity similar to GC when it takes the

diffusely infiltrative form of lymphomatosis cerebri.178 Study of brain tumors producing

neurobehavioral changes related to WM dysfunction deserves more attention, particularly as

more powerful neuroimaging modalities make it possible to identify the location and spread

of these tumors throughout their course.

Langerhans’ cell histiocytosis (LCH) is a disorder of unknown cause characterized by

proliferation of the Langerhans’ cell—a bone marrow–derived, antigen-presenting dendritic

cell. It may affect the nervous system, notably the hypothalamic–pituitary region, leading to

diabetes insipidus and other endocrinopathies. It may also be located in the pons,

cerebellum, basal ganglia, and cerebral WM179,180 (Fig. 17). The cerebellar lesions are

characterized as neurodegenerative and exhibit a profound inflammatory process dominated

by CD8-reactive lymphocytes, associated with tissue degeneration, microglial activation,

and gliosis.181 We have seen two patients with LCH (unpublished; and case 8b in reference

182), in whom, on MRI, the disorder appears isolated within cerebellar WM. The cerebellar

motor syndrome is troublesome but is overshadowed by cognitive and neuropsychiatric

dysfunction. In one patient, high T2 signal on MRI was isolated to the cerebellar WM during

childhood; images during the teenage years demonstrated pancerebellar atrophy and

attenuated cerebellar WM. The patient had been placed in special-education classes because

of cognitive impairment, and his behaviors were perseverative, impulsive, self-absorbed,

immature, and unreliable. He demonstrated poor judgment, took unnecessary risks, engaged

in inappropriate interactions, and was “his own worst enemy.” He was alternately agitated,

tearful, and sarcastic, and he had a cerebellar motor syndrome of moderate severity. An

earlier report of a patient with LCH involving cerebellar WM also reported significant

deficits in global cognitive scores, memory, attention and concentration, and perceptual–

organizational capabilities, along with substantial emotional and behavioral problems.183

These behaviors fall within the domain of the cerebellar cognitive affective syndrome and its

neuropsychiatric manifestations,182,184,185 and they probably reflect involvement of the

nonmotor region of cerebellum in the posterior lobe.
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Hydrocephalus

Whether originating early or late in life, hydrocephalus exerts its most prominent

neuropathological effects on cerebral WM.186,187 Cortical damage is uncommon, occurring

only late in the course. Injury to the deep GM is also less prominent than WM injury,

indicating that the cognitive effects of hydrocephalus are related primarily to tract damage,

at least at the time when diagnostic and treatment issues are most crucial. Periventricular

WM is compromised by the excess volume of ventricular cerebrospinal fluid. In patients

with normal pressure hydrocephalus (NPH)188 characterized by the clinical triad of

dementia, urinary incontinence, and gait impairment, treatment with ventriculoperitoneal

shunt can be most effective.189,190 Improvement is not universal, particularly in older

patients with coexistent ischemic damage in the WM191 or concomitant Alzheimer’s disease

(AD).192 The reversibility of NPH, at least early in the course before widespread GM

damage has occurred, likely results from the significant ability of compromised WM to

recover.

Aging, Vascular Disease, and WM Lesions

Aged monkeys lose WM within the cerebral cortex and subcortical regions193,194 and

display memory impairment on tasks of spatial and visual recognition that correlates with

the extent of degeneration of myelinated fibers in cortex and WM.195 There is now a

vigorous field of investigation into the WM changes that characterize the aging process, as

well as the relevance of these findings for speed of information processing, cognition, and

dementia in humans.

WM Hyperintensities in the Elderly: MRI Observations

Computed tomography (CT) and MRI have led to an increased recognition of the prevalence

of WM lesions in the elderly. Termed leukoaraiosis (WM rarefaction) by Hachinski et

al.196,197 (Fig. 18), these findings were initially thought to be a radiographic manifestation

of Binswanger’s disease (Fig. 19). It is now appreciated that these lesions are extremely

prevalent both in successful aging and in aging associated with cognitive decline.

Definition of WM Hyperintensities

WM lesions can be visualized on CT as areas of hypoattenuation (Fig. 18). MRI has greater

sensitivity and reveals WM lesions that may not be identified on CT and appear as hyper-

intensity (WMH) on T2-weighted and FLAIR images. These WMHs are distinguished from

infarction by the absence of well-defined hypointensity on T1-weighted images.

Periventricular regions are most commonly affected, particularly around the frontal and

occipital horns. In severe cases there is a halo of WMH surrounding the lateral ventricles198

(Fig. 19), and a variable extent of discrete ovoid subcortical WMH. MRI measurements of

water proton diffusion taken using apparent diffusion coefficient mapping show increased

diffusivity within the lesions.199 These features are not disease specific, however, because

they reflect an increased concentration of water within the affected tissue. The most

common cerebral small-vessel pathologies associated with WMH are related to

hypertension, diabetes, atherosclerosis, and cerebral amyloid angiopathy. Rare vascular

diseases associated with WMH include Fabry’s disease and hereditary mutations of the

COL4A1 gene.

