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Objective: It is currently unknown whether cerebrospinal fluid (CSF) neurosteroid levels are related
to brain neurosteroid levels in humans. CSF and brain dehydroepiandrosterone (DHEA) levels are
elevated in patients with Alzheimer’s disease (AD), but it is unclear whether CSF DHEA levels are
correlated with brain DHEA levels within the same subject cohort. We therefore determined DHEA
and pregnenolone levels in AD patients (n = 25) and cognitively intact control subjects (n = 16) in
both CSF and temporal cortex.

Design: DHEA and pregnenolone levels were determined by gas chromatography/mass spectrom-
etry preceded by HPLC. Frozen CSF and temporal cortex specimens were provided by the Alzhei-
mer’s Disease Research Center at Duke University Medical Center. Data were analyzed by Mann-
Whitney U test statistic and Spearman correlational analyses.

Results: CSF DHEA levels are positively correlated with temporal cortex DHEA levels (r = 0.59, P <
0.0001) and neuropathological disease stage (Braak and Braak) (r = 0.42, P = 0.007). CSF preg-
nenolone levels are also positively correlated with temporal cortex pregnenolone levels (r = 0.57,
P < 0.0001) and tend to be correlated with neuropathological disease stage (Braak) (r = 0.30, P =
0.06). CSF DHEA levels are elevated (P = 0.032), and pregnenolone levels tend to be elevated (P =
0.10) in patients with AD, compared with cognitively intact control subjects.

Conclusions: These findings indicate that CSF DHEA and pregnenolone levels are correlated with
temporal cortex brain levels of these neurosteroids and that CSF DHEA is elevated in AD and related
to neuropathological disease stage. Neurosteroids may thus be relevant to the pathophysiology of
AD. (J Clin Endocrinol Metab 93: 3173-3178, 2008)

e have previously determined that dehydroepiandros-
W terone (DHEA) levels are elevated in postmortem pre-
frontal cortex (1) and temporal cortex (2) in patients with Alz-
heimer’s disease (AD), compared with cognitively intact control
subjects, and positively correlated with neuropathological dis-
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ease stage (Braak and Braak) in both brain regions (1, 2). These
findings are consistent with a prior report of elevated DHEA
levels in postmortem brain tissue from patients with AD, com-
pared with control subjects (3). Although there have also been
published investigations of elevated DHEA levels in cerebrospi-

Abbreviations: AD, Alzheimer’s disease; ADRC, Alzheimer’s Disease Research Center; CSF,
cerebrospinal fluid; DHEA, dehydroepiandrosterone; DHEAS, dehydroepiandrosterone sul-
fate; NMDA, N-methyl-p-aspartate; PBR, peripheral benzodiazepine receptor; PMI, post-
mortem interval; PREG, pregnenolone.
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nal fluid (CSF) in AD patients (3, 4), to our knowledge there have
been no reports comparing CSF neurosteroid levels and brain
neurosteroid levels within the same subject cohort. If CSF neu-
rosteroid levels are correlated with brain neurosteroid levels in
humans, it is possible that the identification and quantification
of these molecules in accessible tissues such as CSF could have
utility in the early identification and diagnosis of AD. We there-
fore determined DHEA and pregnenolone (PREG) levels in CSF
from patients with AD (n = 25) and cognitively intact control
subjects (n = 16) for whom brain tissue (temporal cortex) was
also available and determined whether CSF neurosteroid levels
are correlated with temporal cortex neurosteroid levels within
this subject cohort. Because DHEA and PREG enhance cognitive
performance (5) and demonstrate neuroprotective effects in a
number of rodent models (6, 7), these molecules may be relevant
to the pathophysiology and treatment of AD. We determined
previously that serum PREG levels are strongly correlated with
brain PREG levels in rodents (8), and therefore hypothesize that
a similar relationship may also be present between CSF and tem-
poral cortex neurosteroid levels in humans.

