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Cerebrospinal fluid metabolomics identifies 19
brain-related phenotype associations
Daniel J. Panyard1, Kyeong Mo Kim2, Burcu F. Darst 3, Yuetiva K. Deming 1,4,5, Xiaoyuan Zhong6,

Yuchang Wu6, Hyunseung Kang7, Cynthia M. Carlsson4,5,8, Sterling C. Johnson4,5,8, Sanjay Asthana4,5,8,

Corinne D. Engelman1,9 & Qiongshi Lu 6,7,9✉

The study of metabolomics and disease has enabled the discovery of new risk factors,

diagnostic markers, and drug targets. For neurological and psychiatric phenotypes, the cer-

ebrospinal fluid (CSF) is of particular importance. However, the CSF metabolome is difficult

to study on a large scale due to the relative complexity of the procedure needed to collect the

fluid. Here, we present a metabolome-wide association study (MWAS), which uses genetic

and metabolomic data to impute metabolites into large samples with genome-wide asso-

ciation summary statistics. We conduct a metabolome-wide, genome-wide association

analysis with 338 CSF metabolites, identifying 16 genotype-metabolite associations (meta-

bolite quantitative trait loci, or mQTLs). We then build prediction models for all available CSF

metabolites and test for associations with 27 neurological and psychiatric phenotypes,

identifying 19 significant CSF metabolite-phenotype associations. Our results demonstrate

the feasibility of MWAS to study omic data in scarce sample types.
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I
n recent years, the study of metabolomics has yielded novel
insights into a variety of complex diseases, including diabetes1,
obesity2, cancer3, and Alzheimer’s disease (AD)4. The identi-

fication of disease-associated metabolites can shed light on
mechanisms contributing to disease and reveal biomarkers that
can be used for diagnosis and prognosis.

To date, most metabolomics studies in humans have focused
on more accessible sample types, such as blood or urine. How-
ever, for psychiatric and nervous system disorders, the cere-
brospinal fluid (CSF) is of particular relevance5,6. CSF is in direct
contact with the brain and spinal cord and is separated from the
blood by the blood–brain barrier; as such, CSF may more directly
reflect physiological changes occurring in the central nervous
system (CNS) than other sample types. In AD, for example, CSF
is the source of some of the most powerful biomarkers for disease
onset and progression, including amyloid-beta (Aβ) and phos-
phorylated tau7.

The difficulty in studying the CSF metabolome is that
acquiring CSF samples is more challenging than blood or urine
samples, requiring a lumbar puncture (LP), thus making CSF
samples a rare and valuable resource, particularly those from
healthy participants. This small sample size, however, makes the
detection of changes in the CSF metabolome during disease
progression a logistical and statistical challenge. Transcriptome-
wide association studies (TWAS) have been a successful approach
to dealing with such issues for gene expression8. Using a reference
panel of genotype and gene expression measurements to model
the regulatory machinery of the genetically regulated component
of gene expression, TWAS allows for the estimation of potentially
causal gene–disease associations in datasets where only genetic
information is present, circumventing the need to collect gene
expression data with every disease-focused dataset9. TWAS and
related methods have been successfully used with a diversity of
phenotypes, including autoimmune diseases9, schizophrenia10,
and AD11. Building on the success of TWAS, we introduce here a
metabolome-wide association study (MWAS) that combines the
richness of a scarce resource study (e.g., a CSF metabolome study)
with the accessibility and scale of large, publicly available
genome-wide association study (GWAS) summary statistics.

The general outline of our MWAS approach is as follows: (1)
identify single-nucleotide polymorphism (SNP)-metabolite asso-
ciations; (2) build metabolite prediction models using genotypes;

(3) test metabolite–phenotype associations with publicly available
GWAS summary statistics. Step 1 is used to demonstrate that
SNP-metabolite associations do indeed exist and thus justify the
building of metabolite prediction models in step 2 on a cohort
where both genotype and metabolite data are present. Step 3 uses
the prediction models in conjunction with publicly available
GWAS summary statistics on neurological and psychiatric phe-
notypes to test metabolite–phenotype associations. The advantage
of MWAS is that it allows for this metabolite–phenotype asso-
ciation testing to occur in GWAS datasets where only genotypes
and phenotypes (not metabolites) were originally measured.

Using MWAS, we expanded upon the limited research on
the genetics of the CSF metabolome12 by conducting a CSF
metabolome-wide GWAS and then used the results to build
CSF metabolite prediction models from genetic information to
study the association of CSF metabolites with a variety of
brain-related phenotypes using GWAS summary statistics.
The CSF metabolome-wide GWAS identified 16 significant
genotype–metabolite associations and was then used in
MWAS to identify 19 significant CSF metabolite–brain phe-
notype associations, demonstrating the feasibility of MWAS
for the analysis of omics data in scarce sample types.

Results
Cohort description and quality control. The primary data for
this study came from two different longitudinal cohort studies of
AD with available CSF metabolomics and genotype data: the
Wisconsin Alzheimer’s Disease Research Center (WADRC) and
Wisconsin Registry for Alzheimer’s Prevention (WRAP)
studies13,14. To improve the generalizability of this analysis, only
data from cognitively healthy participants were used. The two
study cohorts after data cleaning were similar demographically.
The mean age at CSF draw was in the early to mid-60s for both
cohorts (64.7 in WADRC, 62.0 in WRAP) while the sex dis-
tribution was about two-thirds female for both cohorts (63.2% in
WADRC, 66.2% in WRAP) (Supplementary Data 1 and Table 1).
Imputation and stringent quality control were performed on both
the CSF metabolite and genotype data, resulting in a final dataset
of 291 baseline visits of unrelated European-ancestry individuals
with 338 CSF metabolites (Supplementary Data 1, Supplementary
Tables 1–2).

Table 1 Significant CSF metabolite–phenotype associations from BADGERS.