WMHs in the Elderly: Pathophysiology and Clinical Features

Multiple lines of evidence suggest that vascular pathology is the main cause of most of the

age-related WMHs, once other neurological diseases are excluded. Histopathology shows

demyelination with various degrees of axonal loss and gliosis, consistent with injury to the

myelin or oligodendrocyte, but this has not helped determine the underlying causes.200 CT
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and MRI findings are visually more dramatic than gross or routine microscopic pathology,

but there is good correlation between imaging and pathology when using myelin stains that

reveal relative myelin loss.200 Arteriosclerosis or microinfarction may be present, but

careful studies of the vascular system with serial sections are rarely performed.

Epidemiology of WMH

Prospective, population-based cohort studies (Framingham Study,201 Rotterdam

Study,202,203 Cardiovascular Health Study204) have elucidated the epidemiology of WMH.

One study using a sensitive ordinal scale for grading WMH severity205 found that more than

95% of persons older than 70 years have detectable WMH on MRI. Consequently, studies of

WMH in older persons are focused on determining variability in extent of WM lesions

rather than their presence or absence. The strongest risk factors for greater extent of WMH

are age, hypertension, diabetes, and smoking,203,204 whereas systemic measures of

atherosclerosis, such as internal carotid artery plaques, are weakly associated. Retinal

vascular changes206 and indices of renal function207 are closely associated with WMH,

possibly reflecting the presence of shared risk factors for small vessel disease. Serum studies

show associations between WMH, or their progression, and markers of endothelial

dysfunction (serum homocysteine and intercellular adhesion molecule 1),208 thrombogenesis

(thrombomodulin and fibrinogen),209,210 inflammation (C-reactive protein),208 and

antioxidant levels.210 A link with β-amyloid metabolism is shown by associations with

either increased serum A-β211,212 or decreased cerebrospinal fluid A-β.213 The basis for

these findings is unknown but might be related to the presence of cerebral amyloid

angiopathy (CAA).211 Despite these known risk factors, much of the variance in age-related

WMH remains unexplained and may be accounted for by genetic factors.214

Pathophysiology of WMH: Small-vessel Disease

A strong relationship with cerebrovascular disease is shown by robust associations between

WMH burden and history of ischemic215 or hemorrhagic stroke,216 ischemic stroke

evolution,217 incidence of new ischemic215,218 or hemorrhagic stroke,219–221 and presence

and incidence of silent brain infarcts.222 These relationships with stroke and infarction are

not accounted for by shared vascular risk factors. Treatment of hypertension, the strongest

modifiable risk factor for cerebrovascular disease, with an angiotensin-converting enzyme

inhibitor and thiazide diuretic, was associated with reduced WMH progression,223 whereas

treatment with a 3-hydroxy-3-methyl-glutaryl (HMG) CoA reductase inhibitor (statin) had

no effect.224

Cerebral small-vessel disease is thought to cause ischemia through vascular stenosis,

occlusion, or impaired reactivity producing the WM changes. Tissue pathology consists only

of nonspecific injury without evidence of frank infarction, although lesions show

immunoreactivity for hypoxia-inducible factor 1, which is expressed in the presence of

ischemia.225 Hemispheric WM blood supply is derived predominantly from penetrating

branches of the middle cerebral artery stem or from penetrating branches of circumferential

arteries coursing over the hemispheric surface.226 The few millimeters of WM adjacent to

the wall of the lateral ventricle represent a distal endzone territory of blood supply from the

choroidal arteries. Blood flow studies show this to be a low-perfusion region, and the fact

that it is the most frequent site of WMH involvement possibly reflects a vulnerability to

blood flow reduction.227 Brain regions with higher burden of WMH in demented subjects

show decreased blood flow and metabolism, as well as increased oxygen extraction

indicative of hypoperfusion.228–232 Blood flow disturbances are less severe in the

nondemented.233
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Cerebral autosomal dominant arteriopathy with subcortical infarcts and

leukoencephalopathy (CADASIL) is caused by mutations in the notch 3 gene234 that lead to

hyalinization and thickening of the arterial media of small blood vessels in the brain. Other

organs are not affected, although asymptomatic vascular changes can be detected on skin

biopsy.235 Studies in CADASIL patients provide strong evidence that cerebral small-vessel

disease can cause WMH. MRI reveals lacunar infarcts with extensive WMH burden (Fig.

