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Cerebrospinal fluid-derived circulating tumour
DNA better represents the genomic alterations
of brain tumours than plasma
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Cell-free circulating tumour DNA (ctDNA) in plasma has been shown to be informative of the

genomic alterations present in tumours and has been used to monitor tumour progression

and response to treatments. However, patients with brain tumours do not present with or

present with low amounts of ctDNA in plasma precluding the genomic characterization of

brain cancer through plasma ctDNA. Here we show that ctDNA derived from central nervous

system tumours is more abundantly present in the cerebrospinal fluid (CSF) than in plasma.

Massively parallel sequencing of CSF ctDNA more comprehensively characterizes the

genomic alterations of brain tumours than plasma, allowing the identification of actionable

brain tumour somatic mutations. We show that CSF ctDNA levels longitudinally fluctuate in

time and follow the changes in brain tumour burden providing biomarkers to monitor brain

malignancies. Moreover, CSF ctDNA is shown to facilitate and complement the diagnosis of

leptomeningeal carcinomatosis.
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T
he genomic characterization of tumours is crucial for the
optimal diagnosis and treatment of cancer. Given the
reported spatial and temporal intratumour heterogeneity,

repeated biopsies are required for an adequate characterization of
the somatic genetic alterations found in human cancers1,2. This
approach has important limitations, particularly in the case of
brain malignancies3, due to the restricted and invasive access for
sampling tumour material and the challenges to recapitulate the
tumour clonal diversity through the analysis of a small fragment
of the tumour. Recent work has shown that cell-free circulating
tumour DNA (ctDNA) in the plasma could be used to
characterize and monitor tumours4–7. ctDNA analysis of
patients with brain tumours, however, has revealed either
absence or very low levels of tumour DNA in plasma7.

The cerebrospinal fluid (CSF) is in intimate contact with
tumour cells in central nervous system (CNS) cancers and,
recently, ctDNA has been shown to be present in the CSF of
patients with brain tumours8,9. The aim of our work was to
determine whether the analysis of CSF ctDNA could be useful for
the characterization and monitoring of brain tumours in
comparison with plasma ctDNA. We applied hybridization
capture-based massively parallel targeted sequencing and/or
exome sequencing coupled with droplet digital PCR (ddPCR) to
synchronous CSF and plasma-derived ctDNA, and tumour
tissue deposits from patients with glioblastoma (GBM),
medulloblastoma (Medullo), and brain metastases from lung
cancer (BMLC) and from breast cancer (BMBC, six of them
subjected to warm autopsies) including breast cancer patients
with clinical features suggestive of leptomeningeal carcinomatosis
(LC). In this study, we show that ctDNA derived from central
nervous system tumours is more abundantly present in the CSF
than in plasma. CSF ctDNA can be used to detect brain tumour
private mutations and to longitudinally monitor the changes in
brain tumour burden. In addition, we provided evidence that the
analysis of CSF ctDNA may complement the diagnosis of LC.

Results
CSF ctDNA is representative of brain tumours. To study and
compare the ctDNA present in the CSF with plasma ctDNA, we
sequenced DNA obtained from tumour samples, germline DNA
(peripheral blood lymphocytes), plasma and CSF of a cohort of 12
patients (4 GBM, 6 BMBCs, 2 BMLCs; Supplementary Table 1).
In all cases, except BMBCs, CSF was obtained at the same time
than plasma through lumbar puncture or cerebral shunts nor-
mally obtaining 1–2ml of CSF. Tumours and fluids from all six
cases of BMBCs were obtained through warm autopsy and the
CSF was collected from the cisterna magna. We performed tar-
geted capture massively parallel sequencing and, in all cases,
somatic single-nucleotide variants (SNVs), insertion/deletions
(indels) and copy-number alterations (CNA) were identified in
CSF ctDNA and plasma ctDNA, and validated in the brain
tumour tissue from the respective patients (Fig 1a,b,
Supplementary Figs 1 and 2, Supplementary Tables 2, 3,
Supplementary Data 1, 2, 3). The number of genomic alterations
identified through targeted capture sequencing varied from case
to case being more abundant in BMBCs and less abundant in
GBM cases due to the nature of the genes selected for targeted
sequencing. A low rate of mutation capture was observed in the
CSF ctDNA from GBM patients indicating that further work is
required in order to optimize the detection of ctDNA in GBM
cases. CSF ctDNA was identified in all cases while plasma ctDNA
was only detected in patients with abundant visceral disease. This
is in agreement with previous reports4. Our methodology exhibits
a detection limit of 2% mutant allelic frequency (MAF)10 and
patients with low tumour burden present evidence of plasma
ctDNA with MAFs below 2% (ref. 4).