Subjects and Methods

Postmortem CSF samples

Postmortem CSF was available for 41 (25 AD and 16 cognitively
intact control subjects) of 81 subjects (40 AD and 41 cognitively intact
control subjects) whose temporal cortex tissue samples had been ana-
lyzed and reported previously (2). CSF and temporal cortex tissue were
generously provided by the Joseph and Kathleen Bryan Alzheimer’s Dis-
ease Research Center (ADRC) at Duke University Medical Center and
analyzed for DHEA and PREG. Temporal lobe boundaries were the
superior and middle temporal gyri. Because brain tissue in this ADRC
collection has also been used for other studies, the rostral-caudal location
varied to some degree. Subjects were enrolled in the ADRC autopsy and
brain donation program, as described previously (9). Procedures for
enrollment were approved by the Duke University Medical Center In-
stitutional Review Board. Cognitively intact control subjects had no
neurological disorders and died of natural causes owing to advanced age.
AD was diagnosed clinically according to National Institute of Neuro-
logical and Communicative Disorders/Alzheimer’s Disease and Related
Disorders Association criteria and was confirmed at autopsy with the
National Institute on Aging/Reagan Institute criteria. Neuropathologi-
cal disease stage was determined with the Braak and Braak method (10).

Gas chromatography/mass spectrometry analyses

Neurosteroid analyses were performed by a highly sensitive and spe-
cific gas chromatography/mass spectrometry method preceded by HPLC
purification, as previously described (1). CSF was homogenized in $
volumes of distilled water containing a trace quantity (4000 dpm) of
tritiated neurosteroid (NEN Life Science Products, Wellesley, MA) to
detect the HPLC fraction of interest as well as a constant amount of
deuterated PREG (D4-PREG, 400 pg) as the internal standard (Cam-
bridge Isotopes, Andover, MA). Supernatants were extracted three times
with three volumes of ethyl acetate and dried under nitrogen before
HPLC. Each steroid was collected into a separate fraction on the basis of
the retention time of its radioactive analog, using hexane, tetrahydro-
furan, and ethanol in the mobile phase. Samples were then transferred to
1 ml Reacti-Vials (Pierce Chemical, Rockford, IL), evaporated to dry-
ness, and derivatized with heptafluorobutyric acid anhydride. Standards
and samples were injected onto an Agilent 5973 mass spectrometer cou-
pled to a 6890N gas chromatograph (Agilent, Santa Clara, CA) and
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analyzed in the negative ion chemical ionization mode with methane as
the reaction gas and helium as the carrier gas. Samples were injected in
duplicate. The mean intraassay coefficient of variation was 5.1% for
DHEA and 6.2% for PREG. The limit of detection of this method was
2 pg for DHEA and 5 pg for PREG.

Statistical analyses

Neurosteroid levels in AD patients and cognitively intact control
subjects were analyzed nonparametrically by Mann-Whitney U test sta-
tistic. Correlational analyses (neurosteroid levels vs. Braak and Braak
neuropathological disease stage) were also assessed nonparametrically
and Spearman correlation coefficients were determined. Both AD and
control subjects were included in the correlational analyses because cog-
nitively intact control subjects may meet neuropathological criteria for
early Braak stages (potentially reflecting the earliest stages of AD or
predisposition to developing AD in the absence of detectable clinical
symptomatology).

