1duasnue Joyiny vd-HIN 1duasnue Joyiny vd-HIN

1duasnue Joyiny vd-HIN

éPL "VS)))\

NIH Public Access

(=
a2 & Author Manuscript

R s

Published in final edited form as:
Am J Trop Med Hyg. 2008 February ; 78(2): 198-205.

Cerebrospinal Fluid Cytokine Levels and Cognitive Impairment in
Cerebral Malaria

Chandy C. John*, Angela Panoskaltsis-Mortari, Robert O. Opoka, Gregory S. Park, Paul J.
Orchard, Anne M. Jurek, Richard Idro, Justus Byarugaba, and Michael J. Boivin
Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota;
Department of Paediatrics and Child Health, Makerere University Faculty of Medicine, Kampala,
Uganda; International Neurologic and Psychiatric Epidemiology Program (INPEP), College of
Osteopathic Medicine, Michigan State University, East Lansing, Michigan

Abstract

Cerebrospinal fluid (CSF) and serum levels of 12 cytokines or chemokines important in central
nervous system (CNS) infections were measured in 76 Ugandan children with cerebral malaria (CM)
and 8 control children. As compared with control children, children with cerebral malaria had higher
cerebrospinal fluid levels of interleukin (IL)-6, CXCL-8/IL-8, granulocyte-colony stimulating factor
(G-CSF), tumor necrosis factor-o, (TNF-a), and IL-1 receptor antagonist. There was no correlation
between cerebrospinal and serum cytokine levels for any cytokine except G-CSF. Elevated
cerebrospinal fluid but not serum TNF-a levels on admission were associated with an increased risk
of neurologic deficits 3 months later (odds ratio 1.55, 95% CI: 1.10, 2.18, P = 0.01) and correlated
negatively with age-adjusted scores for attention (Spearman rho, -0.34, P = 0.04) and working
memory (Spearman rho, -0.32, P = 0.06) 6 months later. In children with cerebral malaria, central
nervous system TNF-o production is associated with subsequent neurologic and cognitive morbidity.

INTRODUCTION

Cerebral malaria (CM) is a deadly disease that affects more than 500,000 children in sub-
Saharan Africa every year and kills ~110,000 of these children.1 The pathogenesis of CM is
thought to involve both parasite sequestration in the cerebral microvasculature, with tissue
hypoxia and |schem|c damage, and immunologic responses to P. falciparum, including
cytokine responses. Cytoklnes and chemokines may protect from disease by direct and
indirect effects on the parasne 4 put they may also contribute to disease, through recruitment
of inflammatory cells, au%mented production and activity of other cytokines,” and direct
toxicity to cells and tissue.®:’ Murine models of CM have clearly demonstrated involvement
of brain parenchymal cells, with activation of microglial cells,8 damage to astroc es 104ang
increased mRNA expressmn of genes regulating tumor necrosis factor-a (TNF- a) and
interferon-y (IFN-y). 12 Most human studies of central nervous system (CNS) cytokine
responses in CM to date have relied on post mortem analysis of cytokine expression in the
brain tissue of children who died of CM.13:14 Studies of cytokine levels in children with CM
have generally assessed serum levels of these cytoklnes, “17 hut these levels, although
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potentially important in the systemic disease caused by CM, may not correspond to cytokine
levels and activity in the CNS.

Recent studies providing evidence for a degree of local breakdown of the blood-brain barrier
(BBB) in cml provide a plausible mechanism for intrathecal cytokine production by brain
parenchymal cells. Cytokines and chemokines could cross the BBB in an area of breakdown
and affect brain tissue directly, or P. falciparum soluble exoantigens may cross the BBB and
stimulate cytokine and chemokine production by microglial cells and astrocytes (as reviewed
by Medana and Hunt19 and Hunt2). Microglial cell production of TNF-o occurs in murine CM
and is thought to be part of the pathogenesis of this disease.11 Thus, CNS cytokines and
chemokines may play a major role in CM pathogenesis, which, depending on the cytokine or
chemokine and the timing of production, may be protective or injurious.