In the case of samples from the autopsy material of patients
BMBC2, BMBC3, BMBC4 and BMBC6, we had enough number
of specimens to infer phylogenetic trees representing the genomic
subclonal diversity and be able to identify trunk ubiquitous
genetic mutations. Interestingly, trunk mutations were always
identified in the CSF ctDNA (Fig. 1b).

In addition, we sequenced the DNA concomitantly extracted
from the CSF and plasma in an expansion cohort of 11 patients
(2 Medullos, 5 BMLCs, 4 BMBCs) with CNS restricted disease
and barely any visceral tumour burden to facilitate the
comparison of the contribution of the brain tumour DNA into
the CSF or plasma ctDNA. In all cases, CSF ctDNA was detected
and harboured gene mutations that were either absent or detected
with lower MAFs in plasma ctDNA (Supplementary Fig. 1).

ctDNA from CSF performs better than plasma. We next sought
to determine whether CSF ctDNA would be more representative
of the brain lesions than plasma ctDNA. To this end we divided
the patients into two groups depending on the amount of
extracranial tumour burden (Supplementary Table 4).

Importantly, in patients with a CNS restricted disease (Fig. 1a,
Supplementary Fig. 1), the MAFs in all samples of CSF ctDNA
were significantly higher than in plasma (Supplementary Fig. 3)
and, moreover, the sensitivity for somatic mutations of the CNS
was also significantly higher in CSF ctDNA than plasma ctDNA
(Fig. 2, Supplementary Table 5). Some mutations were detected in
the CSF or plasma but not in the brain tumour specimen (Fig. 1).
These could be potential false positives or mutations not present
in the sequenced tumour fragment but present in another region
of the brain tumour. In patients with abundant visceral disease
(Fig. 1b), the MAFs of the gene mutations in the CSF and plasma
ctDNA were comparable (Supplementary Fig. 3).

CSF ctDNA recapitulates the private mutations from CNS lesions.
We have recently observed that, in the context of disseminated
disease, brain metastasis might exhibit private gene mutations
different from the ones present in the rest of the tumour lesions11.
We next investigated how CSF and plasma ctDNA might
recapitulate the private mutations from CNS lesions in
metastatic patients. To answer this question, we analysed the
warm autopsy materials of a patient with Li Fraumeni syndrome
and a diagnosis of both HER2-positive metastatic breast cancer
and esthesioneuroblastoma (BMBC3). Two sets of tumours were
present: the breast cancer-derived brain metastasis and,
independently, the meningeal implants and liver metastases
(Supplementary Fig. 4). The gene mutations of the brain
metastasis were not present in the extracranial tumours and,
moreover, we identified three private gene mutations (PIK3CB
M819L, PIK3CB Q818H, AHNAK2 L5292V) exclusively present
in the meningeal lesion. The gene mutations with the highest
MAFs of the brain metastasis and the private mutations in the
meningeal lesions were present in the CSF ctDNA and not in the
plasma ctDNA (Fig. 1b, see boxed mutations) indicating that
brain private mutations are more represented in the ctDNA from
CSF than plasma.

CSF ctDNA is longitudinally modulated throughout treatments.
To address whether the amount of ctDNA present in the CSF
could fluctuate with time and be representative of the brain
tumour progression, we obtained concomitantly CSF and plasma
from six patients (GBM and metastatic breast and lung cancer
patients with brain metastasis) at sequential time points
(Supplementary Table 1, Fig. 3). In all cases, there was a minimal
or absent extracranial disease. Brain lesions were identified
using magnetic resonance imaging and brain tumour burden
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was quantified using computer aided planimetric analysis
(Supplementary Table 6). The tumour somatic genomic altera-
tions, previously identified in the tumours by exome sequencing,
were determined in the CSF-derived DNA of the patients through
ddPCR (Fig. 3). As expected, the MAFs in all samples of CSF
ctDNA were higher than in plasma (Supplementary Table 7).

Importantly, MAFs of CSF ctDNA decreased with surgical
resection and/or responses to systemic therapy and increased
with tumour progression (Fig. 3). The MAFs were modulated
over time and followed the same trend as the variation in brain
tumour burden. These results indicated that CSF may be a useful
biomarker to monitor tumour progression and response to
treatment.

CSF ctDNA complements the diagnosis of LC. The identifica-
tion of CSF ctDNA led us to the hypothesis that cell-free DNA in
the CSF could be used as a diagnostic tool for LC. The diagnosis
of LC relies on the detection of malignant cells in the CSF of
patients with clinical symptoms. Diagnosis of LC is not trivial and
its misdiagnosis has important clinical implications. To define
whether the analysis of CSF ctDNA can be employed to enhance
the sensitivity of the detection of LC by cytopathologic analysis of
CSF, we performed standard of care cytopathologic analysis and
CSF ctDNA sequencing in the same samples obtained from three
breast cancer patients with clinical signs and symptoms sugges-
tive of LC.

