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SLEEP DISORDERED BREATHING IS ASSOCIATED 
WITH ELEVATED ARTERIAL PRESSURE AND AN IN-
CREASED RISK OF STROKE1,2; THIS INCREASED RISK 
MAY be related to changes in the regulation of cerebral blood 
flow. Numerous factors contribute to cerebral blood flow regu-
lation, among them cerebral metabolism, arterial carbon diox-
ide tension, and cerebral perfusion pressure.3-5 Sleep state has 
profound direct and indirect effects on cerebral hemodynamics. 
Several studies using a variety of methods (transcranial Doppler 
ultrasonography,133 Xe inhalation, and single-photon emission 
computerized tomography) have shown a reduction in cerebral 
blood flow during NREM sleep and an increase during REM 
sleep as compared to the awake state in healthy persons.1,6-13

Arousal from sleep, per se, causes abrupt hemodynamic 
and respiratory changes characterized by increases in sympa-
thetic nervous system activity, blood pressure, heart rate,14 and 
ventilation.15,16 Moreover, arousal from sleep accentuates the 
hemodynamic changes produced by upper airway obstruction.17 
Although changes in cerebral blood flow associated with arous-
al12 and with spontaneous theta-alpha transitions during the sleep 
onset period18 have been characterized, the interaction of hemo-
dynamic, ventilatory, and cerebrovascular responses to arousal 
from stable sleep has not been rigorously studied thus far.

In this study we investigated arousal-induced changes in ce-
rebral blood flow velocity (CBFV) in healthy young adults. In 
addition, we investigated the temporal relationships among the 
cerebrovascular, ventilatory, and systemic hemodynamic pertur-
bations associated with arousal from NREM and REM sleep.

METHODS

Subjects

Six men and 5 women (aged 26 ± 5 [SD] yr) served as subjects 
for the sleep study (Table 1). Six additional subjects (4 males 
and 2 females [aged 37 ± 12 yr]) were enrolled in a separate 
daytime study where the effects of voluntary hyperventilation 
on CBFV were studied during wakefulness. All subjects were 
non-obese (BMI < 25 kg/m2) nonsnorers. Participants were not 
taking any medication, and none had a history of pulmonary, 
neurological, or cardiovascular disease. All subjects provided 
informed consent prior to participation. The experimental pro-
tocol was approved by the University of Wisconsin Center for 
Health Sciences Human Subjects Committee.

General Procedures

The nighttime sleep studies took place in a quiet, darkened, 
temperature- controlled (20-22 ºC) room between 23:00-06:00. 
Physiological responses were monitored from an adjacent 
room. Subjects were instructed to abstain from caffeine and al-
cohol consumption for 24 hours prior to the study. In addition, 
we asked the subjects to sleep deprive themselves by obtaining 
no more than 4 hours of sleep the night prior to study.

An additional daytime study was performed to determine 
the time course of the CBFV and PETCO2 responses to brief 
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periods of hyperventilation. The daytime studies were carried 
out between the hours of 13:00 and 14:30 in all subjects. In 
these studies, subjects were coached to take 3 consecutive large 
breaths, using a real-time visual feedback display of tidal vol-
ume and auditory tones to cue the timing and depth of each 
breath, so that the amplitude and duration of the breaths pro-
duced a change in minute ventilation that was as least as great as 
that observed following acoustic arousal in the nighttime sleep 
study (approximately 140% of the baseline value). After the 3 
large breaths, the subjects were instructed to relax and breathe 
normally. Each subject performed this maneuver 3 times.

Acoustic interventions During Sleep

Transient arousals from stable NREM (stage 2, 3, or 4) and 
REM sleep were induced using brief computer-generated audi-
tory tones (1000 Hz, 0.5 second) delivered via 2-inch diameter 
audio speaker, which was positioned 15 cm above the forehead 
of the supine subject. A sound level meter placed 25 cm from 
the speaker was used to calibrate the gain control on the ampli-
fier so that a range of audio stimuli at 40-80 dB was produced. 
The first trial was at 40 dB, and if no arousal was induced, fur-
ther trials at 5 dB increments were delivered until arousal was 
induced or a level of 80 dB was reached. We allowed at least 2 
min of stable sleep between successive stimuli. All tones were 
delivered during late expiration.