Results

CSF DHEA levels are positively correlated with temporal cortex
DHEA levels (Spearman r = 0.59, P < 0.0001, Fig. 1A). Simi-
larly, CSF PREG levels are positively correlated with temporal
cortex PREG levels (Spearman r = 0.57, P < 0.0001, Fig. 1B),
suggesting that CSF neurosteroids may potentially serve as proxy
or surrogate markers for brain neurosteroid levels. CSF DHEA
levels are positively correlated with neuropathological disease
stage (Braak and Braak) (Spearmanr = 0.42, P = 0.007, Fig. 2A).
CSF PREG levels tend to be positively correlated with neuro-
pathological disease stage (Spearman r = 0.30, P = 0.06, Fig.
2B). CSF DHEA levels are significantly elevated in patients with
AD, compared with cognitively intact control subjects (median
DHEA levels 0.33 ng/ml in AD patients vs. 0.17 ng/ml in cog-
nitively intact control subjects; Mann-Whitney U test statistic
P =0.032,Fig.3A). CSFPREG levels tend to be higher in the AD
group, compared with cognitively intact control subjects, but
this result did not achieve statistical significance (median PREG
levels 0.15 ng/ml in AD patients vs. 0.10 ng/ml in control sub-
jects; Mann-Whitney U test statistic P = 0.10, Fig. 3B).
Median age for cognitively intact control subjects was 82.0 yr
and median age for subjects with AD was 81.0 yr. There was no
significant age difference between these two groups (Mann-
Whitney, P = 0.26). Postmortem interval (PMI) was less than
35 hfor all tissue specimens tested. Median PMIwas 6.5 h for AD
subjects and 7.8 h for control subjects. There was no significant
difference between the median PMI of the AD group and the
median PMI of the cognitively intact control groups (Mann-
Whitney, P = 0.60). No significant correlations were found be-
tween PMI and DHEA or PREG levels in AD patients (Mann-
Whitney, P = 0.40 and P = 0.67, respectively) or between PMI
and DHEA or PREG levels in cognitively intact control subjects
(Mann-Whitney, P = 0.49 and P = 0.61, respectively).

Discussion

This is the first report, to our knowledge, of human neurosteroid
levels determined in both CSF and brain tissue within the same
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FIG. 1. A, CSF DHEA levels are correlated with temporal cortex DHEA levels
(Spearman r = 0.59, P < 0.0001). A, Control; @, AD. To ensure adequate
resolution of individual data points for graphical presentation, one point (x =
40.31/y = 1.43) is not included in this figure but included in all nonparametric
statistical analyses. B, CSF PREG levels and temporal cortex PREG levels are
correlated (Spearman r = 0.57, P < 0.0001). A, Control; @, AD. To ensure
adequate resolution of individual data points for graphical presentation, one
point (x = 276.23/y = 0.37) is not included in this figure but included in all
nonparametric statistical analyses.

subject cohort. Our findings indicate that CSF levels of DHEA
and PREG are positively correlated with temporal cortex levels
of these respective neurosteroids and that CSF DHEA is elevated
in AD and positively correlated with neuropathological disease
stage (Braak and Braak).

CSF and temporal cortex neurosteroid levels are
correlated

Our data demonstrate a significant positive correlation be-
tween CSF DHEA and temporal cortex DHEA. CSF PREG and
temporal cortex PREG are also significantly correlated. These
findings therefore suggest that CSF DHEA and PREG levels re-
flect temporal cortex brain levels of these neurosteroids and that
the determination of neurosteroid levels in CSF may have po-
tential utility in the assessment of AD. Extensive future research
will be required to replicate these findings in a larger number of
subjects and test the possibility introduced by this pilot study that
neurosteroid profiling may have clinical applications in AD. Be-
cause CSF DHEA and PREG levels may serve as proxy or sur-
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FIG. 2. A, CSF DHEA levels are positively correlated with neuropathological
disease stage (Braak and Braak) (Spearman r = 0.42, P = 0.007). A, Control; O, AD.
B, CSF PREG levels tend to be positively associated with neuropathological disease
stage (Braak and Braak) (Spearman r = 0.30, P = 0.06). A, Control; O, AD.

rogate markers reflecting brain levels of these neurosteroids, we
speculate that the characterization of DHEA and PREG in CSF
could be relevant to AD diagnosis.