Importantly, there were discrepancies between the cytology
and our CSF ctDNA analysis (Fig. 4). In BMBC2, although three
cytopathologic analyses yielded negative results, we detected
ctDNA with MAFs ranging from 20 to 50% in the two CSF
samples that were available (Fig. 4). Given that LC was confirmed
at the autopsy of BMBC2, our results indicated that the CSF
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ctDNA analysis detected disease at a level not detectable by
cytopathologic analysis. In BMBC1, one of the cytopathologic
analysis was discordant with the presence of CSF ctDNA, while in
BMBC4 the results of the cytopathologic analysis and the CSF
ctDNA were in agreement. In both cases, BMBC1 and BMBC4,
LC was confirmed at the autopsy. In summary, our results build a
proof-of-concept that opens the possibility to use CSF ctDNA to
complement the diagnosis of LC. Of note, in the case of patients
with brain metastasis and clinical signs suggestive of LC, the
analysis of CSF ctDNA can be misleading since it will be difficult
to discern whether the ctDNA in the CSF is originated from the
LC or the brain metastasis. Further studies will be needed to
consolidate this methodology for LC diagnosis.

Discussion
In this study, we identified and characterized ctDNA in the CSF
of patients with brain lesions and compared it with plasma
ctDNA. We showed that CSF ctDNA is more representative of

brain tumour genomic alterations than plasma and putative
actionable gene mutations and CNA (that is, EGFR, PTEN, ESR1,
IDH1, ERBB2, FGFR2) can be identified. We observed that CSF
ctDNA has a significantly higher sensitivity than plasma for CNS
genomic alterations and can be used to detect brain tumour
private mutations and to monitor brain tumour progression. In
addition, we provided evidence that the analysis of CSF ctDNA
may complement the diagnosis of LC.

One of the hallmarks of GBM is the fact that all tumours
relapse. Once diagnosed, the GBM tumour is surgically resected
and then the patient receives radio- and chemotherapy
treatments. Even when the surgical resection is complete, the
tumour invariably relapses. Importantly, the relapsed tumour
tends to evolve under treatment and present different genomic
alterations than the primary tumour12. Surgical procedures
(resection and biopsies) are seldom indicated in relapsed GBM
limiting its genomic characterization and precluding the
treatment of the relapsed GBM based on genomic information.
CSF ctDNA provides a minimally invasive method to assess the
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genomic alterations of the relapsed tumour helping to select the
optimal treatment dictated by the molecular characteristics of
the brain cancer.

On the other hand, patients with brain metastasis exhibit a
dismal prognosis and are usually recalcitrant to treatments. It is
known that, most likely due to the special environment of the
brain, the genomic alterations of brain metastasis differ from the
ones of the visceral malignancies and primary tumours11–15. The
identification of the brain metastasis-specific genomic alterations
through CSF ctDNA might facilitate the design of tailored
treatments to target brain metastasis hopefully increasing the
clinical response of these deadly lesions.

In a context where the oncology field expects that therapeutic
approaches will be dictated and guided by the genomic features of
tumours, the presence of CSF ctDNA will be fundamental to the
correct molecular diagnosis and treatment of brain tumours.
Altogether, our results indicate that CSF ctDNA can be exploited
as a ‘liquid biopsy’ of brain tumours opening a novel avenue of
research in CNS circulating biomarkers with an important impact
in the future characterization, diagnosis, prognosis and clinical
managing of brain cancer.

Methods
Patients. Breast cancer patients with brain metastasis were enrolled as part of the
Vall d’Hebron Institute of Oncology (VHIO) Warm Autopsy Program. Patients
with breast cancer and lung cancer with brain metastasis, and GBM and
medulloblastoma were enrolled as part of VHIO Prospective Translational
Program, which studies plasma and CSF-derived biomarkers. Patients with lung
cancer with brain metastasis were enrolled as part a collaborative effort with
Dexeus University Hospital (Barcelona, Spain) and the research was approved by

the local institutional review board (IRB)/ethics committee of both hospitals.
VHIO Warm Autopsy Program and the Prospective Translational Program were
approved by the IRB of Vall d’Hebron University Hospital (Barcelona, Spain).
Informed consent was obtained from all patients.

DNA extraction. The diagnosis of each metastatic lesion was confirmed on review
of routine hematoxylin and eosin-stained slides6. Ten 8-mm thick sections from
representative fresh frozen metastasis biopsies/resections were cut, stained with
nuclear fast red and microdissected with a needle under a stereomicroscope to
ensure 480% of tumour cell content, as previously described16. DNA from
microdissected tumour samples was extracted using DNeasy Blood and Tissue
Kit (Qiagen, USA), and germline DNA from peripheral blood lymphocytes
(‘buffy coat’) was extracted using the QIAamp DNA Mini Kit (Qiagen) according
to manufacturer’s instructions. CSF-derived and plasma-derived circulating
cell-free DNA was extracted with the QIAamp Circulating Nucleic Acid Kit
(Qiagen, Valencia, CA, USA), as previously described6. DNA was quantified
using the Qubit Fluorometer (Invitrogen).

