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Cerebrospinal fluid concentrations 
of inflammatory markers in 
Parkinson’s disease and atypical 
parkinsonian disorders
Sara Hall1,2, Shorena Janelidze1, Yulia Surova1,3, Håkan Widner1,3, Henrik Zetterberg4,5,6,7 & 

Oskar Hansson1,2

Inflammation has been implicated in the pathogenesis of Parkinson’s disease (PD). We here investigate 
levels of inflammatory biomarkers in cerebrospinal fluid (CSF) in PD and atypical parkinsonian disorders 
(APD) compared with neurologically healthy controls. We included 131 patients with PD and 27 PD with 
dementia (PDD), 24 with multiple system atrophy (MSA), 14 with progressive supranuclear palsy (PSP) 
and 50 controls, all part of the Swedish BioFINDER study. CSF was analyzed for CRP, SAA, IL-6, IL-8, 
YKL-40 and MCP-1 (CCL2) as well as α-synuclein (α-syn), tau, tau phosphorylated at Thr181 (P-tau), 
Aβ42 and NfL. In this exploratory study, we found higher levels of the inflammatory biomarker SAA in 
PDD and MSA compared with controls and PD and higher levels of CRP in PDD and MSA compared with 
PD. YKL-40 was lower in PD compared with controls. There were multiple positive correlations between 
the inflammatory markers, α-syn and markers of neuroaxonal injury (NfL and tau). In PD, higher levels 
of inflammatory biomarkers correlated with worse motor function and cognitive impairment. Thus, 
inflammatory biomarkers were increased in PDD and MSA. Furthermore, inflammatory biomarkers 
correlated with more severe disease regarding motor symptoms and cognitive impairment in PD, 
indicating an association between inflammation and more aggressive disease course. However, the 
results need confirmation in follow-up studies.

During the last couple of decades, in�ammation has gained support in the pathogenesis of Parkinson’s disease 
(PD)1. Focus has mainly been on activated microglia and astrocytes1,2. However, the peripheral immune system 
has also been implicated3. Furthermore, increased expression of in�ammatory mediators including cytokines and 
chemokines have been found in post mortem studies in PD4.

Microglia are resident immunocompetent and phagocytic cells in the central nervous system (CNS). �ey 
can be bene�cial and serve as scavengers, phagocytosing dead cells and releasing neurotrophic substances, but 
they can also be harmful, upregulating a variety of proin�ammatory and neurotoxic substances such as reactive 
oxygen species and cytokines5. Post mortem and PET studies have also shown increased microglia in relevant 
structures in the brain of PD patients2,6,7. Evidence of activated microglia has also been found in atypical parkin-
sonian disorders (APD), i.e. multiple system atrophy (MSA), progressive supranuclear palsy (PSP) and cortico-
basal degeneration (CBD)8–10. �e role of microglia in the onset and progression of neurodegenerative disorders 
such as PD remain unclear but warrants further investigations as reviewed in Gomez-Nicola and Perry11.

Astrocytes are immunocompetent cells that are sensitive to proin�ammatory cytokines and chemokines. �ey 
are thought to be activated as a response to injury-induced cytokine release12, and GFAP-positive astrocytes 
have been found to correlate inversely with dopaminergic cell death in PD13. Also, α-synuclein (α-syn)-positive 
astrocytes have been found to correlate positively with cell death in PD14 suggesting that α-syn impairs astrocytic 
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function. However, astrocytic activation may also in itself induce detrimental e�ects including increased neuroin-
�ammation and neuronal damage15.

Levels of in�ammatory markers such as cytokines in CSF have been relatively sparsely investigated in PD and 
APD. YKL-40, also known as chitinase-3-like-1, is a glycoprotein that is upregulated under in�ammatory con-
ditions. In the CNS, YKL-40 is mainly expressed in astrocytes and microglia16. A recent study found increased 
levels of YKL-40 in both CSF and brain tissue in patients with Alzheimer’s disease and Creutzfeldt-Jacob but 
unchanged in the PDD/DLB group compared with controls with neurological controls17. Other studies suggest 
that CSF YKL-40 concentrations are either decreased or unchanged in PD whilst CSF YKL-40 concentration may 
be increased in APD18–20. Also, interleukin (IL)-6, a cytokine involved in the acute response, might be increased 
in the CSF of de novo PD patients and inversely correlate with motor severity in PD21. Further, the CSF levels 
of CRP seem to be increased in PD patients with dementia (PDD), and correlate with depression and fatigue in 
patients with PD22. Our group has previously shown increased levels of IL-8 in PDD compared with controls23.