Metabolite Phenotype Z score P Q value

Ethylmalonate Schizophrenia 4.14 3.46E-05 1.22E-03

Ethylmalonate Smoking initiation 4.22 2.49E-05 2.64E-03

Cysteinylglycine Alcoholism (drinks per week) 3.24 1.20E-03 4.22E-02

2-hydroxy-3-methylvalerate Schizophrenia −3.16 1.58E-03 2.09E-02

N-delta-acetylornithine Alcoholism (drinks per week) −4.49 7.05E-06 7.47E-04

N-delta-acetylornithine Cognitive performance 4.83 1.34E-06 1.42E-04

N-delta-acetylornithine Schizophrenia −5.26 1.42E-07 1.50E-05

Glutaroylcarnitine (C5) Cognitive performance −3.72 2.01E-04 1.06E-02

Cysteinylglycine disulfide Sleep duration −3.94 8.10E-05 8.59E-03

N6-methyllysine Schizophrenia −3.76 1.73E-04 4.58E-03

Alpha-tocopherol Schizophrenia 4.34 1.39E-05 7.39E-04

Malate ADHD 3.51 4.49E-04 2.38E-02

Malate Schizophrenia −3.21 1.31E-03 2.09E-02

Glycerol Alcoholism (drinks per week) −3.29 9.99E-04 4.22E-02

Orotate ADHD 3.61 3.05E-04 2.38E-02

Guanosine Schizophrenia 3.47 5.24E-04 1.11E-02

X-24295 PTSD −3.70 2.12E-04 2.25E-02

X-24699 Schizophrenia −3.18 1.47E-03 2.09E-02

Benzoate Cognitive performance 3.23 1.22E-03 4.30E-02

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-01583-z

2 COMMUNICATIONS BIOLOGY |            (2021) 4:63 | https://doi.org/10.1038/s42003-020-01583-z | www.nature.com/commsbio

www.nature.com/commsbio


GWAS of CSF metabolites. As a first step in performing MWAS, a
GWAS of CSF metabolite levels was needed (Supplementary Fig. 1).
SNP-metabolite associations were estimated using GWAS con-
ducted on both WADRC (discovery) and WRAP (replication). Both
GWAS results were then meta-analyzed with METAL15 to max-
imize statistical power. A total of 606 significant SNP-metabolite
associations (sometimes referred to as metabolite quantitative trait
loci, or mQTLs) from ten independent loci were identified in the
discovery phase GWAS (P < 1.48 × 10−10, using the genome-wide
significance threshold corrected for 338 tested metabolites), of which
488 SNPs (80.5%) and 8 loci (80%) were replicated (P < 8.25 × 10−5,
adjusting for the 606 SNPs tested in replication). The GWAS meta-
analysis identified a total of 1183 significant SNPs across 16 meta-
bolites (P < 1.48 × 10−10), with one distinct genetic locus of asso-
ciation per metabolite (Fig. 1a; Supplementary Figs. 2–17;
Supplementary Data 1, Supplementary Tables 3–4). The genomic
control inflation factor across all metabolite GWAS was 1.01, indi-
cating little evidence of inflation (Fig. 1b and Supplementary
Fig. 18). The SNP effect sizes and directions were consistent across
the cohorts for the top SNP at each significant locus (Fig. 1c).

Of these 16 SNP-metabolite associations, 10 (guanosine,
ethylmalonate, 3-ureidopropionate, N-acetylhistidine, tryptophan
betaine, N-acetyl-beta-alanine, N-delta-acetylornithine, bilirubin,

2′-O-methylcytidine, and methionine sulfone) have been previously
identified in GWAS of blood, urine, or saliva samples16–21. Non-
CSF regional association plots manually generated from publicly
available summary statistics from Shin et al.17 and Long et al.18 were
similar to corresponding CSF regional association plots, although
the lead SNPs varied (Supplementary Figs. 19–25). The remaining
six associations were novel, either due to the metabolite not having
been reported in a GWAS previously (N-acetylglutamate, 2-
hydroxyadipate, 1-ribosyl-imidazoleacetate, and N6-methyllysine)
or having been analyzed previously but without identifying the same
locus found here in CSF (oxalate and betaine). The top SNP, nearest
gene, and brain tissue expression quantitative trait locus (eQTL)
effects from each of these genotype–metabolite associations are
summarized in Supplementary Data 1, Supplementary Table 3
(meta-analysis results, eQTL information across tissue types, and
GWAS Catalog associations for all 1183 significant SNPs are in
Supplementary Data 1, Supplementary Tables 4–6). In 9 out of the
16 loci, the eQTL effects of the top SNPs included the gene
physically closest to the SNP itself.

Metabolite prediction models. Genome-wide prediction models
were built for each CSF metabolite with independent SNPs as

Fig. 1 Genome-wide association study (GWAS) meta-analysis of the CSF metabolome. a Manhattan plot of the meta-analysis across all 338 metabolites

tested, with the significant SNPs colored by the metabolic pathway of the associated metabolite (n= 291 meta-analyzed CSF samples). Age at CSF sample,

sex, genotyping batch (WADRC only), and the first five principal components were controlled for in each individual GWAS. The top SNP of each locus is

labeled with the nearest gene. The horizontal lines represent the genome-wide (5 × 10−8, black) and Bonferroni-corrected significance thresholds (1.48 ×

10−10, red). Data points with P < 1 × 10−50 for N6-methyllysine are not shown. b Q–Q plot based on the meta-analysis across all metabolites. c Forest plot

of the top SNPs from each significant locus across the discovery, replication, and meta-analysis ordered by chromosome and BP position. The blue point

represents the discovery GWAS, green the replication GWAS, and beige the meta-analysis. The effect size refers to the GWAS beta-effect estimate.
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predictors (based on SNP clumping), using both models with
fewer SNPs (e.g., LASSO and elastic net) and many SNPs (e.g.,
ridge regression and polygenic score) to allow for a diversity of
possible genetic architectures, similar to gene expression predic-
tion models used in TWAS9. The average predictive correlation
from fourfold cross-validation was used to identify the best-
performing model for each metabolite. The metabolite prediction
models trained on the combined WADRC/WRAP dataset showed
varying abilities to predict each metabolite (Fig. 2; Supplementary
Figs. 26–27; Supplementary Data 1, Supplementary Tables 7–8).
Among the top ten best-predicted metabolites from genetics,
seven had a significant locus of association from the GWAS meta-
analysis, and the top six were sparse models resulting from the
elastic net.