Targeted capture massively parallel sequencing. DNA samples from CNS
tumours (primary brain tumours or CNS metastases) of 23 cases, non-CNS
metastases, CSF and plasma samples as well as germline DNA were subjected to
targeted capture massively parallel sequencing at the Memorial Sloan Kettering
Cancer Center Integrated Genomics Operation (iGO), using the Integrated
Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) platform17

targeting all exons of 341 cancer genes harbouring actionable mutations. For four
additional cases with breast cancer and brain metastases (BMBC1-4) were analysed
with a customized breast cancer panel, targeting all exons of 254 genes recurrently
mutated in breast cancer and/or related to DNA repair (Supplementary Data 1)
was also performed. For these four cases, of the 595 genes captured, 107 genes were
common to both targeted capture platforms (that is, 488 unique genes), and were
employed for validation. By applying the methods described above to each targeted
capture platform independently, the validation rate of somatic mutations (SNVs
and indels) affecting the exons of 107 genes present in both platforms was 496%
(Supplementary Table 3).

Targeted sequencing was performed as previously described6,17,18. In brief,
20–450ng of DNA was used to prepare barcoded sequence libraries (New England
Biolabs, Kapa Biosystems), which were pooled at equimolar concentrations for
hybridization exon capture (Nimblegen SeqCap).

Paired-end 100-bp reads were generated on the Illumina HiSeq2000 (San Diego,
CA), and reads were aligned to the reference human genome hg19 using the
Burrows-Wheeler Aligner19. Local realignment, duplicate removal and base quality
recalibration were performed using the Genome Analysis Toolkit20. Somatic SNVs
were called using MuTect21, and small insertions and deletions (indels) were called
using Strelka22, VarScan 2 (ref. 23) and SomaticIndelDetector17. All candidate
mutations were reviewed manually using the Integrative Genomics Viewer24.
Somatic mutations with allelic fractions of o1% and/or supported by o2 reads
were disregarded. The mean sequence coverage of each target exon was subjected
to a loess normalization to adjust for bias in nucleotide composition (GþC) and
compared with the diploid normal sample. Gene copy-number profiles were
generated using circular binary segmentation17.

Exome sequencing of tumour DNA and normal DNA. DNA (500ng) extracted
from brain tumour and germline samples from GBM1, GBM2 and GBM3, BMBC1,
BMLC1 and BMLC2 cases were subjected to exome sequencing. An average of
100 million 100-bp paired-end reads were generated for each sample, equivalent
to an average depth of 260� (range of 190–315� ). Exome sequencing was
performed using the Nextera Rapid Capture Exome kit (37Mb; Illumina) on an
Illumina HiSeq 2000 instrument using a validated protocol25 and according to
the manufacturer’s recommendations (Macrogen).

ddPCR and quantification of circulating tumour-specific DNA. ddPCR
of plasma and CSF were performed using the QX200 Droplet Digital PCR
system (Bio-Rad) according to manufacturer’s protocols and the literature26.
TaqMan-based quantitative PCR assays were designed to specifically detect point
mutations and corresponding wild-type alleles as selected by exome sequencing of
primary brain tumours or brain metastases. Primer sequences are provided in
Supplementary Table 8. Ten nanograms of genomic DNA extracted from tumour
tissue and germline DNA from peripheral blood lymphocytes was used for digital
PCR analysis. In some cases, lower amounts of DNA (for example, 1–5 ng) were
used, due to CSF and plasma DNA yield limitations.

The phylogenetic tree generation. Phylogenetic trees were constructed using the
maximum parsimony method. The trunks of the trees were rooted by a germline
DNA sequence that did not have any of the somatic mutations. Trunk, branch and
sub-branches lengths are proportional to the number of mutations.

BMBC1

BMBC2

BMBC4

M
A

F
 (

%
)

M
A

F
 (

%
)

M
A

F
 (

%
)

0

20

40

60

80
POLE (E318K)

ARID5B (E572K)

PCDH1 (S190C)

– + +Cytopathology 

0

20

40

60

80
– – –

PTEN (Y240X)

MRPS33 (P94T)

ESR1 (Y537N)

Cytopathology

NA

Cytopathology

1

AKT3 (Q425H) 

CDC73 (A418V)

HERC2 (R2235C)

+

0

20

40

60

80

1 2 3

1 2 3
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Statistical analysis. A Mann–Whitney test was performed for statistical analysis.
Data in graphs are presented as means±s.d.
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