20). The anterior temporal WM and external capsule are frequently involved—sites

uncommonly affected by sporadic age-related WMH236—making CADASIL unusual in that

it has a relatively specific spatial distribution of lesions. CADASIL causes impaired

cognition and progressive dementia.237,238 Affected individuals present in their 30s and 40s

with migraines, memory loss, psychiatric symptoms, or stroke.239 Notably, however, studies

of radiographic correlates of cognition in CADASIL show that WMH alone is not associated

with global cognitive function after controlling for volume of lacunar infarcts,238 indicating

that tissue infarction may be required to produce more severe forms of cognitive

impairment. This is exemplified by a 41-year-old patient (Schmahmann, unpublished) with

notch 3–confirmed presymptomatic CADASIL, whose cognition is presently entirely

preserved in the setting of diffuse and prominent WMH.

Cerebral amyloid angiopathy (CAA) is characterized by amyloid deposition in the media

and adventitia of small arteries of the cerebral cortex and meninges. Rare hereditary cases

may be caused by mutations in the amyloid precursor protein, resulting in deposition of β-
amyloid, or by mutations in other genes including cystatin C, transthyretin, and gelsolin.240

Affected individuals present in their 30s and 40s with cognitive impairment or intracerebral

hemorrhage. Extensive WMH are typically present. Unlike CADASIL, CAA also exists as a

sporadic disease. In contrast to hereditary CAA, sporadic CAA appears to be exclusively a

disease of β-amyloid. It is a major cause of intracerebral hemorrhage in the elderly241 (Fig.

21). Because the cerebral vascular pathology is almost exclusively limited to cerebral cortex,

CAA-related hemorrhages occur in lobar brain regions (i.e., within the cortex or at the

cortico–subcortical junction) but not in deep hemispheric brain regions such as the putamen

or thalamus.242 The presence of multiple or recurrent lobar brain hemorrhages, in the

absence of coagulopathy or other secondary causes such as vascular malformations, is

highly specific for the presence of CAA pathology.241 MRI with gradient echo sequence is

sensitive to the presence of small hemosiderin deposits from previous hemorrhages, also

called microbleeds, and can suggest the diagnosis of CAA.241

There is increasing recognition that sporadic CAA is associated with cognitive dysfunction,

even though many patients with CAA-related intracerebral hemorrhage do not have severe

cognitive impairment or dementia.243 A population-based autopsy study showed that CAA

pathology was associated with ante-mortem cognitive performance, controlling for the

extent of AD pathology.244 These subjects did not have symptomatic stroke. The same study

showed that the prevalence of CAA in those older than 80 years is more than 10%,244 which

is much greater than the population prevalence of symptomatic brain hemorrhage but may

be similar to the population prevalence of asymptomatic lobar microbleeds.245 These data

suggest that CAA contributes to cognitive decline in the elderly and that the clinical effect of

CAA is not limited to those with stroke. WMH burden is high in CAA and is associated with

cognitive impairment independent of stroke.221

In contrast to CADASIL, there is no typical distribution of WMH suggestive of CAA.227

WMHs appear to be a marker of CAA disease burden and progression, because they are

associated with the number of lobar microbleeds221 and predict new symptomatic intra-

cerebral hemorrhages221 and asymptomatic lobar microbleeds.246 An interesting feature of

CAA-related WMH is that the site of tissue pathology in the WM is remote from the site of

vessel pathology in the cortex, potentially suggesting a flow-related mechanism of injury.
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DWI shows abnormalities in water diffusivity in brain regions not typically involved by

WMH, suggesting that tissue microstructural changes may be more widespread than the

changes in T2 hyperintensity.247,248 The recent advent of molecular imaging of β-amyloid,

using Pittsburgh compound B and other ligands,249 offers the opportunity to address the

relationship between extent and location of WMH, and extent and location of β-amyloid

deposition.

Age-related WM Lesions, Cognition, and Behavior

An association between WMH and cognitive dysfunction has long been recognized.196

Research studies and clinical practice show, however, that only a modest amount of variance

in cognition performance is explained by WMH. This conclusion is not surprising, perhaps,

given the large amount of cognitive performance that remains unexplained by currently

recognized brain pathologies, including AD.250 Practicing clinicians are familiar with the

situation where a patient displays considerable incidentally discovered MRI WMH despite

apparently normal cognition. Although within-individual decline from previous performance

levels may be underappreciated, it appears that some individuals can compensate for high

WMH burden through unknown mechanisms.

Population-based studies of aging report a relationship between WMH volume on MRI,

determined by ordinal scales or by volumetric analysis, and cognitive performance,

determined by psychological testing.201,204,251,252 These populations were free of dementia

and stroke at study onset. Longitudinal follow-up shows that those with higher baseline

lesion burden have greater subsequent decline in test performance.253,254 Further, those with

higher WMH progression on follow-up MRI have greater decline in test performance than

those with less lesion progression.253–255 WM lesions are associated with subjective

impression of cognitive performance, even in those with psychological test performance in

the reference range, supporting their relevance to clinical practice.256 There are few data to

show whether a critical threshold of lesion severity exists, below which WMH can be

considered insignificant and above which they should be considered clinically relevant to

cognitive performance.