In this cross-sectional study, we investigate further the association of the levels in CSF of acute phase proteins 
(CRP and SAA), IL-6 and IL-8, as well as monocyte chemotactic protein-1 (MCP-1); also called chemokine (C-C 
motif) ligand 2, a chemokine that is associated with microglial activation; and YKL-40 in patients with PD or 
APD as compared to healthy controls. We selected these markers both to replicate earlier �ndings18–23 and to 
extend these by including the markers SAA and MCP-1. Further, we investigated if these markers correlate with 
other CSF biomarkers of importance in these disorders (T-tau, P-tau, Aβ42, NFL and α-syn) as well as with cog-
nition and/or motor function.

Methods
Participants. �is study was performed at the Clinic of Neurology, Skåne University Hospital, Sweden as 
part of the Swedish BioFINDER Study (www.bio�nder.se). �e study participants are primarily recruited from 
the southern region of Sweden. In this study, we included 131 patients with PD and 27 patients with PDD. We 
also included 24 patients with MSA and 14 with PSP. Patients with PD met the NINDS Diagnostic Criteria for 
PD24. Patients with PDD met criteria for PDD at baseline25. Patients with MSA met the consensus statement26. 
Patients with PSP met the criteria according to the report of the National Institute of Neurological Disorders and 
Stroke–Society for Progressive Supranuclear Palsy International Workshop27. We also included 50 neurologically 
healthy controls. All controls underwent cognitive testing and neurologic examination by a medical doctor and 
individuals with objective cognitive or parkinsonian symptoms were not included.

Clinical assessment of study participants. A thorough medical history was taken and the patients 
underwent extensive testing, both regarding motor symptoms and cognition. Patients were examined by a physi-
cian experienced in movement disorders and a registered research nurse using, among other scales, the Uni�ed 
Parkinson’s Disease Rating Scale (UPDRS) -3 and the Hoehn & Yahr scale28,29. Patients were classi�ed as PIGD 
or tremor-dominant30. Patients with MSA were also assessed using the UMSARS (United MSA Rating Scale) and 
patients with PSP were assessed using the PSPRS (PSP Rating Scale)31,32. �e study participants’ cognitive func-
tion were assessed using e.g. the Mini Mental State Examination (MMSE), 10 word-list immediate and delayed 
recall test of the Alzheimer’s Disease Assessment Scale (ADAS), A Quick Test for Cognitive Speed (AQT), and the 
one minute phonetic verbal �uency test (Letter S Fluency test)33–36. �e participants’ levels of anxiety, depression 
and fatigue were assessed using HADS and FACIT-f 37,38.

Patients were also asked for comorbidities and any symptoms of infection during the last month and any other 
known medical condition associated with in�ammatory response such as arthritis. Use of anti-in�ammatory 
medication was recorded.

All individuals gave written informed consent. �e study procedure was approved by the local ethics commit-
tee at Lund University Sweden and conducted according to the Helsinki Declaration.

CSF Samples. CSF samples were obtained by lumbar puncture in the L3/L4 or L4/L5 interspace with patient 
non-fasting, in the morning. �e samples were collected in polypropylene tubes and gently mixed to avoid 
gradient e�ects. All samples were centrifuged within 30 minutes at +4 °C at 2000 g for 10 min to remove cells 
and debris, and then stored in aliquots at −80 °C pending biochemical analysis. �e procedure followed the 
Alzheimer’s Association Flow Chart for CSF biomarkers39. CSF YKL-40 concentration was measured by solid 
phase sandwich ELISA according to the manufacturer’s instructions (R&D Systems, Inc., Minneapolis, MN, 
USA). CRP, SAA, IL-6, IL-8, and MCP-1 were analyzed using V-PLEX Custom Human Biomarkers kit (Meso 
Scale Discovery, Rockville, MD, USA) according to the manufacturer’s recommendations. α-syn concentration 
was measured using the Alpha-Synuclein ELISA Kit (Meso Scale Discovery, Rockville, MD, USA). Hb was ana-
lyzed using an assay provided by Bethyl lab. Inc. Total tau (T-tau), tau phosphorylated at �r181 (P-tau), Aβ42 and 
NfL have previously been described40.