Cerebrospinal fluid levels of cytokines and chemokines have been assessed in other infectious
and non-infectious diseases as an indicator of CNS cytokine levels, and have correlated with
disease severity.zo!21 With the recent advances in suspension array technology assays, levels
of multiple cytokines and chemokines can be assessed from a single CSF sample, allowing a
more complete profile of cytokine and chemokine activity in a disease process. In the present
study, CSF and serum levels of 12 cytokines or chemokines considered important in the
pathogenesis of CM and/or in other CNS infections?1-34 were assessed in Ugandan children
with CM and control children without evidence of neurologic disease. CSF cytokine levels on
admission were then compared with neurologic outcomes 3 months after discharge and
cognitive outcomes 6 months after discharge.

MATERIALS AND METHODS

Study population and recruitment

The study was conducted at Mulago Hospital, Kampala, Uganda. Children 4-12 years of age
were recruited as part of two studies assessing the complications of CM. A total of 86 children
with CM, 76 children with uncomplicated malaria, and 99 community children without
evidence of acute illness were recruited. CSF samples were obtained from 76 of the 86 children
with CM. Control samples for CSF testing consisted of stored samples from 8 children 8-15
years of age with inherited metabolic disorders who were seen at the University of Minnesota
Children’s Hospital, Fairview. These children underwent lumbar punctures as a part of routine
testing for bone marrow transplant evaluation. None were acutely ill or had evidence of
infectious disease at the time of testing. Cerebrospinal fluid was kept frozen at -70°C until
testing was performed.

A complete description of the Ugandan study cohorts has been previously published.16 Briefly,
children with CM were enrolled if they were admitted to Mulago Hospital and met the WHO
criteria for CM: coma (Blantyre coma scale < 2 or Glasgow coma scale < 8), P. falciparum on
blood smear, and no other cause for coma. Lumbar punctures were performed to rule out
meningitis and encephalitis unless the child had clinical contraindications to lumbar puncture.
A CSF leukocyte count of > 5 leukocytes/mm3 or the presence of bacteria on CSF Gram stain
or culture were exclusion criteria. Ugandan Ministry of Health national guidelines for drug
treatment of CM (including quinine for 7 days) were followed.

Blood samples of 5 mL were obtained by venipuncture on admission from 80 children with
CM. Blood samples for serum testing were collected in a VVacutainer serum separator tube (BD
Diagnostics, Franklin Lakes, NJ), gently inverted 4-5 times, allowed to clot in a horizontal
position for 30 minutes, and then centrifuged at 1,000 x g for 10 minutes. The separated serum
was pipetted into aliquots and frozen at -70°C until testing was performed; 72 of the 76 children
who had CSF samples had matched serum samples for cytokine testing.
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Written informed consent was obtained from the parents or guardians of study participants.
Ethical approval for the study was granted by the Institutional Review Boards for Human
Studies at Makerere University Faculty of Medicine, University Hospitals of Cleveland, Case
Western Reserve University and Indiana Wesleyan University. Ethical approval for testing of
CSF samples from the children with metabolic disorders was granted by the Institutional
Review Board for Human Studies of the University of Minnesota.

Neurologic and cognitive testing

A complete neurologic exam was done on children with CM at discharge and 3 and 6 months
after discharge. Cognitive testing was also done in children with CM who were 5 years of age
or older at discharge and 3 and 6 months after discharge. Cognitive testing was performed in
the areas of attention, working memory and tactile-based learning, and age-adjusted z-scores
(i%lculated using scores from age-matched healthy Ugandan children, as previously described.

Cytokine testing

Levels of seven cytokines (G-CSF, IFN-y, IL-1B, IL-1ra, IL-6, IL-10, and TNF-a) and five
chemokines (CCL2/MCP-1, CCL3/MIP-1a, CCL4/MIP-1f, CCL5/RANTES, and CXCLS8/
IL-8) that have been shown to be important in human and/or animal studies of CM or in other
CNS infections were assessed in each CSF sample. Cytokine and chemokine levels were
determined by microbead suspension array technology (SAT) using the Luminex system
(Austin, TX) and human-specific bead sets (R&D Systems, Minneapolis, MN). Results were
interpolated from 5-parameterfit standard curves generated with the relevant recombinant
human proteins (R&D Systems). Samples were tested neat and at a 1:10 dilution. Serum
cytokine levels were also tested by SAT as reported previously.16 Repeat testing was
performed on 8 paired CSF and serum samples with adequate sample volume. The 8 paired
CSF and serum samples were tested on a single plate to assess reproducibility of the findings
from initial testing.

