
PPuurrppoossee::  Maintenance of cerebrovascular reactivity to CO2
(CCO2R) is important during neurosurgical anesthesia. This study
was designed to determine the effect of different desflurane con-
centrations on CCO2R in children.
MMeetthhooddss::  Children undergoing urological surgery were enrolled.
Anesthesia was induced with sevoflurane in air/oxygen. After intu-
bation, sevoflurane was switched to desflurane. Analgesia was pro-
vided with an epidural neuraxial block. Mechanical ventilation was
adjusted to an initial EtCO2 of 30 mmHg. Exogenous CO2 was
used to achieve an EtCO2 of 40 and 50 mmHg. Patients were ran-
domized to the sequence of desflurane concentration (1.0 and 1.5
MAC) and the EtCO2. Transcranial Doppler was used to measure
middle cerebral artery blood flow velocity (Vmca). Five minutes
were allowed to reach steady state after each change in EtCO2 and
15 min after changing the desflurane concentration.
RReessuullttss::  Sixteen patients were studied. The mean age and weight
were 3.5 ± 1.5 yr and 14.4 ± 3.1 kg, respectively. Mean arterial
pressure remained stable throughout the study, while at an EtCO2
of 50 mmHg, heart rate decreased at both desflurane concentra-
tions (P < 0.05). At 1.0 MAC, Vmca increased from 30 to 40
mmHg (P < 0.05), but not from 40 to 50 mmHg EtCO2. At 1.5
MAC, Vmca increased between 30 and 50 mmHg (P < 0.05).
CCoonncclluussiioonn::  CCO2R is preserved during hypocapnia in children
anesthetized with 1.0 MAC, but not with 1.5 MAC desflurane. The
lack of further increase in Vmca at higher EtCO2 concentrations
implies that desflurane may cause significant cerebral vasodilatation
in children. This may have important implications in children with
reduced intracranial compliance.

Objectif : Le maintien de la réactivité cérébrovasculaire au CO2
(RCCO2) est important pendant l’anesthésie neurochirurgicale. Nous
voulions déterminer l’effet de différentes concentrations de desflurane
sur la RCCO2 chez des enfants.

Méthode : Les enfants choisis devaient subir une intervention
urologique. L’anesthésie a été induite avec du sévoflurane dans un
mélange d’air et d’oxygène. Après l’intubation, le sévoflurane a été
remplacé par du desflurane. L’analgésie a été prodiguée par un bloc
neuraxial péridural. La ventilation mécanique a été réglée selon un
EtCO2 initial de 30 mmHg. Du CO2 exogène a permis d’obtenir un
EtCO2 de 40 et 50 mmHg. Les patients, répartis au hasard, ont reçu
la séquence de desflurane (1,0 et 1,5 CAM) et de EtCO2. La vitesse
circulatoire de l’artère cérébrale moyenne (Vacm) a été mesuré par
Doppler transcrânien. L’état d’équilibre a été atteint en 5 min après
chaque changement de EtCO2 et 15 min après la nouvelle concen-
tration de desflurane.

Résultats : L’étude a porté sur 16 patients. L’âge et le poids moyens
étaient de 3,5 ± 1,5 ans et 14,4 ± 3,1 kg. La tension artérielle a été
stable tout au long de l’étude, tandis que pour un EtCO2 de 50 mmHg,
la fréquence cardiaque a diminué avec les deux concentrations de des-
flurane (P < 0,05). À 1,0 CAM, la Vacm a augmenté pour un EtCO2 de
30 à 40 mmHg (P < 0,05), mais non de 40 à 50 mmHg. À 1,5 CAM,
la Vacm s’est élevée entre 30 et 50 mmHg (P < 0,05).