Measurements

Subjects were instrumented and continuous overnight poly-
somnography recordings of EEG (C3/A2 and O2/A1), left and 
right EOG, submental EMG, and a single lead ECG were ob-
tained. Tidal volume was measured by inductance plethysmog-
raphy (Respitrace, Ambulatory Monitoring, Ardsley, NY). The 
two wired elastic bands were carefully positioned around the 
subject, encircling the rib cage just below the axilla and the 
abdomen just below the umbilicus. Both bands were secured 
with adhesive tape. The inductance plethysmograph output was 
calibrated by the isovolume technique19 in conjunction with a 
rolling seal spirometer (Ohio 800, Ohio Intruments, Madison, 
WI). Respiratory cycle timing was measured using the induc-

tance plethysmography signal. Arterial blood oxygen saturation 
was measured continuously with an ear oximeter (Model 3740, 
Ohmeda, Louisville, CO).

Beat-by-beat arterial pressure was measured by photoelec-
tric plethysmography (Finapres, Ohmeda, Louisville, CO). 
Heart rate (HR) was measured from the electrocardiogram. A 
2 MHz pulsed Doppler ultrasound system (Neurovision 500 M, 
Multigon Industries, Younkers, NY) was used to measure peak 
CBFV in the proximal (M1) segment of the middle cerebral 
artery. The middle cerebral artery was insonated through the 
right temporal window using search techniques that have been 
described previously.20 After obtaining the best-quality signal, 
the probe was secured using a headband device to provide a 
fixed angle of insonation.

During the daytime study, subjects breathed through a nasal 
mask connected to a pneumotachograph (Model 3700, Hans 
Rudolph) to measure ventilation. CBFV was measured as de-
scribed above. End-tidal CO2 was sampled with a catheter in-
serted in the mask and analyzed with an infrared gas analyzer 
(Model CD3A, Ametek, Pittsburgh, PA).

All variables were recorded continuously on paper (Astro-
Med K2G, Grass Instruments, West Warwick, RI) and video-
tape (#400A PCM, Vetter, Rebersburg, PA). These signals were 
also routed to a computer (sampling rate, 120 Hz) for off-line 
analysis using custom-written software.

Data Analysis

Sleep Staging and Arousal Scoring

A single trained observer performed the EEG analysis. Sleep 
stages were scored according to standard criteria.21 Thirty-sec 
segments of EEG record following the auditory tones were 
examined to assess arousal responses. A 30-sec segment prior 
to arousal was used as baseline for comparison. Arousals dur-
ing both NREM and REM sleep were identified as transient 
increases in EEG frequency, which were 3-14 sec in duration. 
Trials in which the auditory stimulus did not cause EEG change 
or produced a full awakening were not included in the data 
analysis.

Sleep State and Cerebral Blood Flow Velocity—Bangash et al

Table 1—Demographic Characteristics, Distribution of Auditory Arousals Across Sleep States, and Mean Duration of EEG Perturbations for 
Each Subject

Subject Age/Gender # Stage 2 Events # Stage 3-4 Events # REM events
  (duration) (duration) (duration)
1 21/F 16 (8.8 sec) 11 (8 sec) 4 (5 sec)
2 22/M 6 (8.5 sec) 1 (7 sec) 6 (8.2 sec)
3 24/F 2 (7.3 sec) 0 2 (5 sec)
4 20/F 8 (6.6 sec) 6 (8.3 sec) 2 (7.7 sec)
5 20/M 5 (6.5 sec) 7 (8.8 sec) 2 (8 sec)
6 29/F 12 (6.9 sec) 0 3 (6.6 sec)
7 24/M 9 (6.5 sec) 0 6 (6 sec)
8 28/F 4 (9.4 sec) 2 (8 sec) 7 (6.2 sec)
9 26/M 11 (6. 8 sec) 2 (9.3 sec) 7 (6.4 sec)
10 35/M 8 (8 sec) 10 (7.8 sec) 9 (6 sec)
11 29/M 11 (8.6 sec) 2 (5.5 sec) 15 (6 sec)
Mean±SEM 26 ± 2 yr 7.7 ± 0.3 sec 7.0 ± 0.9 sec 6.5 ± 0.3 sec

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/article/31/3/321/2454151 by guest on 21 August 2022



SLEEP, Vol. 31, No. 3, 2008 323

basis. Ventilation (VE), tidal volume, and respiratory frequency 
were measured using custom-developed software. Post-tone 
responses were expressed as percentage of the 30-sec pretone 
mean. For each subject, ventilatory responses to auditory tones 
during each sleep stage were averaged, and these average val-
ues were used in computation of the group means.