WMH and Risk of Cognitive Change

Higher WMH burden is associated with the transition from normal cognition to mild

cognitive impairment (MCI),257,258 but not from MCI to dementia.258,259 Whereas the

severity of periventricular WMH predicts future dementia, predominantly AD, this

relationship is reduced to a trend when also controlling for other MRI measures, such as

brain atrophy.260 Thus, MRI-identified WMH lesions appear to be sufficient to cause mild

forms of cognitive dysfunction but rarely cause dementia in the absence of other brain

pathologies. Nonetheless, these lesions have public health relevance because they are

ubiquitous with aging, and cumulative disability across the aging population may be large.

By causing mild cognitive dysfunction, WM lesions may decrease cognitive reserve and

predispose to dementia in the presence of additional brain pathologies. Autopsy-based

studies of dementia emphasize the coexistence of vascular and AD pathology,261 and these

WMH lesions and other vascular pathologies may account for some of the otherwise

unexplained variation between cognitive performance and burden of AD pathology.

WM Changes in AD

Cerebral atrophy and loss of WM are marked in the later stages of AD,262,263 and cerebral

WM lesions in AD have the appearance of incomplete infarction.264,265 Three mechanisms

have been proposed for the WM findings in AD.
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First, CAA occurs in up to 98% of AD cases and causes microvascular alterations, including

WM ischemia and lacunar infarction.266 Deposition of congophilic β-amyloid in cerebral

arteries and arterioles predisposes to lobar hemorrhage and ischemic WM lesions via

occlusive vascular disease,266 and AD patients may have microbleeds on MRI, but they are

not at increased risk of lobar hemorrhage.267 The clinical effect of CAA-related WM lesions

in AD is an area of active investigation because early evidence indicates that the amount of

CAA pathology correlates with cognitive performance.268

Next is the controversial area of mixed AD and vascular dementia (VaD). Leukoaraiosis is

probably of ischemic origin226 and probably lies on a continuum with Binswanger’s

disease,269,270 but its frequent presence in AD brains raises the question of a vascular

contribution to AD. AD and VaD have been regarded as distinguishable clinically and

neuropathologically, but substantial overlap of AD and VaD is now acknowledged.271

Cerebrovascular risk factors have recently been suggested to contribute etiologically to

AD,271 but these factors may simply reflect the co-occurrence of common age-related

conditions rather than causal relationships.271 Although much overlap exists, AD and VaD

can be differentiated clinically when present in pure form.

A third explanation for WM changes in AD is Wallerian degeneration from loss of

neocortical pyramidal neurons in affected cortical areas. More severe LA seen in AD

patients has been suggested to result from Wallerian degeneration,272 and DTI studies of AD

have found microstructural WM damage in the CC and temporal, frontal, and parietal lobe

WM consistent with Wallerian degeneration due to neocortical neuronal loss.273

Disconnection of cerebral association areas from related cortical and subcortical regions by

these WM changes may thus be an additional burden in AD and mixed dementia.

Nature of Cognitive Impairment Associated with WMHs

WMHs most severely affect information processing speed and executive

function.201,251,254,274–280 Memory is affected to a lesser degree,255,276,281 and therefore

diagnostic instruments that are heavily weighted toward memory, such as the Mini-Mental

State Exam, may underestimate the degree of dysfunction. However, the type of memory

impairment may be critical because evidence suggests that WM disorders tend to display

impaired memory retrieval rather than encoding, and WMH may be more usefully studied

with measures that differentiate these memory components.116 Impaired connectivity is

presumed to be the mechanism by which WMHs cause cognitive dysfunction, although

direct evidence to support this hypothesis is relatively scarce.281 Some studies suggest that

periventricular WMHs are of greater significance than subcortical lesions, perhaps reflecting

the importance of long association fibers in brain networks subserving cognition, as

discussed earlier.251

A substantial literature links WMH with depressive symptoms and major depressive

disorder in the elderly.282,283 Cognitive impairments associated with WMH, including

impaired processing speed, are also described in depression. The association between WMH

and depression does not seem to be restricted to those with mild cognitive impairment,

dementia, or pseudodementia. This finding has given rise to a vascular depression

hypothesis of late-onset depression,284 supported by the observation that response to

antidepressant treatment may be worse in those with higher burden of WMH.285,286 This

clinical scenario also raises the issue of pseudodepression, that is, apathy and abulia from

WM disease masquerading as a primary affective disorder.