Statistical analysis

RESULTS

Cytokine levels across groups were compared with the Wilcoxon rank-sum two-sample test.
Serum and cytokine levels in the same individual were compared with the Wilcoxon matched-
pairs signed-ranks test. Correlations between cytokine levels of different cytokines and
between cytokine levels and age-adjusted cognitive z-scores were assessed by Spearman’s rank
correlation. Risk of neurologic deficit was compared with cytokine levels by logistic
regression. To assess the association of CSF cytokines with persistent neurologic or cognitive
impairment, neurologic deficit 3 months after discharge and cognitive z-scores 6 months after
discharge were chosen as the primary outcomes for neurologic and cognitive testing,
respectively. The 3-month time point was chosen for neurologic deficit because only one child
had gross neurologic deficits at 6 months. P values for analyses in which there were more than
5 comparisons were adjusted for multiple comparisons by the method of Holm.35

Cerebrospinal fluid cytokine levels in children with cerebral malaria and control children

Children with CM had significantly higher CSF levels of G-CSF, IL-1ra, IL-6, CXCL8/IL-8,
and TNF-a than control children (Figure 1). Levels of IFN-y, IL-1p, IL-10, CCL2/MCP-1,
CCL3/MIP-1a, CCL4/MIP-1p, and CCL5/RANTES did not differ significantly between
children with CM and control children, although for each of these cytokines, there were
individual children with CM who had elevated levels (Figure 1).
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Relationship between serum and cerebrospinal fluid cytokine levels

Serum levels of the 12 cytokines in children with CM were previously reported.16 CSF IL-8
levels were significantly higher than serum CXCLB8/IL-8 levels (median level 596 versus 63
pg/mL, P <0.001), and CSF MCP-1 levels were higher than serum MCP-1 levels (median
level 471.4 versus 271.6 pg/mL, P = 0.003), whereas G-CSF levels in CSF approached those
in serum (Table 1). All other CSF cytokine levels were lower than serum levels (Table 1). CSF
and serum cytokine levels showed no correlation (Spearman’s rho range, -0.10 to 0.14, all P
> 0.16), with the exception of CSF and serum levels of G-CSF (Spearman’s rho, 0.53, P <
0.001). To assess reproducibility of results, repeat testing was done for 8 paired CSF and serum
samples on a single plate. Cytokine values on repeat testing correlated highly with those on
previous testing (e.g., Spearman’s rho for CSF CXCL8/I1L-8, 0.97, P < 0.001, and for serum
IL-8, 0.89, P = 0.003).

Cerebrospinal fluid cytokines and neurologic and cognitive deficits

Neurologic sequelae were assessed by complete neurologic exam in 71, 71, and 68 of the
children with CM at the time of discharge, 3 months and 6 months later, respectively. As
reported previously, 19 of 71 children (26.8%) had neurologic deficits at discharge, consisting
primarily of hypereflexia and hypertonia, but also including spastic quadriplegia, vision and
hearing impairments, ataxia, lack of coordination, and attention deficit with inability to follow
instructions.1® Six of 71 children (8.5%) still had deficits at 3 months, and only 1 of 68 (1.5%)
had deficits at 6 months. CSF cytokine levels of the 5 cytokines that differed between children
with CM and control children (G-CSF, IL-1ra, IL-6, CXCLB8/IL-8, TNF-a) were compared in
children with and without neurologic deficits at 3 months. Children with neurologic deficits at
3-month follow-up had higher admission CSF TNF-a, levels (P = 0.02) and lower G-CSF (P
=0.01) and CXCLS8/IL-8 (P = 0.05) levels than children without deficits (Table 2). In a logistic
regression model including all 3 cytokines, elevated TNF-a. levels (odds ratio [OR] 1.55, 95%
confidence interval [CI]: 1.10, 2.18, P = 0.01) and lower G-CSF levels (OR 0.98, 95% CI:
0.96, 0.99, P = 0.01) were independently associated with increased risk of neurologic deficits
at 3 months.