Daytime Hyperventilation Study

Beat-by-beat measurements of CBFV were signal-averaged 
for each breath. For each subject, breath-by-breath measure-
ments of VE, CBFV, and PETCO2 during the 3 hyperventilation 
trials were averaged, and these average values were used in 
computation of the group means.

Statistical Analysis

All data are reported as means ± SEM. Steady-state base-
line values for HR and CBFV during wakefulness, NREM, and 
REM sleep were compared by 1-way ANOVA. For the arousal 
responses, binned data were analyzed for CBFV, HR, and MAP, 
whereas breath-by-breath analysis was performed for ventila-
tion. Averaged trial data, with each subject contributing one 
data point, were used in the statistical analyses. The values for 
CBFV, HR, MAP and ventilation before and after the arousal 
induced by an auditory tone in NREM sleep were compared by 
Wilcoxon signed-ranks tests to determine if the percent change 
from baseline was different from 100%. To compare these val-
ues across sleep states, we used a Wilcoxon signed-ranks test 
at each time point. We felt that this conservative nonparametric 
testing procedure would offset some of the potential problems 
associated with multiple testing and did not make any further 
multiple testing adjustments. P-values less than 0.05 were con-
sidered significant. All analyses were performed using SAS sta-
tistical software version 9.1, SAS Institute Inc. (Cary, NC).

rESulTS

Effect of Sleep on Heart rate and cerebral Blood Flow Velocity

Sixteen percent of the observed sleep time was spent in stage 
1, 45% in stage 2, and 22% in stages 3 and 4. REM sleep was 
achieved in all subjects, and it accounted for 17% of the obser-
vation period. Steady-state baseline values of HR and CBFV 
were not statistically different during wakefulness, NREM, 
or REM sleep (Table 2). The distribution of auditory arousals 
across sleep states and mean durations of EEG perturbations are 

Vascular responses

Hemodynamic and cerebrovascular variables in the 30 sec 
preceding and 30 sec following auditory stimuli were acquired 
on a beat-by-beat basis using custom developed software. HR 
was determined from the ECG R-R interval. Mean CBFV for 
each cardiac cycle was determined from the integral of the 
maximal frequency shift over one cardiac cycle divided by the 
length of the corresponding cardiac cycle (i.e., velocity-time 
integral). MAP was calculated as one-third pulse pressure + 
diastolic pressure. The beat-by-beat values for CBFV, HR, and 
MAP were placed into 1-sec bins.

Data from each trial were carefully inspected and outlying 
data points (differing from a neighboring point > 2 standard 
deviations of the pre-stimulus values), usually associated with 
movement artifact, were removed. Post-tone responses were 
expressed as percentage of the 30-sec pre-tone mean. For each 
subject, hemodynamic responses to auditory tones during 
NREM and REM sleep were averaged, and these average val-
ues were used in computation of the group means.

Ventilatory responses

Ventilatory parameters in the 30 sec preceding and 30 sec 
following an auditory tone were analyzed on a breath-by-breath 

Figure 1—Original polygraph records showing typical cardiovascu-
lar and ventilatory responses to auditory arousals from NREM (top 
panel) and REM (bottom panel) sleep. CBFV, cerebral blood flow 
velocity; BP, blood pressure; VT, tidal volume; EOG, electrooculo-
gram; EEG, electroencephalogram; EMG, electromyogram.

Sleep State and Cerebral Blood Flow Velocity—Bangash et al

Table 2—Heart Rate (HR) and Cerebral Blood Flow Velocity 
(CBFV) Values During Wakefulness and Stable NREM and REM 
Sleep (n = 11 Subjects)

 Awake NREM REM
  Baseline Baseline
HR(beats/min) 71 ± 4 62 ± 3 66 ± 3
CBFV(cm/sec) 56.5 ± 4.3 53.9 ± 3.7 58.9 ± 5.7

The differences in HR and CBFV were not statistically significant 
(P >0.05 by ANOVA).
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induced decreases in CBFV were comparable in Stage 2 and 
slow wave sleep (Figure 4).