Studies examining the relationship between cognition and WMH have been almost entirely

limited to global measures of WMH volume or global WMH severity. However, if WMHs

do cause WM dysfunction by disrupting specific WM tracts, then these lesions in specific
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anatomic locations, rather than global extent, should more closely be linked with

neuropsychological test performance. One study correlated frontal and temporal WMHs

with executive function and memory, respectively,274 but the use of large regions of interest

encompassing the entire lobar WM did not allow for more precise localization of the WM

tracts potentially involved. Another approach was to grade abnormalities in a specific WM

pathway related to memory.287 Some investigators have used anatomically coregistered

images to produce statistical parametric maps of WM regions where WMH frequency

correlates with depressive symptoms.288,289 WM lesions in the prefrontal cortex have been

associated with impaired functional MRI activation of dorsal prefrontal cortex.281 Also,

several studies have attempted to link regional WMH, grouped by lobe, with regional

cortical metabolism or perfusion.277,290 In general, there has been agreement that frontal

lobe hypometabolism is a feature of subcortical small-vessel disease including

WMH,277,290–293 and a link with frontal WMH has sometimes been found292 but not

uniformly established.290

Synopsis of Neurobehavioral Syndromes of Cerebral WM

The disorders that lead to alterations in cerebral WM are remarkably heterogeneous, but

they may reasonably be considered as a group with respect to their neurobehavioral

manifestations. The available literature indicates that these disorders are associated with

focal neurobehavioral syndromes, neuropsychiatric conditions, and cognitive dysfunction or

dementia.

Focal Neurobehavioral Syndromes

The neurobehavioral syndromes related to focal WM lesions are familiar to neurologists

from the classic literature describing aphasia, apraxia, agnosia, callosal disconnection, and

related syndromes.4,5,116 Most result from stroke, although occasionally focal tumors and

demyelinative plaques are responsible. These cases are comparatively rare; well-defined,

isolated focal WM lesions that correlate convincingly with a given neurobehavioral deficit

are unusual. These are exemplified by neglect syndromes from lesions in the anterior limb

and genu of the IC2,52,53 (Fig. 22A), pseudothalamic pain from lesions of the parietal WM

deep to SII294 (Fig. 22B), frontal behavioral disturbances in Marchiafava–Bignami disease

of the CC,295 fornix lesions that impair memory,296,297 alexia without agraphia from the

classic dual lesion (splenium and left occipital pole WM28) as well as from a single

subcortical lesion undercutting Wernicke’s area2 (Fig. 22D and E), volitional facial paresis

from premotor subcortical lesions,2 visual loss from the WM lesions of posterior reversible

encephalopathy syndrome (Fig. 22C), as well as the elementary deficits of visual loss from

lesions of the geniculocalcarine pathway,298 and sensory loss299 and weakness300 from

lesions of the posterior limb of the IC. Behavioral neurology is founded on observations of

this kind, which remain paradigmatic of the lesion method as applied to WM as well as GM

regions.301

The location of the WM lesion affects the degree of recovery from deficit. Patients with

aphasia recover more slowly when the lesion involves the area between the CC medially, the

corona radiata laterally, and the caudate nucleus ventrally.302 This is the territory of the (1)

Muratoff Bundle immediately above the head and body of the caudate nucleus, that

transmits fibers from dorsal cortical areas to the caudate nucleus, and (2) of the fronto-

occipital fasciculus that links the dorsal and medial prestriate and posterior parietal cortices

with the dorsolateral prefrontal cortex. This finding provides support for the notion that

location of lesion (i.e., which specific WM tracts are damaged) is crucial in recovery from

aphasia. It also emphasizes the importance of intact communication between the cortical and

subcortical nodes in the distributed neural circuits that support language processing.
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Neuropsychiatric Syndromes

Several neuropsychiatric symptoms have been described in association with cerebral WM

pathology. Although these presentations are diverse and etiologically puzzling, a postulated

link between WM abnormalities and psychiatric dysfunction is common in the literature.116

These associations have been pursued in two complementary ways. First, this idea has been

pursued by exploring psychiatric phenomena in WM disorders, as in the case of MS, in

which depression, mania, psychosis, and euphoria have all been examined.116 Second,

interest has developed in the potential relevance of WM dysfunction in psychiatric diseases,

as exemplified by the study of myelin dysfunction in schizophrenia303 and by a study

showing abnormalities in the uncinate fasciculus in patients with schizophrenia and

schizotypal personality disorder.304

In addition to acquired and genetically determined diseases, some neuropsychiatric disorders

have been postulated to result from disruption of the natural phenomenon of pruning of

excess axons in the developing brain.305,306 This association has been observed in boys with

early infantile autism in whom the volume of cerebral WM is greater than in age-matched

control subjects.307 Pruning of axonal connections during development appears necessary

for optimal sculpting of neural circuits. Persistence into adulthood of excess and chaotically

organized fiber systems may be as detrimental to healthy cognition as the loss of axonal

connections is in the mature brain.