All analyses were performed using one batch of reagents by board-certi�ed laboratory technicians who were 
blinded to clinical data. For α-syn, only samples with Hb < 200 ng/L was used.

Statistics. Statistical analyses were accomplished with SPSS for Windows, version 22.0 (SPSS Inc., 
Chicago, Illinois). To compare demographic data between groups, we performed a Kruskal-Wallis and pairwise 
Mann-Whitney U-test was then used for continuous variables. For gender di�erences the chi-square test was 
used. To test for confounders, univariate associations between two continuous variables were analyzed using the 
Spearman’s Rho (skewed variables and/or ordinal data). Comparisons of CSF in�ammatory biomarkers between 
the di�erent diagnostic groups were �rst investigated with a Kruskal Wallis and pair-wise Mann-Whitney U-tests. 
For analysis correcting for confounders, univariate general linear models adjusting for age, gender, disease dura-
tion, in�ammatory condition (n = 29) and total somatic illness were then used. As described in Lindqvist et al.22 a 
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composite score for total somatic illness was created for the most common comorbidities other than the presence 
of in�ammatory condition (chronic in�ammatory disease, acute infection and/or the use of anti-in�ammatory 
medication) which was used as a separate covariate. Due to non-normally distributed data, ln-transformed var-
iables were used for the univariate general linear model and regression analysis. In correlation analysis, all PD 
cases (including those with dementia) were included in one group. Correlations between ln-transformed CSF 
biomarkers as well as correlations between clinical test scores and ln-transformed in�ammatory biomarkers were 
investigated with linear regression to correct for age, gender, disease duration, in�ammatory condition and total 
somatic illness. Clinical test scores were ln-transformed in the case of non-normally distributed variables.

Results
Demographics. Demographics, clinical characteristics and levels of CSF biomarkers of study participants are 
given in Table 1, Fig. 1 and Table 2. Men had higher levels of MCP-1 compared with women (p < 0.001), but no 
other in�ammatory markers were associated with gender. Adding gender to the univariate general linear model 
and regression models with MCP-1 did not change the results. �ere were signi�cant correlations between age 
and CRP, SAA, IL-8, YKL-40 and MCP-1 (p < 0.001– 0.004, Rs = 0.186–0.380). Disease duration correlated with 
IL-6 and IL-8 in the MSA group but not in any of the other diagnostic groups (p = 0.035, Rs = 0.431 and p = 0.010, 
Rs = 0.517, respectively). Disease duration also correlated with CRP in PDD (p = 0.034, Rs = 0.417) but not in PD 
or when analyzing PD and PDD together. Correcting for age, the correlation between disease duration and CRP 
remain in PDD (p = 0.045, β = 0.413). In MSA; SAA as well as IL-6 and IL-8 correlated with disease duration 
(p = 0.050, β = 0.418; p = 0.050, β = 0.424 and p = 0.027, β = 0.474, respectively). However, in MSA, we also found 
a negative correlation between MCP1 and disease duration (p = 0.008, β = −0.4638). Total somatic illness corre-
lated with CRP (p = 0.031, Rs = 0.138). �is correlation however was not seen in any individual diagnostic group. 
In the PD group, total somatic illness correlated only with YKL-40 (p = 0.041, Rs = 0.179).