Hemodynamic, cerebrovascular, and Ventilatory responses to 
Auditory Arousals from rEM Sleep

Figure 1 (bottom panel) is an original polygraph record 
showing the 30 sec before and after presentation of the audi-
tory stimulus during REM sleep in the same subject shown 
in the top panel. In contrast to NREM sleep, CBFV increased 
during arousals from REM sleep. Group mean data showing 
the NREM vs. REM comparison are shown in Figure 2. The 
between-state differences in CBFV were statistically significant 
during seconds 2-8 and 22-27 after the tone. MAP rose slightly 
more after arousal from NREM vs. REM sleep. This difference 
was statistically significant at 3 and 4 sec after the tone. There 
were no significant between-state differences in HR (Figure 2) 
or VE (Figure 3) following auditory arousal.

Effect of Time of Day on cBFV responses to Auditory Arousal

To investigate the possibility that diurnal variations in CBFV 
might contribute to the observed NREM vs. REM differences in 
CBFV response to arousal, we compared “early” REM events 
(i.e., those that preceded NREM events) with “late” REM 
events (those that that occurred after at least one NREM pe-
riod). This analysis was possible in 8 of 11 subjects. Auditory 
arousals from REM sleep caused increases in CBFV regardless 
of the time of night at which the tones were administered. Like-
wise, arousals from NREM sleep caused decreases in CBFV re-
gardless of the time of night; therefore, we combined the REM 
trials and the NREM trials in each subject to yield a single mean 
value for each sleep state.

Time course of changes in cBFV caused by Voluntary 
Hyperventilation during Wakefulness

With the onset of voluntary hyperventilation, the decrease in 
PETCO2 preceded the decrease in CBFV, reaching a nadir dur-
ing the third large breath (approximately 10 sec). In contrast, 
CBFV rose slightly during the first large breath, then declined, 

shown in Table 1. The durations of arousal were comparable 
in stage 2, slow wave, and REM sleep (7.7 vs. 7.0 vs. 6.5 sec, 
P > 0.05 by ANOVA) (Table 1).

Hemodynamic, cerebrovascular, and Ventilatory responses to 
Auditory Arousals from nrEM Sleep

A representative polygraph record showing the 30 sec before 
and after presentation of the auditory stimulus during NREM 
sleep is shown in Figure 1 (top panel). Mean data for all 11 
subjects are shown in Figure 2. On average, CBFV declined by 
–15% ± 2% (P < 0.05) during arousals from NREM sleep. The 
nadir occurred 9 sec after the auditory tone. HR and MAP in-
creased after arousal from NREM sleep (+17% ± 2% and +20% 
± 1% respectively; P < 0.05) with peaks at 3 and 5 sec after 
the auditory tone, respectively. VE increased significantly in the 
first 2 breaths following arousals from NREM sleep (+35% ± 
10%, P < 0.05), secondary to increases in both tidal volume and 
frequency (Figure 3).

To investigate the possibility that the CBFV response to au-
ditory arousal was variable within NREM sleep, we compared 
events that occurred in Stage 2 sleep with those that occurred 
in slow wave sleep in a subset of subjects (n = 4) who had rela-
tively equal numbers of events in the 2 sleep stages. Arousal-

Figure 3—Changes in minute ventilation after arousal from 
NREM and REM sleep. Points represent mean values ± SEM. 
*P < 0.05, NREM vs. REM (n = 11 subjects).

Sleep State and Cerebral Blood Flow Velocity—Bangash et al

Figure 2—Cerebral blood flow velocity (CBFV), mean arterial 
pressure (MAP), and heart rate (HR) after arousal from NREM 
and REM sleep, expressed as percentages of the pre-arousal 
baseline means. Points represent mean values±SEM. * P < 0.05, 
NREM vs. REM (n = 11 subjects).
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perfusion in other brain regions, where the hemodynamic pro-
file may be different. Nevertheless, because the auditory cortex 
is located within the middle cerebral artery perfusion territory, 
we believe that our measurements of flow velocity in this artery 
provide important information about cerebrovascular regula-
tion during acoustic arousals.