CSF DHEA levels are associated with neuropathological
disease stage

We determined in the current investigation that CSF DHEA
levels are positively correlated with Braak and Braak neuro-
pathological disease stage [similar to previously reported results
in prefrontal cortex and temporal cortex (1)]. This neuropatho-
logical staging model identifies and differentiates progressive
stages of AD development (10). The model proposes a predict-
able pattern of neuropathological progression based on neuro-
fibrillary tangle formation. Because evidence suggests that Braak
and Braak neuropathological disease stage is associated with
degree of cognitive impairment (11, 12), our findings that CSF
neurosteroid levels are related to neuropathological disease stage
of AD may have functional significance and utility for the pre-
diction of clinical course. However, given the relatively high de-
gree of overlap between CSF DHEA levels in AD and control
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FIG. 3. A, CSF DHEA levels are elevated in patients with AD, compared with
cognitively intact control subjects (0.33 ng/ml in AD vs. 0.17 ng/ml in control
subjects; Mann Whitney U test statistic, P = 0.032). B, CSF PREG levels tend to
be elevated in patients with AD, compared with cognitively intact control
subjects (0.15 ng/ml in AD vs. 0.10 ng/ml in control subjects; Mann Whitney U
test statistic, P = 0.10).

patients, it is of importance to note that CSF DHEA measure-
ments may not be useful for the reliable detection of early
stages of AD.

CSF DHEA levels are elevated in patients with AD

Our determination that CSF DHEA levels are increased in AD
patients, compared with cognitively intact control subjects, is
consistent with prior CSF studies (3, 4). In the current study, CSF
DHEA levels in both cognitively intact control subjects and AD
patients appear to be somewhathigher than previously published
reports (3, 4), but the magnitude of CSF DHEA elevations in AD,
compared with control subjects is similar in all three investiga-
tions (more than a doubling of CSF DHEA levels in the AD
group, compared with the control group) (3, 4). In addition to
elevations in DHEA in CSF, prior studies have shown increases
in DHEA in a number of brain regions in AD as well (1-3).

Potential clinical ramifications of CSF DHEA elevations in
AD and correlation with neuropathological disease
stage

The possible etiology and functional significance of elevated
DHEA levels in AD and correlation with neuropathological dis-
ease stage are not entirely clear. It may be noteworthy that levels
of both DHEA (13) and PREG (14) decline with age and that
there is a hypothesized role for neurosteroids in memory dys-
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function (1, 5). However, it is currently not known whether CSF
DHEA elevations in AD represent adaptive or nonadaptive re-
sponses and/or epiphenomena.

DHEA is neuroprotective against amyloid B-protein toxicity
and attenuates 3,5_5s-amyloid peptide-induced memory impair-
ment (15). Increases in DHEA therefore may be reflective of an
adaptive or compensatory mechanism in AD. Additionally, el-
evated DHEA levels in the later stages of AD may be related to
elevated stress experienced by more severely ill patients with AD.
It is also possible that increases in DHEA in AD may result from
B-amyloid deposition because B-amyloid administration in-
creases DHEA formation in oligodendrocytes (16). Oxidative
stress also plays an important role in the pathophysiology of AD
(17-21), and DHEA has neuroprotective effects against various
insults that result in oxidative stress. For example, DHEA is
neuroprotective against anoxia (7), glucocorticoid-induced tox-
icity (22), H,0,/FeSO,-stimulated lipid oxidation (23),
3-nitropropionic acid-induced oxidation stress (24), and gluta-
mate- (25) and acute N-methyl-p-aspartate (NMDA)-induced
excitotoxicity (26). Additionally, DHEA has neurotrophic ef-
fects and increases neurogenesis (27, 28). Moreover, in rodent
models DHEA augments learning and memory (29) and may also
impact episodic memory in humans (30). In contrast, a small
placebo-controlled double-blind clinical trial of DHEA augmen-
tation in AD patients was notassociated with improved cognitive
performance using a dose of 50 mg twice daily for 6 months (31).

It has also been hypothesized that excitotoxicity may play a
role in the pathophysiology of AD (32). Because DHEA posi-
tively modulates excitatory NMDA receptors (33) and nega-
tively modulates inhibitory y-aminobutyric acid 5 receptors (34),
elevated DHEA levels in AD could potentially result in a net
increase in excitation and represent a nonadaptive response con-
tributing to this aspect of AD pathophysiology.