CSF inflammatory biomarker concentrations in different diagnostic groups. Figure 1 displays 
CSF levels of the in�ammatory markers in the di�erent diagnostic groups. CRP was higher in patients with PDD 
and MSA compared with non-demented PD subjects (p = 0.043 and p = 0.018 respectively). SAA was higher in 
PDD and MSA compared with controls (p = 0.022 and p = 0.001 respectively). Furthermore, SAA was higher in 
PDD and MSA compared with non-demented PD (p = 0.034 and p = 0.001, respectively).

YKL-40 concentration in CSF was lower in non-demented PD compared with controls (p = 0.029), as well as 
MSA and PSP (p = 0.010 and p = 0.037, respectively). �e levels of MCP-1 in CSF were lower in PDD compared 
with PD (p = 0.026), MSA (p = 0.008) and PSP (p = 0.036).

Correlations between CSF biomarkers. As shown in Table 3, there were extensive correlations between 
the di�erent in�ammatory biomarkers in the cohort as a whole (all diagnostic groups including controls). CRP 
and SAA correlated strongly with each other (p < 0.001, β = 0.669) in the cohort as a whole but also in each diag-
nostic group (p ≤ 0.014, β ≥ 0.643). Further, CRP levels correlated with IL-8 and YKL-40 in the cohort as a whole 
(p ≤ 0.020, β ≥ 0.143), however when looking at the individual diagnostic groups, signi�cant correlations only 
remained for IL-8 in PD (p = 0.010, β = 0.214). Furthermore, SAA correlated with YKL-40, IL-6 and IL-8 in the 

Control 
(n = 50)

PD
(n = 131)

PDD
(n = 27)

MSA
(n = 24)

PSP
(n = 14)

Age 65.3 (8.6) 64.9 (10.6) 72.3 (5.9)a,d 63.8 (8.0)g 71.5 (6.2)c,f,j

Number (female %) 50 (56%) 131 (39%)c 27 (26%)c 24 (50%) 14 (64%)i

TD/PIGD dominant NA 60/60, 1 UD 5/20f, 2 UD NA NA

LEDD NA 520.1 (422.2) 892.3 (563.6)d 633.8 (567.2) 523.4 (297.9)i

Disease duration (years) NA 5.5 (4.8) 14.2 (6.6)d 7.2 (4.5)f,g 5.7 (2.3)g

Hoehn & Yahr score NA 2.0 (0.8) 3.0 (0.8)d 4.1 (0.9)d,g 4.1 (0.6)d,g

UPDRS-3 score 1.5 (2.5) 17.1 (10.5)a 35.4 (14.4)a,d 45.1 (19.2)a,d,i 45.4 (14.2)a,d,i

MMSE 27.8 (4.3) 28.4 (1.6) 22.1 (6.0)a,d 27.7 (2.4)g 23.7 (7.9)b,d,k

Letter S Fluency 17.4 (6.0) 14.5 (5.8)b 7.7 (4.1)a,d 12.9 (6.1)b,h 8.5 (5.4)a,e

ADAS Delayed Recall 2.3 (1.8) 3.2 (2.3)c 6.1 (2.8)a,d 3.2 (2.3)g 4.6 (2.6)b,f

AQT* 62.5 (14.1) 73.8 (28.8)b 173.9 (98.0)a,d 93.2 (63.0)b,g 188.0 (118.4)a,d,j

FACIT-f 10.1 (6.2) 14.9 (8.2)a 24.1 (11.9)a,d 23.9 (8.8)a,s 24.4 (11.9)a,f

HADS Depression 1.7 (2.6) 3.9 (3.5)a 7.7 (4.1)a,d 7.2 (4.2)a,d 6.3 (3.9)a,f

HADS Anxiety 2.7 (4.0) 5.0 (4.2)a 6.6 (4.5)a 7.4 (4.6)a,f 6.9 (4.6)b

Total somatic illness 0.52 (0.68) 0.47 (0.68) 0.44 (0.64) 0.58 (0.72) 0.57 (0.65)