Among the best-performing models for each metabolite, the R2

between the predicted and actual metabolite levels ranged from
0.00083 to 0.29 (mean= 0.024, SD= 0.025), with 282 (83.4%) of
the metabolites having a positive correlation and an R2 > 0.01.
Generally, models tended to contain 100 SNPs or more. The
elastic net model was chosen as the best model type for 44.3% of
the metabolites, followed by polygenic score models (28.4%),
ridge regression (22.8%), and LASSO (4.5%).

Metabolite–phenotype association testing. The metabolite
prediction models were then used to impute and test the
associations of the CSF metabolites with 27 brain-related phe-
notypes from available GWAS summary statistics using the
BADGERS approach22. Briefly, BADGERS functions as a
summary-statistic-based TWAS-like approach that tests the
association between an intermediate variable and a downstream
phenotype by combining (1) a set of SNP weights for each
SNP’s effect on the intermediate variable with (2) GWAS
summary statistics for the downstream phenotype. There were
106 models with a positive correlation and a more conservative
predictive R2 > 0.025. These metabolites were considered to be
sufficiently well-predicted by SNPs to be included in the
MWAS and were subsequently tested for association with
each of 27 neurological and psychiatric phenotypes (Supple-
mentary Data 1, Supplementary Table 9)23–44. We report 19
metabolite–phenotype associations that were identified at a
false discovery rate (FDR) cutoff of 0.05 (Table 1; Supple-
mentary Data 1, Supplementary Table 10; Supplementary
Fig. 28). The phenotypes (and significantly associated meta-
bolites) were schizophrenia34 (N-delta-acetylornithine, alpha-
tocopherol, ethylmalonate, N6-methyllysine, guanosine, malate,
unknown metabolite X-24699, 2-hydroxy-3-methylvalerate),

cognitive performance37 (N-delta-acetylornithine, glutar-
oylcarnitine [C5], benzoate), alcoholic drinks per week40

(N-delta-acetylornithine, glycerol, cysteinylglycine), smoking
behavior40 (ethylmalonate), sleep duration36 (cysteinylglycine
disulfide), post-traumatic stress disorder (PTSD)33 (unknown
metabolite X-24295), and attention deficit hyperactivity dis-
order (ADHD)26 (orotate and malate).

To demonstrate whether the MWAS associations could be
seen using an alternative methodology (MR), a two-sample
MR analysis was performed for the 19 significant
metabolite–phenotype associations. Four effects were signifi-
cant after multiple testing correction, and all four of these
effects were in the same direction as predicted by BADGERS
but of smaller magnitude: N-delta-acetylornithine, ethylma-
lonate, and N6-methyllysine with schizophrenia and N-delta-
acetylornithine with cognitive performance (Supplementary
Data 1, Supplementary Tables 11–12; Supplementary Fig. 29).
These significant effects were all for models with only one or
two SNPs used as instruments.

Discussion
The results of this study demonstrate the feasibility of MWAS to
elucidate novel metabolite–phenotype associations using metabo-
lite prediction models built from scarce sample types and
GWAS summary statistics. The first major component of MWAS
was to identify SNP-metabolite associations. We identified 16
genotype–metabolite associations. As no previous metabolome-
wide GWAS in the CSF had been reported to our knowledge, we
assessed the validity and novelty of the results by comparing
identified loci with previous GWAS of metabolites in blood, urine,
and saliva16–20,45–49. Many of the loci discovered in this analysis of
CSF metabolites replicate loci that have been previously discovered,
indicating that some of the regulatory machinery of the metabo-
lome is shared across biological compartments.

The six novel SNP-metabolite associations we identified
appear to be biologically feasible based on previous research
and are likely to be of general biomedical interest. The GWAS
Catalog50 reports 76 different phenotypes to be associated with
these 6 loci (Supplementary Data 1, Supplementary Table 6).
The chromosome 3 locus (rs17279437) associated with CSF
betaine levels is closest to SLC6A20, a gene that has been
implicated in betaine transport51 and previously associated
with N,N-dimethylglycine45,52, which is related to betaine53.
The SNPs associated with oxalate (ethanedioate) did not have
any documented associations in the GWAS Catalog nor sig-
nificant eQTLs in the Genotype-Tissue Expression project
(GTEx)54. However, oxalate is a metabolite of the chemother-
apeutic drug oxaliplatin55, and the locus identified here is
upstream of EPHA6, a gene that has been implicated in neu-
ropathy from another chemotherapeutic drug, paclitaxel56. The
locus associated with 1-ribosyl-imidazoleacetate included brain
eQTLs for several genes, including NAPRT, which encodes an
enzyme (nicotinate phosphoribosyltransferase) involved in
transferring ribosyl groups57. The locus for N6-methyllysine
includes brain eQTLs for the PYROXD2 gene, which has been
associated with other metabolites (trimethylamine and dime-
thylamine) in previous studies52,58,59. The locus associated with
N-acetylglutamate included a brain eQTL for the SLC13A3
gene that encodes sodium-dependent dicarboxylate cotran-
sporter 3, which has been implicated as a transporter for
N-acetylglutamate and for N-carbamoylglutamate, a drug used
to treat N-acetylglutamate synthase deficiency60. The biology
behind the locus for 2-hydroxyadipate was less immediately
clear, but the locus includes eQTLs for the lincRNA gene
RP4-625H18.2.

Fig. 2 Metabolite prediction model performance. The prediction

performance of the best model for each metabolite is shown arranged in

order of decreasing R2. Metabolites with a significant locus from the

genome-wide association study (GWAS) meta-analysis are denoted with

an asterisk.
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These GWAS results underscore the importance of studying
scarce sample types like the CSF as they included a number of
previously unreported genotype–metabolite associations. Two
such metabolites (oxalate and betaine) have been previously
studied in blood and urine samples, but different genetic loci were
identified16–18,21,45,48,52. For oxalate, the strongest SNP associa-
tion from blood was at P= 1.54 × 10−8 (rs368292858, chromo-
some 12, base pair (BP) 109,713,327)18, while the strongest SNP
association in CSF was stronger at P= 5.64 × 10−11 (rs35170539,
chromosome 3, BP 96,314,015), despite having a smaller sample
size. For betaine, the strongest SNP association was reported in
blood at P= 1.49 × 10−19 (rs16876394, chromosome 5, BP
78,346,769)17, while in the CSF the top association was at P=
4.73 × 10−15 (rs17279437, chromosome 3, BP 45,814,094). These
CSF findings potentially represent genetic loci of control that are
unique to the CSF, as they have not been identified in non-CSF
studies. This partial overlap between CSF and blood QTLs for
metabolites echoes that seen with studies of CSF protein levels,
where only a subset (33.9%) of blood cis-protein QTLs (cis-
pQTLs) were also significant CSF cis-pQTLs61,62.