Conclusion : La RCCO2 est conservée pendant l’hypocapnie chez des
enfants anesthésiés avec 1,0 CAM, mais non avec 1,5 CAM, de desflu-
rane. L’absence d’une nouvelle augmentation de la Vacm pour des con-
centrations plus élevées de EtCO2 sous-entend que le desflurane peut
causer une vasodilatation cérébrale significative chez les enfants. Ce
résultat peut avoir d’importantes implications chez les enfants qui
présentent une compliance intracrânienne réduite.

166 OBSTETRICAL AND PEDIATRIC ANESTHESIA

CAN J ANESTH 2003 / 50: 2 / pp 166–171

Cerebrovascular reactivity to carbon dioxide is
preserved during hypocapnia in children anes-
thetized with 1.0 MAC, but not with 1.5 MAC
desflurane
[La réactivité cérébrovasculaire au gaz carbonique est conservée pendant l’hypocapnie

chez des enfants anesthésiés avec 1,0 CAM, mais non avec 1,5 CAM, de desflurane]
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ARBON dioxide has a rapid and impor-
tant influence on the cerebral vasculature.
Rapid diffusion of CO2 from the arterial
blood into the arteriolar smooth muscle

cells generates a change in perivascular pH, which is
thought to be responsible for the maintenance of cere-
brovascular reactivity to CO2 (CCO2R).1 At hypocap-
nia, this results in reduced cerebral blood flow and
cerebral blood volume and may be used to control the
intracranial pressure (ICP).

The favourable physico-chemical properties of des-
flurane (low blood-gas and tissue solubility) make it a
potentially suitable anesthetic agent for neuroanesthe-
sia, allowing for rapid emergence and postoperative
neurological assessment. Studies in adults have report-
ed that CCO2R is preserved during desflurane anesthe-
sia.2–4 In children, the effects of desflurane on CCO2R
are not as well defined. In a study of ten children,4 cere-
bral blood flow velocity (CBFV) was recorded during
the first ten minutes of desflurane administration while
the EtCO2 was changed from 40 to 30 mmHg. Based
on their observations, the authors suggested that
CCO2R is preserved during desflurane anesthesia.
However, the lack of steady state conditions might have
limited the identification of the cerebrovascular effects
of desflurane on the CCO2R.

This study was designed to determine the effects of
two different desflurane concentrations on the CCO2R
in children at hypo-, normo- and hypercapnia.

MMeetthhooddss
After approval by the Institutional Research Ethics
Board and written informed parental consent, 16
unpremedicated children aged two to six years, ASA I
or II, undergoing elective urological surgery were
enrolled. Children with a history of prematurity, car-
diac, pulmonary, or neurological disease, or a con-
traindication to regional anesthesia were excluded
from the study.

Anesthesia was induced by facemask with sevoflurane
in oxygen. Standard monitoring included electrocardio-
gram, pulse oxymetry, non-invasive arterial blood pres-
sure, and a nasopharyngeal temperature probe. A
peripheral venous cannula was inserted and orotracheal
intubation facilitated with rocuronium 1.0 mg·kg–1.
Immediately after tracheal intubation, sevoflurane was
discontinued and intermittent positive pressure ventila-
tion (IPPV) with desflurane in air/oxygen (FIO2 =
0.35) with a fresh-gas flow of 3 L·min–1 was initiated,
using a circle system and an Air-Shields ventilator (Air-
Shields Vickers®, Hatboro, USA). Peak inspiratory
pressures were kept at 20 mmHg and the respiratory
rate was adjusted to achieve an initial end-tidal CO2