WM Dementia

The most important neurobehavioral syndrome related to cerebral WM damage is WM

dementia (WMD). This category was formally introduced in 1988 in an effort to define the

dementia syndrome that occurs in patients with widespread cerebral WM involvement.6 All

the WM disorders can produce WMD (Fig. 23), representing an important source of

disability, although milder cognitive dysfunction may be the presenting feature. WMD can

be difficult to detect because early neurobehavioral features are often subtle, elemental

neurologic manifestations are variably present, and establishing the diagnosis of the primary

WM disorder can be challenging,116 but attention to this syndrome and its earliest

appearance are key clinical goals. A profile of neurobehavioral features typical of WMD has

been postulated to include executive dysfunction, memory retrieval deficit, visuospatial

impairment, and psychiatric disorder, with relatively preserved language, normal

extrapyramidal function, and normal procedural memory. WMD is thus distinct both from

cortical dementia, in which memory encoding and language are usually impaired,308 and

from subcortical GM dementia, in which extrapyramidal function and procedural memory

are typically affected.309 Given the impressive number of WM disorders at all ages that

produce WMD and other neurobehavioral syndromes, an awareness of the role of WM in

cognition and behavior will enhance understanding of brain–behavior relationships and

improve patient care.

Summary and Conclusion

The distributed neural circuits that subserve behavior are topographically linked in a highly

precise manner by five major groupings of fiber tracts: cortico–cortical association fibers;

corticostriatal fibers; commissural fibers across the hemispheres; and cortico–subcortical

pathways linking cerebral cortex to thalamus, the pontocerebellar system, and the brain stem

and spinal cord. Lesions of association fibers prevent communication between cerebral

cortical areas engaged in different domains of behavior. Lesions of subcortical structures, or

the projection/striatal fibers that link them with the cerebral cortex, disrupt the contribution

of subcortical nodes to the ultimate behavior. Disconnection syndromes may thus be

regarded as resulting not only from lesions of the cerebral cortex but also from lesions of
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subcortical structures themselves, and of the WM tracts that link the nodes that make up the

distributed circuits. The nature and the severity of the clinical manifestations of subcortical

and WM lesions are determined, in large part, by the location, extent, and timing of onset of

the underlying pathology. Discrete neurological and neuropsychiatric symptoms result from

focal WM lesions. Cognitive impairment across multiple domains—WMD—is now

recognized in the setting of diffuse WM disease. Unresolved issues relating to the

significance and prevention of WMH in the elderly require further study. We hope that this

synthetic review of WM diseases and their neurobehavioral manifestations may further the

understanding, diagnosis, and treatment of these disorders.
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Figure 1.
Diagram (A) and schema (B) of the principles of organization of white matter fiber

pathways emanating from the cerebral cortex. Long association fibers are seen end-on as the

stippled area within the white matter of the gyrus. In their course, these fibers either remain

confined to the white matter of the gyrus or travel deeper in the white matter of the

hemisphere. Short association fibers, or U-fibers, link adjacent gyri. Neighborhood

association fibers link nearby regions, usually within the same lobe. Striatal fibers

intermingle with the association fibers early in their course, before coursing in the

subcallosal fascicle of Muratoff or in the external capsule. Cord fibers segregate into

commissural fibers that arise in cortical layers II and III, and the subcortical bundle, which

further divides into fibers destined for thalamus arising from cortical layer VI, and those to

brain stem and spinal cord in the pontine bundle arising from cortical layer V.2
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Figure 2.
Course of the cingulum bundle (CB). (A) Surface views of the ventral (top), medial

(middle), and lateral (lower) convexities of the cerebral hemisphere of a rhesus monkey

show the trajectory of the CB reflected onto the cortical surface, and the cortical areas that it

links, as determined by autoradiographic tract tracing.2 (B) CB fibers in the monkey are

shown in this sagittal dimension by using diffusion spectrum magnetic resonance imaging

(DSI). CB fibers that intersect a disc (shown by the arrow) course between rostral and

caudal cingulate regions and link the cingulate gyrus with the prefrontal and parietal areas.

Fibers in the ventral limb of the CB course to the parahippocampal region.30 (C) The course

of the CB in human brain is demonstrated using diffusion tensor imaging (DTI), remarkably

similar to the findings in monkey.19
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Figure 3.
Location of long association fiber pathways in the monkey. The coronal sections in (A) and

(B) are taken at the corresponding levels shown on the figure of the lateral hemisphere (top).