The metabolite prediction models achieved comparable per-
formance to TWAS and imaging-wide association study (IWAS)
applications. Average predictive R2 values from TWAS have
tended to range from 0.1 (in-sample)9,63 to 0.02–0.05 (out-of-
sample)9. The average in-sample R2 from our MWAS was lower
(0.024), perhaps as a result of metabolites being less directly
controlled by the genome than gene expression and the challenge
of using the entire genome for prediction rather than just cis-
SNPs. Nonetheless, 83.4% of the metabolites here could still be
predicted at or above the R2 threshold of 0.01 used by previous
studies to filter out poorly predicted gene expression values or
endophenotypes9,64, supporting the feasibility of MWAS to per-
form comparably to TWAS and IWAS in studying disease
associations.

One benefit of this study is the insight gained into the genetic
architecture of scarce sample types. The CSF metabolites studied
here showed a wide range of genetic architectures as seen through
the model types best able to predict them. While some metabo-
lites with significant loci from the GWAS favored sparse models,
other metabolites tended to be best predicted by a polygenic
model. The performance of these predictive models also hints at
the relative importance of genetics for each metabolite, which is
especially helpful for datasets that are too small for effective
heritability estimation, as was the case here.

The MWAS analysis identified a number of plausible CSF
metabolite–phenotype associations. Three of the metabolites
predicted to be associated with schizophrenia—alpha-tocopherol,
N-delta-acetylornithine, and N6-methyllysine—have been impli-
cated by previous research. Alpha-tocopherol, also known as
vitamin E, is an antioxidant whose level has been noted to change
in the blood during acute and chronic phases of schizophrenia65.
Levels of N-acetylornithine, an amino acid, has been shown to
differ between case and control brains in mice treated with
haloperidol, an antipsychotic medication used to treat schizo-
phrenia66. In humans, a recent pilot study of N-acetyl compounds
found N-acetylornithine levels to be slightly but statistically
insignificantly decreased in humans67, while an MR-based study
of blood metabolites identified a statistically significant decrease
of N-acetylornithine levels in schizophrenia68. Finally, L-lysine, a
related compound to N6-methyllysine, has been investigated as a
potential treatment for schizophrenia69. Replicating metabolite
associations with schizophrenia from previous research was dif-
ficult due to the lack of overlap in the metabolites, whether
because the metabolite was not measured or was not well enough
predicted by a genetic model to be analyzed. For instance, a study
of altered metabolites in postmortem brain samples found

increased hippocampal levels of glycylglycine, lactic acid, and
pyridoxamine70, but of those metabolites, only lactate was present
in our dataset, and its genetic prediction model did not perform
well enough for the BADGERS analysis. Other studies have
reported decreased phosphatidylcholine and phosphatidyletha-
nolamine levels in schizophrenia71–73, but only a few such
compounds were analyzed here, and none were predicted to be
significantly associated with schizophrenia, which could reflect a
lack of power related to the genetic predictors for these meta-
bolites. As metabolomics technology improves and a broader
array of metabolites are studied, these challenges in comparing
results will lessen.

Beyond schizophrenia, other putative metabolite–phenotype
associations from this analysis appeared to be feasible as well:
cysteinylglycine disulfide (associated with sleep duration) is a
disulfide, and disulfides have been explored as a marker of stress
in obstructive sleep apnea74, and glutaroylcarnitine (associated
with cognitive performance) levels are known to be altered in
glutaric acidemia type 1, which can manifest in neurological
problems like dystonia75. N-delta-acetylornithine (associated with
schizophrenia) was also associated with cognition and alcoholism.
Though this particular metabolite does not appear to have been
reported previously in association with cognitive performance
and alcoholism, these two phenotypes have long been associated
with schizophrenia76,77.

An additional analysis made possible by the
metabolite–phenotype association testing is elucidating the
biology of unidentifiable metabolites. The metabolite X-24295
was significantly associated with PTSD, but little information
was available on it. However, by examining the nominally
significant genetic locus associated with the metabolite on
chromosome 10 (BP 60,794,328-61,050,339), nearby genes and
phenotypes associated with those genes were identified (genes
included PHYHIPL, TRAF6P1, LINC00844, and FAM13C;
phenotypes included DNA methylation, sleep duration, and
QT-interval duration in Trypanosoma cruzi seropositivity).
Together, these findings support and potentially shed light on
the biological mechanism for metabolite X-24295’s association
with PTSD, as PTSD has been shown to be related to traumatic
brain injury78 (which has been associated with PHYHIPL in
mice79), altered DNA methylation80, and sleep disturbances81.
These genetic annotations may also aid in the identification of
the metabolite itself, as has been demonstrated by other
metabolome-wide GWAS analyses18.

The identification of promising drug targets is a major goal of
metabolomics, and studies in insulin pathways82,83, obesity84,
type 2 diabetes85, and atherosclerosis86 have shown the feasibility
of identifying metabolites that affect disease in follow-up
experimentation. In a recent review, a drug development pipe-
line was proposed for metabolomics-identified targets, beginning
with two rounds of case-control studies with 50 or more parti-
cipants87. Multiple studies on such a large scale may be logisti-
cally difficult to arrange for many diseases, which is where
MWAS can play a key role. MWAS offers a potential alternative
for the initial discovery of targets that helps avoid the need for
direct metabolite analysis, instead imputing metabolites using
more readily available genetic information.

One limitation of this study was the small sample size available
for running the GWAS and training the metabolite prediction
models. Having only a few hundred samples likely precluded the
identification of some genetic loci associated with CSF metabo-
lites; as such, the resulting predictive models could potentially be
improved with larger sample size. However, even at the current
sample size, the majority of metabolites could be predicted from
genetics at the threshold of typical TWAS applications, and those
studies have been successful in identifying gene-phenotype
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associations as noted earlier. One possible explanation for the
success of this GWAS in spite of the smaller sample size is that
molecular traits like metabolites are more biologically proximal to
the DNA and thus may be more likely to be strongly affected by
genetic variants compared to complex disease. Another limitation
is the training sample used for building the prediction models.
Only individuals of European ancestry were studied, which may
limit the generalizability of these findings to individuals of non-
European ancestry, and the population was older, which may
limit the ability to predict metabolite associations with pheno-
types like schizophrenia that may develop in younger popula-
tions. Future applications of MWAS in diverse populations will
be needed to ensure that disease associations can be identified for
a broader range of populations.