Table 1. Demographics. Total somatic illness is a composite score of the presence of the four most common 
comorbidities (cardiovascular disease, asthma/allergies, osteoarthritis and diabetes mellitus). �e data are 
presented as the mean and SD. Signi�cance levels were analyzed using Mann-Whitney except for gender 
di�erences where the chi-square test was used. NA = not applicable. UD = undetermined. *Patients who could 
not perform AQT were assigned a result of 360 sec. ap < 0.001 vs. controls; bp < 0.01 vs. controls; cp < 0.05 vs. 
controls. dp < 0.001 vs. PD; ep < 0.01 vs. PD; fp < 0.05 vs. PD. gp < 0.001 vs. PDD; hp < 0.01 vs. PDD; ip < 0.05 vs. 
PDD. jp < 0.01 vs. MSA; kp < 0.05 vs. MSA.
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cohort as a whole (p ≤ 0.026, β ≥ 0.139) but in the PD group SAA only correlated with IL-8 (p = 0.002, β = 0.259). 
�e CSF levels of IL-6 correlated with IL-8 in the cohort as a whole (p < 0.001, β = 0.285), a correlation that 
remained in each patient diagnostic group but not controls (p ≤ 0.024, β ≥ 0.249). IL-8 correlated with YKL-40 in 
the cohort as a whole (p < 0.001, β = 0.253) as well as in PD and controls (p ≤ 0.020, β ≥ 0.219) whereas IL-8 only 
correlated with MCP-1 in the cohort as a whole (p = 0.014, β = 0.158).

Next, we compared the CSF levels of the in�ammatory markers to the CSF levels of α-syn, and the neuro-
degeneration markers tau, P-tau and NfL. α-syn correlated positively with SAA, IL-8 and YKL-40 in the whole 
group. �e CSF levels of NfL correlated with CRP, SAA, IL-8, YKL-40 and MCP-1. Further, tau correlated posi-
tively with SAA, and YKL-40 but negatively with IL-6. P-tau correlated with IL-8 and YKL-40 (Table 3).

Correlations between inflammatory markers in CSF and clinical test scores in the whole sample.  
Worse results on motor function as measured by Hoehn & Yahr score correlated with CRP (p < 0.001, β = 0.268), 
SAA (p < 0.001, β = 0.241), IL-8 (p = 0.024, β = 0.159) and YKL-40 (p = 0.020, β = 0.168). Further, very simi-
lar correlations were obtained between Parkinson’s Disease Rating Scale-3 (UPDRS-3) and CSF in�ammatory 

Figure 1. In�ammatory CSF biomarkers in di�erent diagnostic groups. Box plots with scatter with levels of 
in�ammatory CSF biomarkers (a) CRP, (b) SAA, (c) IL-6, (d) IL-8, (e) YKL-40 and (f) MCP-1 in the di�erent 
diagnostic groups presented as median and inter quartile range. Outer whiskers are 1.5 IQR. P values are from 
univariate general linear model adjusting for age, gender, disease duration, in�ammatory condition and total 
somatic illness. In �gure a, there were 4 outliers in PD and 2 in MSA outside the axis limit. In �gure b, there 
were 5 outliers in PD, 3 in PDD, 2 in PSP and 2 in MSA outside the axis limit. In �gure c there was 1 outlier in 
PDD outside the axis limit. Outliers outside the graph limits are included in all statistical analysis.

Control (n = 50) PD (n = 131) PDD (n = 27) MSA (n = 24) PSP (n = 14)

α-syn ng/L 152.7 (58.2) 127.4 (42.6) 143.4 (66.4) 127.3 (60.0) 115.0 (34.6)

Tau ng/L 328.9 (116.6) 257.6 (83.2)a 310.3 (117.8)f 325.1 (96.0)d 274.0 (76.0)

P-tau ng/L 52.2 (17.8) 42.9 (13.2)b 48.6 (16.9) 38.9 (15.3)b,h 43.3 (16.3)

Aβ42 ng/L 641.1 (198.4) 614.9 (158.9) 552.1 (207.3) 544.1 (176.5)c 487.4 (158.8)c,e

NfL ng/L 887.2 (724.0) 870.2 (649.1) 1515.4 (1242.4)a,d 3502.0 (1932.7)a,d,g 2617.3 (850.1)a,d,g