(EtCO2) of 30 mmHg. No positive end- expiratory
pressure was used at any time during the study period.
Exogenous CO2 was administered to achieve EtCO2
levels of 40 and 50 mmHg. EtCO2 was measured using
a central venous catheter (Intracath 19 Gauge, 30.5 cm,
Becton-Dickinson®, Sandy, USA) advanced to the dis-
tal tip of the endotracheal tube. The desflurane concen-
tration, fraction of inspired oxygen concentration
(FiO2) and EtCO2 were continuously analyzed with a
Capnomac Ultima monitor (Datex Instruments
Corporation®, Helsinki, Finland). A caudal epidural
block with 1.0 mL·kg–1 of plain bupivacaine 0.25% was
performed for each patient. Surgery was allowed to
commence 15 min after the caudal block had been per-
formed and the block was assumed to be successful if
upon skin incision the heart rate and mean arterial pres-
sure did not increase more than 5% from baseline
(immediately before skin incision). All children were
kept supine and horizontal throughout the study peri-
od. Normothermia was maintained using a conductive
water mattress (Gaymar® T/Pump, Gaymar Industries,
New York, USA) and/or convective forced air-warming
system (Bair Hugger®, Augustine Medical Inc., Eden
Prairie, USA).

The transcranial Doppler (TCD) probe was placed
over the right temporal window and adjusted to
insonate the M1 segment of the middle cerebral artery
(MCA) to measure systolic and mean cerebral blood
flow velocity (Vmca). A pulse-gated TCD with a 2-
MHz emitted ultrasonic frequency (Neuroguard,
Medasonics®, Fremont, USA) was used and the
Doppler shift data was processed and displayed by a
real-time spectral analyzer. A custom made wheel was
used to fix the TCD-probe to the patient’s head to
keep the angle of insonation constant.5

Patients were randomized to the order of desflu-
rane concentration (1.0 and 1.5 age-adjusted MAC)6

as well as to the sequence of the EtCO2 concentration
(30, 40 and 50 mmHg) using computer generated
random number tables. Fifteen minutes were allowed
to reach steady state after changing the desflurane
concentration and five minutes after changing the
EtCO2 concentration. At each EtCO2 level, three
measurements were recorded at one- minute intervals.
Vmca, heart rate (HR), mean arterial pressure (MAP),
EtCO2 and desflurane concentrations were simultane-
ously measured. After the desflurane concentration
was changed, the same sequence of EtCO2 concentra-
tions was repeated.

Demographic and parametric data are expressed as
mean ± SD. The number of patients needed to demon-
strate a direct effect on CBFV was calculated with the
assumption that a 20% change in Vmca would be clini-

C



cally relevant. Based on a statistical power of 0.8, an α2 =
0.05 and a ß = 0.2, seven patients were suggested. A total
of 16 patients were studied to account for methodolog-
ical difficulties that could have led to exclusion from the
study. Vmca, HR and MAP were analyzed with repeated
measures ANOVA and Tukey-Kramer HC for multiple
comparisons. The Vmca data files were stored on a com-
puter (Apple Macintosh®, Cupertino, USA) and later
analyzed by an investigator unaware of the randomiza-
tion and the hemodynamic response. A P < 0.05 was
accepted for statistical significance.

RReessuullttss
Sixteen patients were studied, with a mean age and
weight of 3.5 ± 1.5 yr and 14.4 ± 3.1 kg, respectively.
The caudal block was successful in all cases and TCD
measurements were completed in all children. MAP
remained stable throughout the study period. At both
desflurane concentrations, the increase in EtCO2 from
30 to 40 mmHg did not affect the HR, however it
decreased significantly at 50 mmHg (P < 0.05). 

At 1.0 age-adjusted MAC desflurane, increasing
EtCO2 from 30 to 40 mmHg resulted in an increase in
Vmca from 58 ± 14 cm·sec–1 to 72 ± 16 cm·sec–1 (P <
0.05), however, it did not increase further between 40
and 50 mmHg (72 ± 16 cm·sec–1 to 73 ± 17 cm·sec–1;
Figure). When EtCO2 was increased from 30 to 40
mmHg at 1.5 age-adjusted MAC desflurane, Vmca did
not change significantly (from 51 ± 16 cm·sec–1 to 59 ±
11 cm·sec–1), but at 50 mmHg EtCO2, Vmca increased
significantly (to 66 ± 13 cm·sec–1) when compared to
30 mmHg (P < 0.05; Figure).