Finally, the metabolite–phenotype associations identified here
may not necessarily be causal. Using MWAS, an approach based
on TWAS, we can identify metabolite–phenotype associations,
but the identification of causal metabolite–phenotype effects
requires additional assumptions to be met. The results from the
MR analyses, used here to assess whether the associations from a
TWAS-based approach could be replicated with an MR-based
methodology, did provide significant, consistent support for some
of the metabolite–phenotype associations, but we do not neces-
sarily claim causality from these secondary analyses. The
assumptions of MR would need to be met before such causal
claims could be made, and there was evidence here that among
the more polygenic models, there could be pleiotropy present that
could violate those assumptions. For instance, the predictive
model used here for guanosine included 92 SNPs. When MR-
Egger regression88 was used to estimate guanosine’s effect on
schizophrenia, a significant pleiotropic effect was identified (MR-
Egger intercept P= 0.0029) that likely explains the difference in
effect seen between the inverse-variance-weighted and MR-Egger
results (Supplementary Data 1, Supplementary Table 11). How-
ever, as a positive example, there is support for the MR
assumptions for some of the simpler metabolite models. The
strongest MWAS and MR results were both for the effect of N-
delta-acetylornithine on schizophrenia. The two instruments used
for N-delta-acetylornithine (rs10201159, rs4934469) in the MR
analysis were located near the NAT8 and SLC16A12 genes. NAT8
encodes N-acetyltransferase 8, which has been associated with N-
acetylornithine89, and SLC16A12 encodes the transporter protein
solute carrier family, 16 members, 12 that is documented to
transport acetate, which can be converted into acetylornithine90.
Thus, it is plausible that the SNPs used in this model are tagging
genetic loci with a causal impact on N-delta-acetylornithine
levels, satisfying the MR assumption for instrument validity.
Furthermore, regarding the assumption of no direct effect of the
instruments on the outcome, neither of these instruments seem to
be associated with schizophrenia directly in the studies used
here34,91 nor in the GWAS Catalog. As more becomes known
about the functional roles of these metabolites and their related
genetic loci and as datasets grow larger, the ability to assess and
justify the assumptions necessary for causal inference applications
will improve. Nevertheless, MWAS provides a powerful tool for
the initial discovery of metabolite–phenotype associations that
can then be followed up experimentally.

In conclusion, we conducted a metabolome-wide GWAS of the
CSF metabolome, identifying 16 genome-wide significant asso-
ciations. Some of these loci appear to be unique to the CSF based
on what is currently known about the blood, urine, and saliva
metabolomes. Using these genetic associations, we built genome-
wide prediction models for the metabolites, achieving predictions
that are comparable to those currently used by TWAS applica-
tions. We leveraged these genetic associations to conduct a
summary-statistic-based MWAS on a diversity of neurological

and psychiatric phenotypes, identifying 19 significant associa-
tions, some supported by previous literature, and others novel.
These findings collectively provide insight into the genetic
architecture of the CSF metabolome and the roles of CSF meta-
bolites in disease, demonstrating the potential of this framework
to make inroads into the omics of scarce sample types.

Methods
Study participants. This study was a secondary analysis of existing metabolomics
data from CSF samples analyzed in the WADRC and WRAP cohort studies. The
WADRC, previously described92, is a longitudinal cohort study of memory, aging,
and AD in middle and older-aged adults who were recruited into one of six
subgroups: (1) mild late-onset AD; (2) mild cognitive impairment (MCI); (3) age-
matched healthy older controls (age > 65); (4) middle-aged adults with a positive
parental history of AD; (5) middle-aged adults with a negative parental history of
AD; and (6) middle-aged adults with indeterminate parental history of AD. The
National Institute of Neurological and Communicative Disorders and Stroke and
Alzheimer’s Disease and Related Disorders Association (NINCDS-ADRDA)93 and
National Institute on Aging and Alzheimer’s Association (NIA-AA)94 criteria were
used for clinical diagnoses. Briefly, the inclusion criteria for WADRC participants
included an age ≥45, decisional capacity, and the ability to fast from food and drink
for 12 h. Briefly, exclusion criteria included the history of certain medical condi-
tions (e.g., kidney dysfunction, congestive heart failure, major neurologic disorders
other than dementia, and others), lack of a study partner, and contraindication to
biomarker procedures.

The WRAP study, also previously described13, is a longitudinal cohort study of
AD in middle- and older-aged adults who were cognitively healthy at baseline,
enriched for persons with a parental history of AD. Briefly, inclusion criteria
include being between the ages of 40 and 65, fluent in English, able to complete
neuropsychological testing, and free of health conditions that might preclude study
participation. Briefly, exclusion criteria included having a diagnosis or evidence of
dementia at baseline.

This study was performed as part of the Generations of WRAP (GROW) study,
which was approved by the University of Wisconsin Health Sciences Institutional
Review Board. Participants in the WADRC and WRAP studies provided written
informed consent.

CSF samples. A subset of participants in both the WADRC and WRAP studies
had LPs conducted to collect CSF. Similar collection protocols and staff were used
in both studies to collect and store the CSF samples, which have been previously
described13,95. Briefly, fasting CSF samples were drawn from study participants in
the morning through LP and then mixed, centrifuged, aliquoted, and stored at
−80 °C.

Samples were kept frozen until they were shipped overnight to Metabolon, Inc.
(Durham, NC), which similarly kept samples frozen at −80 °C until analysis.
Metabolon used Ultrahigh Performance Liquid Chromatography-Tandem Mass
Spectrometry (UPLC-MS/MS) to conduct an untargeted metabolomics analysis of
the CSF samples, processing both WADRC and WRAP simultaneously on the
same platform. A total of 412 metabolites were quantified, of which 354 were
identified and 58 were of unknown structural identity. The relative peak intensity
was quantified for each metabolite in each sample using the area under the curve.
Metabolite values were divided by the median of all values for that metabolite.
Quantified metabolites were annotated with metabolite identifiers, chemical
properties, and pathway information.