CRP ng/L 3185.4 (3121.8) 6097.2 (16120.7) 11565.1 (14188.1)b,e 14455.3 (28362.7)c,f 8409.0 (9989.1)

SAA ng/L 849.4 (818.4) 3912.0 (26810.2)c 6387.9 (14646.8)b,f 7364.0 (24468.4)a,f 3011.7 (4273.6)a,f

IL-6 ng/L 0.586 (0.252) 0.660 (0.336) 0.815 (0.542) 0.613 (0.205) 0.684 (0.280)

IL-8 ng/L 31.4 (8.7) 35.8 (10.0)b 39.7 (11.0)a 38.1 (12.3)c 44.4 (10.6)a,e

MCP-1 ng/L 316.1 (76.6) 338.6 (98.4) 340.3 (107.5) 383.1 (108.9) 340.9 (65.9)

YKL-40 ng/L 176839 (78368) 152004 (53613) 184126 (70721)f 204501 (82161)e 231208 (80495)c,d

Table 2. Levels of CSF biomarkers in the di�erent diagnostic groups. �e data are presented as the mean and 
SD. Signi�cance levels were analyzed using Mann-Whitney. For α-syn only samples with Hb < 200 ng/L were 
used. ap < 0.001 vs. controls; bp < 0.01 vs. controls; cp < 0.05 vs. controls. dp < 0.001 vs. PD; ep < 0.01 vs. PD; 
fp < 0.05 vs. PD. gp < 0.001 vs. PDD; hp < 0.05 vs. PDD.
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markers where the UPDRS-3 score correlated with CRP (p = 0.025, β = 0.138), SAA (p < 0.001, β = 0.205), IL-8 
(p = 0.032, β = 0.134) and MCP-1 (p = 0.020, β = 0.150).

Worse cognitive performance as measured by Mini Mental State Examination (MMSE) correlated with SAA 
(p = 0.012, β = −0.156) and IL-6 (p = 0.036, β = −0.125). Similar �ndings were observed between the CSF in�am-
matory biomarkers and cognitive speed and attention as measured with A Quick Test for Cognitive Speed (AQT) 
and Letter �uency (for AQT: CRP, p = 0.011, β = 0.151; SAA, p = 0.003, β = 0.181; IL-6, p = 0.041, β = 0.118; IL-8, 
p = 0.011, β = 0.155; and for Letter Fluency: SAA, p = 0.013, β = −0.160).

Correlations between inflammatory markers in CSF and clinical test scores in patients with PD.  
In PD alone, results remained signi�cant with correlations between in�ammatory markers and motor impair-
ment with correlations between Hoehn &Yahr and CRP (p = 0.003, β = 0.217) and SAA (p = 0.009, β = 0.192). 
UPDRS-3 correlated with CRP (p = 0.027, β = 0.161) and SAA (p = 0.007, β = 0.197) (Fig. 2).

Furthermore, we found signi�cant correlations between worse results on MMSE as well as AQT and SAA 
(p = 0.009, β = −0.197 and p = 0.019, β = 0.172 respectively).

In PD, increased depressive symptoms as measured by the depression items of HADS and fatigue as measured 
by FACIT-f correlated with CRP (p = 0.006, β = 0.244 and p = 0.004, β = 0.243, respectively) and SAA (p < 0.001, 
β = 0.313 and p = 0.006, β = 0.235, respectively) (Fig. 2). We also observed that CRP and IL-6 correlated with 
lower score on HADS depression items in the control group (p = 0.009, β = −0.655 and p = 0.003, β = −0.630).

No di�erence in levels of CSF in�ammatory biomarkers were found in tremor dominant PD compared with 
PIGD dominant PD.

Correlations between inflammatory markers in CSF and motor impairment and disease stage in 
MSA and PSP. In MSA, CRP and IL-8 correlated with disease severity (Hoehn & Yahr) (p = 0.038, β = 0.499 
and p = 0.031, β = 0.448 respectively). Similar results were obtained using the Uni�ed Multiple System Atrophy 
Rating Scale (UMSARS) total score (mean total score = 53.3, SD = 16.1) with CRP and IL-8 (p = 0.018, β = 0.618 
and p = 0.039, β = 0.526 respectively) (Fig. 3). In PSP (mean total score = 45.3, SD = 14.7), IL-6 correlated with 
UPDRS-3 (p = 0.017, β = 0.534). No signi�cant correlations were found between, PSP Rating Scale (PSPRS) 
motor score (item 3–6) or total score and in�ammatory markers.