Cognitive testing was limited to children over 5 years of age. Cognitive testing was performed
in the areas of attention, working memory, and tactile-based learning as previously described.
15 Forty-four children completed cognitive assessment at discharge; 42 of the 44 children were
available for cognitive testing at 6-month follow-up, and 37 of the 42 had serum and CSF
samples available for cytokine testing. In the 37 children, CSF levels of TNF-a correlated
negatively with age-adjusted z-scores for tests of attention (Spearman’s rho, -0.34, P = 0.04)
and working memory (Spearman’s rho, -0.32, P = 0.06). In contrast, CSF levels of the 4 other
cytokines that differed between children with CM and control children did not correlate with
cognitive outcome scores. Serum cytokine levels also did not correlate with cognitive outcome
scores (data not shown).

DISCUSSION

The pathogenesis of CM is becoming better defined through the complementary study of
murine models and disease in human populations, but much remains to be learned. Currently,
it is thought that CM results from a number of events, including parasite sequestration that
leads to local ischemia and hypoxia, accumulation of CD4+ and CD8+ T cells, monocytes and
platelets, local cytokine release, and stimulation of other pathways, including the kynurenine
pathway.2 Animal models strongly sugSQest a role for microglial activation and cytokine
production in the pathogenesis of CM, +36 put evidence for this in human studies has until
now been largely limited to assessment of MRNA expression in the brain tissue of small
numbers of individuals who died of CM.13:14 In the present study of Ugandan children with
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CM, we document elevated CSF levels of pro- and anti-inflammatory cytokines, a lack of
correlation between CSF and serum cytokine levels, an association between elevated CSF
TNF-a levels on admission, and subsequent neurologic and cognitive impairment. Taken
together, our findings provide evidence of CNS cytokine production in children with CM, and
suggest that levels of these cytokines in the CNS but not peripherally may be associated with
subsequent CNS injury. The study findings support the concept that the cells in brain
parenchyma are not “innocent bystanders” in CM, 19 put rather play an active role in the
process.

Unlike other central nervous system infections, such as bacterial meningitis or viral
encephalitis, in which the organism crosses the BBB and directly infects the brain, in CM, P.
falciparum is confined to the endovascular space of the brain, and CM is not accompanied by
a CSF leukocytosis, elevated protein, or other signs of CNS inflammation.3” For this reason,
the main focus of research in CM has been on the vascular side of the BBB, and there has been
an emphasis on the importance of parasite sequestration leading to local tissue hypoxia and
damage. However, the coma produced by CM, the lack of stroke-like findings in most children
with CM, and the dramatic and sometimes rapid recovery that is seen in CM are not completely
consistent with this mechanism. Studies demonstrating that there is local impairment of the
BBB in individuals with CM18.,38 opened the possibility that leukocytes, serum cytokines, or
P. falciparum exoantigens might cross the BBB, activate microglial cells and astrocytes and
thus involve them in the pathogenesis of CM. Work by Medana, Hunt, and others demonstrated
convincingly that in murine CM models a number of these processes were occurring in the
brain, including stimulation of microglial cells at the BBB ba/ P. bergheii antigens, microglial
activation8 and TNF-o. production, 1land astrocyte injury Other studies showing increased
mRNA levels of TNF-o and IFN-y in the brain but not other organs of P. bergheii-infected
mice with CM36 also support the concept that murine CM is at least in part an encephalitis.
However, this activity has been difficult to test in human studies. Studies done to date assessing
CNS cytokine production in humans have been limited to two studies of CSF cgltokmes (TGF-
B and TNF-a), both of which reported normal CSF levels of these cytokines 0 The assays
used in these earlier CSF cytokine studies may have had higher limits of detection than the
assay used in the present study, which detects as little as 1.28 pg/ml of TNF-a. In support of
our findings, autopsy studies of chlldren who died of CM have revealed areas of the brain with
increased expression of TNF-a, IL- 1B 341 TGF- B 3 and CCL5/RANTES.14 However,
these studies had small sample sizes and, being post-mortem studies, could not assess the
associations of these cytokines with long-term sequelae in children with CM. In the present
study, larger sample size, ability to test multiple cytokines from a single CSF sample, and a
prospective cohort study design allowed us to demonstrate for the first time that CNS levels
of specific pro- and anti-inflammatory cytokines are elevated in children with CM and are
associated with subsequent neurologic and cognitive morbidity in these children.