A total of 689 participants (532 from WADRC and 168 from WRAP) with
distinct CSF samples analyzed for metabolites were initially included before
metabolite quality control.

Initial metabolite processing. Initial metabolite quality control was performed on
the 689 CSF samples, including assessment of missingness and variation, impu-
tation, and transformation. First, the missingness of each metabolite across samples
was calculated. A metabolite value may be missing for several reasons: the meta-
bolite was not present in the sample; the metabolite was present at a level below the
detection limit for that metabolite; or the metabolite was present, but there was a
sample or technical issue that precluded its detection by MS. Non-xenobiotic
metabolites, which were expected to be present in most samples, were removed if
they were missing for ≥30% of samples. Xenobiotic metabolites, which may rea-
sonably be completely absent in samples, were removed if they were missing for
≥80% of samples. CSF samples were removed from analysis if any sample was
missing measurements for ≥40% of all metabolites in the dataset. Metabolites with
an interquartile range of 0 were removed because of the limited variation available
for statistical analysis. At the end of these initial processing steps, 378 metabolites
across 672 samples remained.

Imputation was then performed for each cohort’s samples separately. Non-
xenobiotics were imputed to half the minimum value within each cohort, making
the assumption that missingness was due to the metabolite being present at a level
below the detection limit, while xenobiotics were not imputed since they could
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feasibly be absent from the CSF. Due to consistent right-skew in the data, each
metabolite was log10 transformed.

Initial genotype processing. In the WADRC cohort, samples were sent to the
National Alzheimer’s Coordinating Center (NACC) and genotyped by the Alz-
heimer’s Disease Genetics Consortium (ADGC) using the Illumina Huma-
nOmniExpress-12v1_A, Infinium HumanOmniExpressExome-8 v1-2a, or
Infinium Global Screening Array v1-0 (GSAMD-24v1-0_20011747_A1) BeadChip.
All genetic data underwent stringent quality control prior to imputation and
analysis: variants or samples with >2% missingness, variants out of
Hardy–Weinberg equilibrium (HWE) (P < 1 × 10−6), or samples with inconsistent
genetic and self-reported sex data were removed. After pre-imputation processing
with the Haplotype Reference Consortium (HRC) Checking tool96, the genotypes
were uploaded to the Michigan Imputation Server97 where they were phased using
Eagle298 and imputed to the HRC reference panel99. Variants with a low-quality
score (R2 < 0.8) or out of HWE were removed. Quality control was carried out
separately for each genotyping chip’s data. After imputation, the various chip
datasets were merged together.

In the WRAP cohort, DNA was extracted from whole blood samples and
genotyped using the Illumina Multi-Ethnic Genotyping Array at the University of
Wisconsin Biotechnology Center14. Briefly, samples and variants with high
missingness (>5%) and samples with inconsistent genetic and self-reported sex
were removed. The resulting 1198 samples from individuals of European descent
with 898,220 variants were then imputed using the Michigan Imputation Server
and the HRC reference panel. Variants with a low imputation quality score (R2 <
0.8), with a low minor allele frequency (MAF) (<0.001), or out of HWE were
removed. Variants were annotated based on the GRCh37 assembly in both the
WADRC and WRAP datasets.

Data cleaning. For this study, the initial dataset contained those samples with both
genetic and metabolomic data (440 samples from WADRC; 165 samples from
WRAP). Samples were then removed for missing age at LP, a cognitive diagnosis
date more than two years from the LP date, non-European ancestry (due to lack of
sample size in other ancestry groups), or having withdrawn from or being ineligible
for the study. In order to maximize the generalizability of the genetic–metabolite
associations, only participants who were cognitively normal at the time of the CSF
draw were kept. When multiple CSF draws were available from a participant, only
the first qualifying sample was retained. Similarly, if participants were related
(according to identity by descent in WADRC or self-reported family relationships
in WRAP), only one participant was kept per related group in order to remove
genetic correlation between participants.

Metabolite missingness was then reassessed among the cleaned dataset to
ensure sufficient sample size for estimating SNP effects in the GWAS: any
metabolite missing ≥50% across a cohort’s samples was removed. To address
potential population stratification, principal component analysis (PCA) was
conducted within each cohort on the subset of participants to be analyzed in the
GWAS. The number of principal components (PCs) controlled for in the GWAS
was selected based on a visual inspection of the scree plots, which in both cases was
5 PCs. Finally, SNPs missing ≥1% across the remaining samples in a cohort were
removed, leaving 7,049,691 SNPs in WADRC and 10,494,131 SNPs in WRAP. A
total of 338 metabolites across 155 samples in WADRC and 136 samples in WRAP
remained after these quality control procedures.

GWAS. A GWAS was performed for each metabolite in each cohort using
PLINK100 (version 1.90b6.3). Linear regression with an additive genetic model was
used, controlling for age at CSF draw, sex, the first five PCs, and the NACC
genotyping round (for WADRC only). Post-GWAS, SNPs were removed with a
MAF ≤ 0.05. A Q–Q plot and Manhattan plot were generated for each GWAS using
the R package qqman101 (version 0.1.4). The genomic inflation factor was calcu-
lated for each metabolite in each cohort using the median χ2 statistic.

In the discovery phase GWAS (WADRC cohort), a genome-wide significance
threshold (5 × 10−8) with a Bonferroni correction for the number of metabolites
tested (338) resulted in a significance threshold of 1.48 × 10−10. The significant
SNPs from the discovery phase were identified and then compared to the
replication phase (WRAP cohort) to assess replication at a significance threshold
of 0.05 with a Bonferroni correction for the number of significant SNPs tested
from the discovery phase (606), for a final significance threshold of replication of
8.25 × 10−5.