Discussion
In this cross-sectional study, we show that the in�ammatory markers CRP and SAA are higher in PDD and MSA 
compared with PD and in the case of SAA also compared with controls. We also �nd that in�ammation correlates 
with more motor symptoms as well as cognitive decline.

In�ammation, in particular glia activation, has been linked to the pathological process in PD. In neuropatho-
logical studies, activated microglia has been found close to dopaminergic neurons in PD patients2 and cytokines 
have been found in higher levels in the striatum and substantia nigra of PD brains7,41. Furthermore, PET studies 
have shown increase microglia activation in PD compared with controls6,42. Microglia activation also seems to be 
of importance for cognitive impairment in PD. One PET study showed a larger increase in microglia activation 
in PDD compared with PD43. Further, microglia activation in PDD has been shown to correlate with decreased 
glucose metabolism and worse results on MMSE43,44. A few CSF studies further implicate in�ammation in cogni-
tive impairment in PD. In CSF, the cytokine IL-6 has been found to be increased in PD with cognitive impairment 
compared with non-demented PD45 and IL-8 been found to be increased in PDD but not PD compared with 
controls23 whereas CRP is increased in PDD compared with both PD and controls22. Our study can only con�rm 
increased CRP but not IL-6 in PDD compared with PD. We also show increased levels of CRP in MSA compared 
with PD. Interestingly we �nd that SAA, another acute-phase reactant, is increased in both PDD and MSA com-
pared with both PD and controls.

In APD, microglia activation has been found to be increased in MSA8 and PSP9. Even though traditional 
CSF biomarkers have been extensively investigated in APD, studies on in�ammatory biomarkers in CSF in these 

YKL-40 MCP-1 CRP SAA IL-6 IL-8 α-syn Tau P-tau Aβ42

MCP-1 NS

CRP 0.143* NS

SAA 0.153* NS 0.669***

IL-6 NS NS NS 0.139*

IL-8 0.253*** 0.158* 0.182** 0.218*** 0.285***

α-syn 0.363*** NS NS 0.160* NS 0.209**

Tau 0.4135*** NS NS 0.161* − 0.188** NS 0.736***

P-tau 0.359*** NS NS NS NS 0.160 * 0.789*** 0.731***

Aβ42 NS NS NS NS NS NS 0.406*** NS 0.213***

NfL 0.376*** 0.218*** 0.149* 0.196** NS 0.243*** 0.137* 0.367*** NS −0.157*

Table 3. Correlations between CSF biomarkers. Correlations between di�erent CSF biomarkers in the cohort 
as a whole, corrected for age, gender, disease duration, total somatic illness and in�ammatory conditions, given 
as β-values. For α-syn only samples with Hb <200 ng/L was included. *signi�cant for <0.05. **Signi�cant for 
<0.01. ***Signi�cant for <0.001. NS = Not Signi�cant.
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disorders are scarce. YKL-40 has in one study been found to be increased in PSP and MSA compared with con-
trols20 and another compared with PD19, where we now can con�rm the latter.

Our �ndings that the in�ammatory markers CRP and SAA are higher in PDD and MSA compared with PD 
and in the case of SAA compared with controls indicate a relationship between these disorders and in�amma-
tion. Also, high levels of YKL-40 as well as IL-8 and SAA correlate with increased CSF α-syn concentration and 
increased CSF concentrations of established neuronal injury markers, i.e. tau and NfL. One can speculate that 
α-syn pathology triggers an in�ammatory response that may aggravate the disease and neuronal degeneration 
even further.