At 1.0 MAC desflurane, the CCO2R expressed as the
percent change in mean CBFV per 1 mmHg change in
EtCO2 was 2.45 between 30 and 40 mmHg and 0.14
between 40 and 50 mmHg. At 1.5 MAC, the corre-
sponding values were 1.56 and 1.25, respectively.

There were no complications as a result of this
study.

DDiissccuussssiioonn
This study suggests that cerebrovascular reactivity to
CO2 is preserved at hypocapnia in children anes-
thetized with 1.0 MAC desflurane, but is reduced at
1.5 MAC. The expected increase in Vmca associated
with hypercapnia seems attenuated, suggesting that
desflurane may maximally dilate the cerebral vascula-
ture and that the addition of CO2 does not contribute
to further increases in Vmca.

A previous study in children comparing three dif-
ferent desflurane concentrations showed a significant-
ly increased Vmca at 1.0 MAC when compared to 0.5
MAC desflurane, without any further increases at 1.5

MAC.7 These observations support the concept that
cerebral vasodilatation in children is already maximal
during anesthesia with 1.0 MAC desflurane at normo-
capnia. These findings are not supported by a previous
study in adults reporting that desflurane caused fur-
ther cerebral vasodilatation at 1.5 MAC when com-
pared to 0.5 MAC.8 However, propofol was used to
induce cerebral isoelectricity before the addition of
desflurane. It is therefore very likely that the cerebral
vessels were already vasoconstricted due to propofol
and that the net effect of desflurane resulted in cere-
bral vasodilatation.

In the present study, the small differences in CBFV
observed between 1.0 and 1.5 MAC desflurane at all
three EtCO2 concentrations could be explained by the
“dual action hypothesis”.9,10 The authors of these stud-
ies have suggested that desflurane causes a direct cere-
bral arterial vasodilatation independent of cerebral
metabolism, even though desflurane keeps the flow-
metabolism coupling intact. The reduction in cerebral
metabolic rate of oxygen (CMRO2) associated with
deeper anesthesia means that desflurane also causes
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FIGURE Cerebral blood flow velocity in the middle cerebral
artery (Vmca) at different desflurane and EtCO2 concentrations. *
denotes a significant increase in Vmca when compared to baseline
(30 mmHg EtCO2; P < 0.05); # indicates a significant change
when compared to baseline (30 mmHg EtCO2; P < 0.05).



cerebral vasoconstriction. Therefore, what is measured
clinically is the result of a subtle balance between these
two antagonizing effects. It is possible that at the high-
er desflurane concentration the cerebral vasconstriction
as a result of the decreased CMRO2 becomes more
prominent, as suggested by Mielck et al.3 In that study,
CCO2R was preserved at 1.0 MAC desflurane.

A recent study with 1.0 age-adjusted MAC sevoflu-
rane in children reported CCO2R values of
8.6%/mmHg from 25 to 35 mmHg and 5.1%/mmHg
from 35 to 45 mmHg.11 These authors also demon-
strated a loss of CCO2R at hypercapnia. Although the
EtCO2 intervals were slightly different in that study,
these values are considerably greater and reflect the well
preserved CCO2R during sevoflurane anesthesia. This
implies that changes in PaCO2 result in more pro-
nounced changes in cerebral vasculature in children
anesthetized with sevoflurane than with other inhala-
tional anesthetics. The CCO2R for isoflurane and
halothane in the range of 20 to 40 mmHg were report-
ed as 2.6 and 1.4%/mmHg, respectively.12

Desflurane and isoflurane showed similar effects
with respect to CCO2R in adults when CBF and
CCO2R were measured by iv 133Xenon.2 Although the
authors only examined the CCO2R at 25 and 35
mmHg PaCO2, they reported that CCO2R at 1.0
MAC desflurane and isoflurane is maintained at about
1.3 to 1.6 %/mmHg. Mielck et al.3 used a modified
Kety-Schmidt saturation technique with argon as inert
tracer gas to measure CBF in adults and suggested
that CCO2R is preserved at 1.0 MAC desflurane
between an EtCO2 of 30 and 50 mmHg.