The discovery- and replication-phase GWAS results were then meta-analyzed
using the inverse-variance-weighted approach implemented in METAL15 (2018-
08-28 version, STDERR scheme). Only SNPs present in both the discovery and
replication GWAS were retained, and a genome-wide significance threshold
Bonferroni-corrected for the number of metabolites analyzed (P= 1.48 × 10−10)
was used for reporting associations. Q–Q plots, Manhattan plots, and genomic
inflation factors were calculated for the meta-analysis as before, and LocusZoom102

(version 1.4) was used to generate regional genetic association plots for a 1Mb
region around the top SNP at each significant locus, using the 1000 Genomes
Nov2014 EUR population for linkage disequilibrium (LD) estimation
(Supplementary Figs. 2–18).

Evaluation of significant loci. The significant SNPs from the meta-analysis
GWAS were evaluated for the feasibility of a connection with their associated
metabolites. Each SNP was annotated with the nearest gene using GEN-
CODE103 annotations (version 19) and known eQTLs in CNS-related tissues
using GTEx54 (version 7) (Supplementary Data 1, Supplementary Table 5).
Regions around the significant SNPs were also looked up in the GWAS Catalog
for previously reported phenotype associations using the R package gwasra-
pidd104 (version 0.99.8) (Supplementary Data 1, Supplementary Table 6). In
addition, each significant SNP-metabolite association was checked against
previously published GWAS of metabolites16–20,46,47,49 in non-CSF fluids or
tissues, with a focus on publications that also used Metabolon for metabolite
quantification and thus were more likely to have measured the same meta-
bolites that were measured here. To match metabolites by name across datasets
when Metabolon identifiers were not available, string-matching functions from
MetaboAnalystR105 (version 1.0.2) and stringdist106 (version 0.9.5.5) were used
to match metabolite names, which were then manually reviewed for accuracy.
Each SNP-metabolite association was examined in the results of each of the
non-CSF studies for the presence of the metabolite and whether the SNP
association was replicated. For studies with publicly available GWAS summary
statistics, LocusZoom plots were created of the CSF-significant genetic regions
using the publicly available non-CSF summary statistics data to allow for a
side-by-side comparison of the CSF associations and the non-CSF associations
for the same metabolite at the same locus (Supplementary Figs. 19–25).

Metabolite prediction models. Metabolite prediction models were built and
selected using fourfold cross-validation (Supplementary Fig. 26). To maximize the
sample size available for training metabolite prediction models, a combined
WADRC and WRAP dataset was created. Only SNPs present in both datasets,
present for all individuals, and with a MAF ≥ 0.05 were retained. To account for
differences in SNP annotations, SNPs were harmonized across WADRC, WRAP,
and the 1000 Genomes Phase 3 CEU samples that were used as an LD reference
such that all SNPs were oriented to the same strand and major/minor allele
annotation. SNPs that were inconsistent across the datasets or ambiguous SNPs
were removed. The combined WADRC/WRAP dataset was then partitioned evenly
into four portions, with a training fold comprising three portions merged together
and a testing fold comprising the remaining portion.

Within each training fold of data, PLINK was used to run a GWAS of each
metabolite using a linear, additive model, controlling for age at CSF collection, sex,
the top five PCs (calculated in the combined dataset), and an indicator for WADRC
or WRAP genotyping round. Variance inflation factors were restricted to being less
than 50 (four metabolites were excluded from further analysis due to a high
inflation factor in at least one fold). The resulting fold-specific GWAS files were
then clumped down to independent SNPs (r2 < 0.1 within a 1000 kb window using
the 1000 Genomes CEU reference panel for LD estimation) with a P value
threshold of 0.01 using PLINK.

Metabolite prediction models were built for each metabolite within each fold of
training data. Four general model types covering a range of genetic architecture
assumptions were employed: LASSO107, elastic net108, ridge regression109, and
polygenic score models110. LASSO uses L1 regularization to perform variable
selection in a regression model, while ridge regression uses L2 regularization and
retains all variables in the regression. Elastic net lies between LASSO and ridge
regression, using a weighted combination of the L1 and L2 penalties. Polygenic
score models use a weighted combination of SNPs where the weight of each SNP is
based on the beta coefficient of a GWAS for the model outcome. The three
penalized regression models (LASSO, elastic net, and ridge regression) were
implemented using the R package glmnet111 (version 2.0–18). An 11 × 11 grid of
parameter combinations (lambda and alpha) was created. Lambdas ranged from
1.0 × 10−5 to 1.0 (10 raised to exponents incremented by 0.5); alphas ranged from
0.0 to 1.0 (incremented by 0.1). Models were classified based on the alpha value
(1.0= LASSO, 0.0= ridge regression, others= elastic net). Model predictors
included all clumped SNPs and the same covariates used for the fold-specific
GWAS, but the regularization penalty was only applied to the SNPs. The polygenic
score models were implemented using PRSice112 (version 2.2.4). Three P value
thresholds were used: 0.0001, 0.001, and 0.01.

Each fold-specific metabolite prediction model was tested on the corresponding
testing fold to determine the correlation and R2 between the predicted and actual
metabolite values (Supplementary Fig. 27). The mean predictive correlation was
taken across all folds for each model, with the highest-correlated model chosen as
the best predictive model for that metabolite. For each metabolite, the type of
model, mean number of SNPs used, and the presence of significant meta-analysis
GWAS loci were recorded (Supplementary Data 1, Supplementary Table 7).

Metabolite–phenotype association testing. To test the associations between
imputed metabolites and the various brain-related phenotypes, two components
were needed: metabolite prediction model SNP weights and brain-related pheno-
type GWAS summary statistics. The best prediction models per metabolite chosen
by the fourfold cross-validation described above were initially considered for the
association testing. Only metabolite prediction models with a positive correlation
and a mean predictive R2 > 0.025 were retained. The model type and parameter
settings for each metabolite’s best-performing model were then run on the entire
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WADRC/WRAP combined sample to generate the final model weights for all SNPs
included in the model (Supplementary Data 1, Supplementary Table 8).

The phenotypes for the association analysis were chosen based on the feasibility
of the CSF metabolome being relevant to the phenotype and the availability of
complete GWAS summary statistics for the phenotype. The only exception was the
GWAS for the AD proxy phenotype, which was developed in-house on the UK
Biobank dataset as a surrogate measure for AD risk based on parental diagnosis
and age at diagnosis, following previous research113,114. The CNS phenotypes and
sources of the GWAS summary statistics23–44 are listed in Supplementary Data 1,
Supplementary Table 9. All GWAS summary statistics were harmonized to the
GRCh37 SNP annotations, and orientations of the WADRC/WRAP combined
dataset were used for model training. For GWAS summary statistics with only odds
ratios or Z scores reported, beta-effect sizes were converted or estimated from the
data provided. To maximize the SNP overlap between the model training SNPs and
the GWAS summary statistics, the ImpG method115 (FIZI package, version 0.6;
Python, version 3.8) was used to impute missing SNP effect sizes in the GWAS
summary statistics. Only SNPs that matched between the training data and the
imputed GWAS summary statistics were retained.