The fiber bundles are colored for ease of identification. Fiber pathways: AF, arcuate

fasciculus; CBd, cingulum bundle dorsal component; CBv, cingulum bundle ventral

component; EmC, extreme capsule; FOF, fronto-occipital fascicle; ILF, inferior longitudinal

fascicle; MdLF, middle longitudinal fascicle; SLF (I, II, III), superior longitudinal fascicle,

subcomponents I, II, and III; UF, uncinate fasciculus. Cerebral sulci: AS, arcuate sulcus; CS,

central sulcus; Cing S, cingulate sulcus; IPS, intraparietal sulcus; LF, lateral fissure; PS,

principal sulcus; OTS, occipitotemporal sulcus; STS, superior temporal sulcus.2
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Figure 4.
MRI appearance of (A) X-linked adrenoleukodystrophy (X-ALD), T1-weighted image post-

gadolinium; (B) metachromatic leukodystrophy (MLD), FLAIR image; (C) globoid cell

leukodystrophy (GLD), T2-weighted image; and (D) vanishing white matter disease

(VWMD), T1-weighted image.
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Figure 5.
Imaging and pathology in a patient with adult-onset leukodystrophy with neuroaxonal

spheroids. (A) FLAIR MRI in the axial plane showing confluent high signal in the

periventricular, deep, and subcortical white matter of the frontal and parietal lobes extending

through the splenium of the corpus callosum. (B) Gross pathology of a coronal section of the

cerebral hemisphere, showing gliosis in the centrum semiovale (arrow) and internal capsule

(arrowhead). (C) Several neuroaxonal spheroids on microscopic analysis of frontal white

matter (original magnification, ×20; Luxol fast blue hematoxylin and eosin stain). (D)

Neurofilament immunostain of white matter reveals mild loss of axons and an axonal

spheroid (original magnification, ×20).99
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Figure 6.
FLAIR MRI in a patient with mitochondrial encephalopathy with lactic acidosis and stroke-

like episodes (MELAS).2
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Figure 7.
MRI features of fragile X–associated tremor ataxia syndrome (FXTAS). White matter pallor

is seen in the cerebellar parenchyma (A), as well as in the middle cerebellar peduncles (B).
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Figure 8.
FLAIR MRI in multiple sclerosis. (A) White matter hyperintensity perpendicular to the

lateral ventricle (Dawson’s finger), shown by the arrow. (B) In a second case, the focal area

of hyperintensity (arrow) corresponded to the initial clinical presentation.2
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Figure 9.
MRI features of acute disseminated encephalomyelitis (ADEM). (A) Coronal T1-weighted

postgadolinium image showing enhancing lesions in the right more than left hemispheres.

(B) Axial zero-B MRI demonstration of the multiple lesions. (C) FLAIR MRI 6 months

after marked clinical recovery shows much improved areas of hyperintensity.

Schmahmann et al. Page 46

Ann N Y Acad Sci. Author manuscript; available in PMC 2013 August 26.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 10.
FLAIR MRI showing hyperintensities in prefrontal white matter in a patient with HIV and

cognitive impairment.2
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Figure 11.
MRI features of progressive multifocal leukoencephalopathy (PML). (A) T2-weighted

image shows involvement of white matter of the right occipital region (arrow), accounting

for the hemianopsia in this HIV-positive patient. (B) FLAIR MRI in a patient with systemic

lymphoma and PML, demonstrating confluent prefrontal white matter lesion spreading

across the genu of the corpus callosum (arrow), and additional lesions affecting local

association fibers of the right prefrontal and parieto-occipital cortices (arrowheads). (C, D)

Axial FLAIR images in an HIV-positive patient showing confluent subcortical and deep

white matter involvement by PML. (Panels A and B are from reference 2.)
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Figure 12.
FLAIR MRI in the axial plane of a patient with cognitive decline after receiving

methotrexate.2
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Figure 13.
T2-weighted MRI appearance in the axial plane of toluene encephalopathy in two patients

(A, B).
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Figure 14.
MRI scans after heroin inhalation, known colloquially as “chasing the dragon.” FLAIR

images in the axial plane (A–D). Corresponding 1H MRS imaging spectra in two of the

images show characteristic lactate peak and decreased NAA.154
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Figure 15.
Axial MRI in delayed leukoencephalopathy after hypoxic–ischemic insult. (A) FLAIR

image shows extensive, symmetric white matter hyperintensities with relative sparing of

subcortical white matter. (B) Diffusion-weighted imaging shows restricted diffusion of the

white matter abnormalities, confirmed on (C), apparent diffusion coefficient mapping.165
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Figure 16.
Coronal T1-weighted image in a patient with gliomatosis cerebri. Note the spread of tumor

along white matter planes.
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Figure 17.
T2-weighted axial MRI in a patient with Langerhans cell histiocytosis, showing

hyperintense signal abnormality in the white matter of the cerebellum.182
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Figure 18.
Leukoaraiosis is visible as (A) white matter hypodensity on CT and (B) white matter

hyperintensity on FLAIR MRI in the same patient.
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Figure 19.
FLAIR MRI of a patient with Binswanger’s encephalopathy. Hyperintense signal

abnormality is seen at periventricular zones, white matter immediately beneath cortex,

splenium of the CC, and internal and external/extreme capsule regions. Multiple

hypodensities consistent with lacunar infarcts are also seen in the basal ganglia and

thalamus.2
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Figure 20.
MRI appearance of white matter changes in axial sections of patients with CADASIL. (A,