Our clinical data also suggest a relationship between in�ammation and a more aggressive disease with corre-
lations between in�ammation and worse results on motor tests as well as cognitive impairment in PD. Further, we 
�nd that CRP correlates with disease duration in the PDD group suggesting higher in�ammatory activity as time 
passes in this group. Interestingly, we also �nd that higher levels of in�ammation correlate with disease duration 
in MSA, however, MCP1, a marker of microglia activation, correlated negatively with disease duration, suggesting 
a more intense microglia activation early on in the disease course.

Corroborating previous results from our group, we found a relationship between CRP and depressive symp-
toms as well as fatigue in PD22. Some of the patients were also included in the study by Lindqvist et al.22. However, 
in the present study we are also able to show a correlation between depressive symptoms and SAA, a marker not 
investigated by Lindqvist et al. In line with previous studies but contradicting others, we �nd that lower levels of 
IL-6 are associated with more depressive mood in controls22,46. In addition, in this study we �nd the same result 

Figure 2. Correlations between CSF CRP and clinical test scores in PD. Correlations of ln-transformed CSF 
levels of CRP with UPDRS-3 (a) and CRP with FACIT-f (b) in the PD group. Lines represent linear regression 
and 95% CI.
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for CRP. �ese results suggest that the depression may have a di�erent pathological mechanism in PD compared 
with depressed non-PD patients.

Notably, PD patients had the lowest CSF concentrations of YKL-40, lower compared with both APD and con-
trols, corroborating an earlier investigation19, but contrast other studies reporting unaltered CSF YKL-40 concen-
trations in PD18,20. �ese data may suggest that CSF YKL-40, a marker of astroglial activation, is down-regulated 
in PD. However, to ascertain this, in future studies, YKL-40 expression also need to be measured in brain tissue.

Astrocytes are suggested to be protective in the in�ammatory response in PD and the reduction of YKL-40 
may be a result of α-syn pathology, leading to defective astroglial function. On the other hand, the increase of 
YKL-40 in APD seem to be associated with increased release of α-syn into the CSF, or defective clearance of the 
protein (both potentially re�ected by increased CSF α-syn concentration), and neuroaxonal injury, as re�ected 
by the tau and NfL markers.

One major limitation of the study is the cross-sectional design making it impossible to address with any cer-
tainty weather in�ammation and microglia activation is detrimental or bene�cial. Furthermore, in comparisons 
between the diagnostic groups, signi�cance levels were not corrected for multiple comparisons. �is study should 
however be seen as an exploratory study. As suggested by Bender and Lange, correcting for multiple comparisons 
are required only for con�rmatory studies, where the number of analyses are fewer. In exploratory studies, like the 
present one where relatively many analyses are performed, there would be a high risk of type 2 errors if correction 
for multiple comparisons was performed47,48. �e present exploratory study thus needs to be con�rmed in future 
studies.

Figure 3. Correlations between CSF in�ammation biomarkers and clinical test scores in MSA. Correlations 
of ln-transformed CSF levels of CRP (a) and IL-8 (b) with UMSARS total score in MSA. Lines represent linear 
regression and 95% CI.
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�e sample sizes in the APD groups were quite small and especially the PSP group may be underpowered. 
Also, there is a lack of neuropathological examination which is a limitation foremost in the APD group. However, 
in this study we have included well characterized patients and controls and they are followed over time to ascer-
tain as accurate clinical diagnosis as possible. �ey are assessed regarding clinical characteristics making it 
possible to correlate the concentrations of biomarkers to both clinical status and disease severity. An added lon-
gitudinal study design may give information on the consistency of the in�ammatory response and if the over-all 
duration of in�ammatory response may correlate with disease progression and disease state. In conclusion, we 
show that in�ammatory markers are increased in PDD and APD compared with controls and PD. We also show 
that this increase correlates with markers of neuroaxonal injury but also with motor impairment and cognitive 
decline. We show that YKL-40, an astroglial marker is decreased in PD, which may indicate impaired astrocytic 
function. We therefore suggest that in�ammation and microglia may contribute to the disease processes in PD 
and APD. We believe that this study further contributes to the knowledge on the role of in�ammation in PD and 
APD. However, further longitudinal studies in larger cohorts are needed.

Data Availability
�e datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request when the aim is to verify the published results.
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