The lack of correlation between CSF and serum cytokine levels for all cytokines except G-
CSF suggests that these cytokines are produced within the CNS. The strongest evidence for
CNS cytokine/chemokine production was for CXCL8/IL-8, for which CSF levels were
significantly higher than serum levels. It has been hypothesized that attachment of the P.
falciparum PfEMP-1 antigen to endothelial cell ICAM-1 alters signaling pathways and leads
to increased tight junction permeability, allowing soluble antigens, leukocytes, cytokines, and
other factors to cross the BBB and activate and/or damage microglial cells, astrocytes, and
perlcytes 42 Microglial cells, the resident macrophages of the brain, have numerous membrane
receptors, including MHC class Il molecules, toll-like receptors (TLR), and numerous cytokine
and chemokine receptors, 43 and produce a number of cytokines and chemokines in response
to infection or stlmulatlon including TNF-a, IL-1p, RANTES 44 |L-6,45 CXCLS8/IL-8, 46
CCL2/MCP-1,47 CCL3/MIP-1a, and CCL4/MIP- 1[3 Mlcrogllal cells may be able to
respond to antigen presented in areas where the BBB is impaired due to damage to endothelial
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cell tight junctions. Astroc g}/tes can also produce cytokines, including IL-6, 45 ccL2/MCP-1,
RANTES, CXCL8/IL-8,49 and G-CSF0 in response to viral infection or other stimulation. If
CD4+/CD8+ T cells or monocytes cross the impaired BBB, they could also be a potential
source of CNS cytokines. However, there are few of these cells within the CSF, so the
production, in particular, of larger amounts of CXCL8/IL-8 in the CSF than in serum argues
for microglial cell/astrocyte origin as opposed to migrating T cell or monocyte origin. However,
the possibility of monocytic cellular infiltrates that remain in brain tissue rather than in CSF
cannot be completely excluded. Genetic differences in innate or adaptive host immune
responses to P. falciparum exoantigens or other stimuli, diversity of parasite genotype and
virulence, or a combination of these factors may affect BBB impairment and CNS cytokine
production in children with CM, and may explain the elevation of specific cytokine levels in
some but not all children with CM. Variations in the time course of CNS cytokine production
and/or highly localized CNS cytokine production may also have affected the ability to detect
CSF cytokine levels in some children.

Central nervous system cytokine production may lead to protection or damage of neural cells,
depending on the specific cytokine, timing of its production, and the amount produced.
Productlon of pro-inflammatory cytokines by microglia can induce neuronal damage or death,

1 but the effects of pro- mflammatory cytokines may be modulated by production of anti-
mflammatory cytokmes5 or by other proinflammatory cytokines. 53 CXCLS8/IL-8, the
cytokine with the hlghest CSF levels in the present study, is a potent neutrophil
chemoattractant,®4°° and G-CSF, which was also elevated in the CSF, decreases neutrophil
apoptosis. 56 Together, the effects of these cytokines/chemokines on neutrophils could lead to
damage from increased neutrophil activity in the CNS. Neutroph|I activity has been postulated
to be important in murine CM pathogenesis in one study, but not in other murine or human
studies. Elevated CSF concentrations of CXCL8/IL-8 have been documented in individuals
with traumatic brain injury58v59 and Alzheimer’s disease,80 but it remains unclear whether
CXCLS8/IL-8 is involved in the pathogenesis of cognitive impairment in these diseases. In the
present study, elevated levels of CXCL8/IL-8 and G-CSF were seen in the children without
neurologic deficits. Thus, the role of CXCL8/IL-8 and G-CSF in human CM pathogenesis and
morbidity is unclear, and it is possible that these cytokines are associated with neuroprotection
rather than neurotoxicity in human CM.