B) FLAIR MRI in an asymptomatic 39-year-old, notch 3 gene positive with family history

of early stroke, whose imaging findings were incidentally noted. Characteristic temporal

lobe white matter involvement is highlighted (arrows). (C) FLAIR MRI in a patient with

clinically established CADASIL. (D) T2-weighted MRI in a patient with notch 3 gene and

pathologically proven disease.
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Figure 21.
MRI in the axial plane in cerebral amyloid angiopathy. (A) Gradient echo MRI

demonstrating multiple punctuate areas of hemorrhage (microbleeds, arrow) at the cortico–

subcortical junctions. (B) MRI FLAIR sequence in a patient with lobar intraparenchymal

hemorrhage in the left occipital lobe (double arrows), as well as periventricular WMH

(single arrow) and subcortical WMH (arrowheads).221
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Figure 22.
Focal WM lesions with neurobehavioral manifestations. (A) Lacune in the genu of the right

internal capsule (arrow) on CT presenting with hemineglect.2,52 (B) Diagram of the WM

lesion responsible for parietal pseudothalamic pain syndrome, thought to disrupt the second

somatosensory cortex from thalamus.297 (C) FLAIR MRI of posterior reversible

encephalopathy syndrome producing visual loss.2 (D, E) Focal WM lesion consisting of

metastatic melanoma with surrounding edema, producing alexia without agraphia.
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Figure 23.
FLAIR MRI in the axial plane of an 80-year-old man with slowly evolving WM dementia.

No single cause has been identified for the cognitive decline or WM hyperintensities.2
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TABLE 1

Cerebral White Matter Disorders

Genetic Leukodystrophies (e.g., adrenoleukodystrophy, metachromatic leukodystrophy, globoid cell leukodystrophy)

Vanishing white matter disease

Alexander’s disease

Adult-onset leukodystrophy with neuroaxonal spheroids

Mitochondrial encephalopathy with lactic acid and stroke (MELAS)

Fragile X tremor-ataxia syndrome

Aminoacidurias (e.g., phenylketonuria)

Phakomatoses (e.g., neurofibromatosis)

Mucopolysaccharidoses

Myotonic dystrophy

Callosal agenesis

Demyelinative Multiple sclerosis

Acute disseminated encephalomyelitis

Acute hemorrhagic encephalomyelitis

Schilder’s disease

Marburg’s disease

Balo’s concentric sclerosis

Infectious HIV and AIDS dementia complex

Progressive multifocal leukoencephalopathy

Subacute sclerosing panencephalitis

Progressive rubella panencephalitis

Varicella zoster encephalitis

Cytomegalovirus encephalitis

Lyme encephalopathy

Inflammatory Systemic lupus erythematosus

Behcet’s disease

Sjögren’s syndrome

Wegener’s granulomatosis

Temporal arteritis

Polyarteritis nodosa

Scleroderma

Isolated angiitis of the central nervous system

Sarcoidosis

Toxic Cranial irradiation

Therapeutic drugs (e.g., methotrexate, BCNU, cyclophosphamide)

Drugs of abuse (e.g., toluene, heroin)

Alcohol (Marchiafava–Bignami disease)

Environmental toxins (e.g., carbon monoxide)

Metabolic Cobalamin deficiency

Folate deficiency
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Central pontine myelinolysis

Hypoxic–ischemic injury

Posterior reversible encephalopathy syndrome

Hypertensive encephalopathy/eclampsia

High-altitude cerebral edema

Vascular Binswanger’s disease

CADASIL

Leukoaraiosis

Cerebral amyloid angiopathy

Intravascular lymphoma

White matter disease of prematurity

Migraine

Traumatic Traumatic brain injury (diffuse axonal injury)

Shaken baby syndrome

Corpus callosotomy

Focal lesions of WM tracts (e.g., fornix transection, splenium of CC tumor)

Neoplastic Gliomatosis cerebri

Diffusely infiltrative gliomas

Lymphomatosis cerebri

Langerhans cell histiocytosis

Focal white matter tumors

Hydrocephalic Early hydrocephalus

Normal pressure hydrocephalus

Degenerative White matter changes in Alzheimer disease

Effects of aging on myelin
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TABLE 2

Biochemistry and Genetics of X-linked Adrenoleukodystrophy (X-ALD), Metachromatic Leukodystrophy

(MLD), Globoid Cell Leukodystrophy (GLD), and Vanishing White Matter Disease (VWMD)

Variable X-ALD MLD GLD VWMD

Affected gene ABCD1 ASA gene GALC gene Any of 1–5 subunits of eIF2B

Gene locus Xq28 22q13 14q31 Several

Enzyme/protein ALDP Aryl-sulfatase A* GALC eIF2B

Substrate VLCFA Sulfatide Galactosylceramide Heat shock and other proteins

*
Rare cases due to saposin B deficiency.

Ann N Y Acad Sci. Author manuscript; available in PMC 2013 August 26.