The BADGERS (Biobank-wide Association Discovery using GEnetic Risk
Scores) software package22 was used to test the association of each imputed CSF
metabolite with each of the GWAS summary statistics phenotypes
(Supplementary Data 1, Supplementary Table 10). A Q–Q plot of all BADGERS
association test results was created to assess potential inflation (Supplementary
Fig. 28). An FDR was calculated using the qvalue116 (version 2.18.0) package for
each GWAS phenotype at a threshold of 0.05 to report significant associations.
A Bonferroni-corrected significance threshold based on the number of
metabolite (106) and phenotype (27) combinations tested with BADGERS (P=
0.05/2862= 1.7 × 10−5) was additionally used to report the most conservative
associations. A manual search of published literature was conducted to check
for the biological feasibility of the metabolite–phenotype associations estimated
by BADGERS. For metabolites marked as unknown by Metabolon, the region
around the top genetic loci for the metabolite from the GWAS meta-analysis
was looked up in the GWAS Catalog to identify any other associations that
might inform the metabolite’s role or identity.

A two-sample Mendelian Randomization was performed for each of the
significant metabolite–phenotype associations from BADGERS, using the meta-
analysis GWAS results for the metabolites described above and a phenotype GWAS
from the IEU GWAS Database (Supplementary Data 1, Supplementary Table 11;
Supplementary Fig. 29). The goal of using MR was to demonstrate whether the
results from MWAS could be replicated using an alternative method (two-sample
MR). Two-sample MR was used instead of one-sample MR because the
neurological phenotypes studied were not available for the individuals in WADRC
and WRAP on whom the CSF metabolites were measured, which is a requirement
of one-sample approaches. In the implementation of two-sample MR, GWAS
summary stats were used for both the CSF metabolites and the neurological
phenotypes to allow for easier replication of our results by other groups who can
use our GWAS summary statistics for the CSF metabolites. In selecting the SNPs to
use as instruments for each metabolite, the set of independent SNPs chosen by the
best metabolite prediction model in the MWAS pipeline was used for each
metabolite. Since only the significant results from the BADGERS analysis were
analyzed by MR, all metabolites met the minimum predictive R2 criteria for being
predicted by their model SNPs as was used for the BADGERS analysis (see above).
When possible, the same phenotype GWAS that was used in BADGERS was used
for the MR analysis; otherwise, a similar phenotype from a different study was used
(Supplementary Data 1, Supplementary Table 12)26,37,91,117–119. The MR analysis
was conducted using the TwoSampleMR117 (version 0.5.0) package, using the Wald
ratio (“mr_wald_ratio”), inverse-variance-weighted (“mr_ivw”), Egger regression
(“mr_egger_regression”), and weighted median (“mr_weighted_median”)
methods117. Briefly, the Wald ratio approach was used when only a single SNP was
used as an instrument, as was the case with the ethylmalonate analyses. When
multiple SNPs were used as instruments, the inverse-variance-weighted, Egger
regression, and weighted median approaches were used. The inverse-variance-
weighted approach combines all of the ratio estimates similar to an inverse-
variance-weighted, random-effects meta-analysis. The Egger regression MR
approach88 uses multiple instruments as a way to assess the presence of pleiotropy
and to adjust for biases arising from a specific type of pleiotropy where the
instruments’ effects on the outcome are independent of their effects on the
exposure. The weighted median approach120,121 is similar to Egger regression in
that it helps to address pleiotropy when using multiple SNP instruments and is
robust so long as no more than 50% of the instruments are pleiotropic. This
method’s benefit comes from using the median effect of the instrument SNPs and
weights the contribution of the SNPs by the inverse variance. Multiple two-sample
MR methods were used here to compare the results from MWAS to a diversity of
MR implementations. A Bonferroni-corrected significance threshold for the
number of MR analyses performed (42) was used for reporting significant results
(P= 0.05/42= 1.2 × 10−3).

An important note for the MR analyses is that we do not necessarily claim a
causal association between the metabolites and phenotypes. In order for an MR
association to be causal, three assumptions must be satisfied: (1) the SNP must have
an effect on the metabolite; (2) the SNP cannot have a direct effect on the

phenotype; and (3) the SNP cannot be associated indirectly with the phenotype
through unmeasured confounders. While the use of only SNP-metabolite
prediction models that satisfy a minimum predictive R2 helped address the first
assumption, and while Egger regression and weighted median regression helped
address bias arising from pleiotropy and association to measured confounding, the
assumptions could have been violated in this context as the biological mechanisms
of many of these SNPs were unknown and there were many unmeasured
demographic and clinical covariates that may feasibly have affected the
metabolite–phenotype relationship as well as the distribution of SNPs. Thus, the
MR analyses, while useful as a way of demonstrating whether the MWAS-identified
associations could be replicated from the MR framework, should not be construed
as necessarily representing causal claims. However, as described in “Discussion”,
there was evidence to support two of the MR assumptions for the strongest
association estimated by MR, which was between N-delta-acetylornithine and
schizophrenia.

Statistics and reproducibility. General data analysis was performed primarily
using R122 (versions 3.6.0 and 3.6.1), RStudio123 (version 1.2.1335), and the
Tidyverse suite of R packages124. The statistical significance levels for the analyses
in this manuscript included adjustments for multiple testing as appropriate based
on the number of SNPs, loci, metabolites, or phenotypes tested, as described above.
In the initial GWAS of CSF metabolites, a discovery, replication, and meta-analysis
approach was used.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
The datasets generated and analyzed during the current study may be requested from the

WADRC at https://www.adrc.wisc.edu/apply-resources. Full GWAS meta-analysis

summary statistics may be accessed at ftp://ftp.biostat.wisc.edu/pub/lu_group/Projects/

MWAS/.
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