In addition to potential effects of DHEA on pathophysiology,
itis equally important to consider possible causal factors leading
to DHEA elevations. The existing literature supports the possi-
bility that some of DHEA’s actions may be mediated via down-
stream conversion to other steroids. DHEA conversion to other
steroids appears to be reduced in AD, potentially contributing to
DHEA elevations. For example, DHEA metabolism to 7a-hy-
droxy-DHEA and androstenediol tends to be decreased in fron-
tal cortex in subjects exhibiting increased amyloid plaque density
(35), and cytochrome P450 enzyme CYP7B (which produces
7a-hydroxy-DHEA from DHEA) mRNA expression in dentate
gyrus and CA1 pyramidal neurons is significantly reduced in AD
(36). Future efforts will be required to determine the precise
etiological mechanisms leading to DHEA alterations in patients
with AD.

Previous studies also provide evidence that changes in the
levels of the sulfated derivative of DHEA (DHEAS) may be im-
portant in AD pathophysiology. Our finding of increased CSF
DHEA levelsin AD patients is consistent with the findings of Kim
et al. (4), who additionally reported decreased levels of CSF
DHEAS in AD patients. Many roles have previously been attrib-
uted to DHEAS, including prevention and reduction of the neu-
rotoxic effects of NMDA, 2-amino-3-hydroxy-5-methyl-4-isox-
azolpropionic acid (AMPA), and kainic acid (37), and reduction
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of anxiety and improvement of memory in animals (5, 38). Thus,
itis possible that reduced DHEAS levels in AD (4) may negatively
impact several neuroprotective processes. Investigating both
DHEA and DHEAS as well as the ratio of DHEA to DHEAS, will
therefore be important in future studies focusing on the clinical
relevance of these neurosteroids to the pathophysiology of AD.

Finally, AD has also been associated with alterations in the
peripheral benzodiazepine receptor (PBR), which plays a major
role in regulating cholesterol transport into mitochondrial mem-
branes (39). Disruptions in cholesterol regulation could thus the-
oretically impact downstream neurosteroid formation. Notably,
PBR binding is significantly increased in temporal cortex (40,41)
and moderately increased in frontal cortex (40) of AD patients.
It therefore is possible that increases in PBR binding in AD may
result in changes in steroidogenesis and impact DHEA and
DHEAS levels. Additional efforts characterizing the relationship
between PBR activation and downstream neurosteroid produc-
tion in AD will be required to address this possibility.

Study limitations

One limitation of this study is relatively small sample size
(postmortem CSF was available for 25 AD and 16 cognitively
intact control subjects of 40 AD and 41 cognitively intact control
subjects in the original cohort), a challenge that is typical of
human postmortem tissue investigations. These findings will
thus require replication in a larger sample. In addition, it was not
possible to control for medication status at the time of death in
either patients with AD or cognitively intact control subjects.
Pharmacological agents such as the antidepressant fluoxetine
(42, 43) and the antipsychotics olanzapine and clozapine (8)
have been shown to increase PREG levels in rodent models. Flu-
oxetine may also enhance activity of a neurosteroidogenic en-
zyme (44), although this finding has not been replicated (45).
Larger investigations controlling for medication use will there-
fore be necessary to confirm the findings of the current study.
Finally, information regarding smoking is not available for this
cohort, a variable that may influence neurosteroid levels (46,47).

Summary

In summary, our findings demonstrate that CSF DHEA and
PREG levels are positively correlated with temporal cortex levels
of these respective neurosteroids within the same patient cohort.
CSF DHEA levels are positively correlated with neuropatholog-
ical disease stage (Braak and Braak) and are elevated in AD,
compared with cognitively intact control subjects. Because CSF
neurosteroid levels appear to be reflective of temporal cortex
levels, CSF DHEA and PREG may potentially serve as proxy or
surrogate markers for brain neurosteroid levels and have utility
in the diagnosis of AD and the prediction of clinical course.
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