Interestingly, TNF-a, the only CSF cytokine associated with neurologic and cognitive
impairment in the present study, is the primary cytokine implicated in fatal murine cm.ln
the present study, serum levels of TNF-a or other cytokines did not correlate with neurologic
or cognitive outcomes, corresponding to murine model observations that systemic
administration of TNF-a does not lead to brain changes consistent with CM in P. vinckeii-
infected mice.61 TNF-q released in the CNS may cause neurotoxicity by inducing the release
of other cytokines or nitric OXIde enhancing superoxide production, or potentiating glutamate
receptor-mediated neurOX|C|ty 2-64 The evidence that CNS TNF-q s critical to murine CM
pathogenesis gives biologic plausibility to the association of elevated CNS TNF-a levels with
subsequent neurologic and cognitive impairment in children with CM. However, the numbers
of children assessed for neurologic or cognitive sequelae in the present study (71 and 37
children, respectively) did not allow for detection of strong associations, and further studies
are required to confirm these findings.

The evidence in the present study for CNS production of cytokines in CM, and the suggestion
of a relationship to neurologic and cognitive sequelae, lend credence to the idea that
interventions designed to dampen specific CNS cytokine responses, such as CNS TNF-a
production, could decrease longterm morbidity in CM. An earlier clinical trial of antibodies to
TNF-a in children with CM showed an association of increased neurologic deficits with this
antibody treatment, possibly because these antibodies retain TNF-o within the circulation.6°
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The present study findings suggest that CNS-specific TNF-a inhibition might be required to
reduce CNS morbidity. In light of the high frequency of cognitive morbidity previously
documented by our group in children with cm,15 CNS-specific interventions are urgently
needed.

Study limitations include the lack of CSF samples from children with uncomplicated malaria
or severe malaria without CNS symptoms, and the relatively small number of control samples.
These limitations were unavoidable. Lumbar puncture in children with malaria but without
CNS symptoms would be unethical, so it is impossible to determine if CNS cytokine release
is seen in other clinical presentations of malaria. Samples could potentially be obtained from
African children with other diseases such as meningitis or encephalitis. However, it is well
established that numerous cytokines are elevated in these disease processes,zelc"’zl66 o)
documentation of elevation of cytokine levels in children with CM as compared to children in
a baseline non-inflamed state could not be accomplished by comparison with these samples.
Because there are few situations in which a lumbar puncture can ethically be performed in a
child without CNS symptoms, the availability of the CSF samples from children with metabolic
disorders but no CNS symptoms allowed us to compare the CSF levels to baseline values in
children; even with the small number of controls, we were able to establish that there were
highly significant differences in CSF cytokine levels for several cytokines. Furthermore,
elevated levels of TNF-a in children with CM correlated with neurologic and cognitive
impairment in these children, supporting a potential pathophysiologic role for TNF-a. in
neurologic sequelae of CM.

In conclusion, we provide the strongest evidence to date that African children respond to CM
with CNS cytokine production. The possible association of specific cytokines with
neuroprotection or neurotoxicity in children with CM, particularly the association of TNF-a.
with neurologic and cognitive sequelae, requires further evaluation. If production of specific
cytokines in the CNS is associated with increased morbidity in children with CM, interventions
to decrease production of these cytokines in the brain may lead to improved outcomes.
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IGURE 1.

CSF levels (pg/mL) of 12 cytokines and chemokines in 76 Ugandan children with cerebral
malaria (CM) and 8 North American children without neurologic disease. Lines depict median
values in each group. For all values depicted on a log scale, undetectable cytokine levels were
given a value of 0.1 pg/mL, or 10 pg/mL. The following outlier values (pg/mL) are not
depicted: G-CSF, 14268.2; I1L-1p, 2,951.7; IL-1ra, 21960.4; IL-6, 2,3371.4; IL-10, 1,036.7;
TNF-0, 688.8; CCL3/MIP-1a, 2,302.6; CCL4/MIP-1p, 20,909.4.
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