In a recent pediatric study, Brenet et al.4 concluded
from ten children that CCO2R remains intact at 1.0
age- adjusted MAC desflurane. However, the children
received propofol, atropine, fentanyl, and atracurium
for induction of anesthesia and tracheal intubation.
Within the first minute following tracheal intubation
and administration of desflurane, baseline CBFV mea-
surements were recorded and subsequent recordings
were obtained every minute for the next ten minutes.
One may speculate that a state of hyperdynamic circu-
lation was still present, that the cerebral vasoconstric-
tive effect of propofol was most likely still in effect and
that the brain partial pressure of desflurane had
reached a steady state only at the end of the study peri-
od. It has also been demonstrated that rapid increases
in desflurane concentration stimulate the sympathetic
nervous system13–15 and a period of up to nine minutes
is necessary to abate this effect.16 Although fentanyl
has been shown to attenuate the cardiovascular stimu-
lation triggered by desflurane in adults,17 the situation
remains unclear in children. To prevent the addition

of confounding factors, neither opioids nor atropine
were used in the present study.

All patients received sevoflurane for induction of
anesthesia. With a brain/blood partition coefficient of
1.7,18 the calculated time constant for equilibration in
the grey matter of the brain is approximately 3.4 min,
thus the time to 98% equilibration of the anesthetic
partial pressure (i.e., four time constants) equals 13.6
min. After discontinuation of sevoflurane, we allowed
15 min for elimination of sevoflurane. 

The equilibration time constant for desflurane
within the brain has been calculated as about 2.6
min.18 Fifteen minutes were allowed between changes
in the desflurane concentration and before recording
the first CBFV measurement in order for steady state
to be reached. The time constant for the acute effects
of carbon dioxide on cerebral arteries is approximate-
ly one minute.19 In the present study five minutes
were allowed to reach equilibration within the brain.
Measurements of EtCO2 were used to estimate
PaCO2. In healthy children, it has been shown that
EtCO2 closely approximates PaCO2.

20 The accuracy of
the EtCO2 measurement was increased using a central
venous catheter advanced inside of the endotracheal
tube (ETT) adjusted to allow sampling from the distal
end of the ETT.21

Changes in intrathoracic pressure have a direct
effect on cerebral venous pressure and may alter cere-
bral perfusion pressure.22 In order to eliminate this
source of error, IPPV was maintained constant and
exogenous CO2 was administered within the fresh gas
flow instead of altering the respiratory rate or the tidal
volume to achieve the different EtCO2 levels.

TCD was used to measure changes in CBFV and
consequently CBF non-invasively. Previous studies
have suggested that the diameter of the MCA remains
constant during anesthesia23,24 and that changes in
Vmca accurately reflect changes in cerebral blood
flow.25–28 Standard measures for CBF correlate well
with CBFV data obtained by TCD in both adults and
neonates.28–30 The insonating angle, i.e., the angle
between the ultrasonic beam and the insonated vessel
axis, was kept constant throughout the study by using
a custom made wheel to fix the TCD probe to the
patient’s head.5

In conclusion, desflurane anesthesia in combination
with mild hyperventilation seems to maintain CCO2R at
1.0 MAC. However, at 1.5 MAC, the effect of hypocap-
nia on CCO2R is reduced, probably due to the potent
vasodilatatory effect of desflurane. This is also empha-
sized by the reduction in CCO2R reported in this study
at hypocapnia when compared with the values previous-
ly reported for sevoflurane. In children with an increased
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ICP the potential benefits of desflurane anesthesia
should be weighed carefully against the risks.
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