To increase comfort, we did not require that subjects remain 
in the same body position throughout all observations. There-
fore, calibrations of the respiratory impedance plethysmograph, 
made before the onset of sleep in the supine position, may not 
have remained valid throughout all observations as body posi-
tion changed. We acknowledge this as a limitation of our study. 
We are confident, however, that body position did not change 
within trials. We believe that we have overcome this limitation 
by expressing VE as a percent of the preceding baseline period 
of stable sleep.

The majority of our REM sleep observations were made during 
tonic REM sleep. Further investigation is required to characterize 
the CBFV responses to auditory arousal from phasic REM sleep.

Effect of Sleep on cerebral Blood Flow

Prior studies performed to monitor cerebral blood flow with 
a variety of techniques have shown a dynamic pattern of brain 
perfusion over the course of a night’s sleep.1,6-13 In one previous 
study using transcranial Doppler, the investigators observed a pro-
gressive reduction of CBFV from waking state to stage 4 NREM 
sleep, but only for the first sleep cycle of the night.13 Thereafter, 
CBFV continued to decline, even in the lighter sleep stages of 
subsequent cycles, suggesting that EEG-measured cerebral ac-
tivity and cerebral perfusion are uncoupled in NREM sleep. In 
this and other previous studies, marked increases in CBFV were 
consistently observed at NREM-to-REM transitions,10,12,13 sug-
gesting a close coupling between cerebral activity and cerebral 
perfusion in REM sleep. Taken together these findings suggest 
that metabolic mechanisms of cerebral blood flow regulation are 
more important in REM vs. NREM sleep.

reaching a nadir approximately 18 sec after the onset of hyper-
ventilation (Figure 5). Both PETCO2 and CBFV had returned to 
baseline levels by the sixth post-hyperpnea breath.

DiScuSSiOn

The major finding of this study is that the cerebrovascular re-
sponse to transient arousal from sleep is dependent on the under-
lying sleep stage. In all subjects, we observed a rapid significant 
decline in CBFV following arousal from NREM sleep, whereas 
an immediate increase in CBFV was observed during REM 
sleep. The NREM-REM difference in CBFV response to audi-
tory arousal was evident despite qualitatively and quantitatively 
similar hemodynamic and ventilatory responses. To our knowl-
edge, this study is the first to systematically analyze the interac-
tion of hemodynamic, ventilatory, and cerebrovascular response 
to acoustic arousal from stable NREM and REM sleep.

Methodological issues

Doppler ultrasound measures of flow velocity are reflective 
of volume flow only when the cross-sectional area of the ves-
sel under study remains constant. Although we do not know 
whether middle cerebral artery diameter remains constant dur-
ing change in sleep state, previous investigators have shown 
that middle cerebral artery diameter does not vary more than 
4% during changes in arterial pressure, CO2 tension22,23 or gravi-
tational stress.24 For this reason, and because other investigators 
have demonstrated that velocity and flow through the middle 
cerebral artery are highly correlated,25,26 we believe we are justi-
fied in using velocity as a surrogate for flow in our experiments. 
We acknowledge, however, that inability to quantify middle ce-
rebral artery diameter is a limitation of our study. Nevertheless, 
we believe that this limitation is greatly outweighed by the ex-
cellent temporal resolution of Doppler ultrasonography, which 
allowed us to detect rapid changes in cerebral blood flow that 
would have been missed by techniques that are unable to track 
beat-by-beat changes.

Because we measured CBFV only in the middle cerebral ar-
tery, our data do not speak to the effects of auditory arousal on 

Figure 4—Changes in cerebral blood flow velocity (CBFV) dur-
ing stage 2 sleep (S2) and slow wave sleep (SWS) in 4 subjects 
who experienced relatively equally numbers of auditory stimuli in 
the 2 sleep stages.

Figure 5—Breath-by-breath changes in ventilation, cerebral 
blood flow velocity (CBFV), and end-tidal PCO2 (PETCO2) caused 
by voluntary hyperventilation during wakefulness. Unlike the im-
mediate decrease in CBFV observed after arousal from NREM 
sleep, the decrease in CBFV following the onset of hyperventila-
tion in the awake state was delayed relative to the decrease in 
PETCO2 (n = 6 subjects).
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ulation is thought to be heavily influenced by metabolic rate.13 At 
the same time, vasoconstrictor neurons in the locus ceruleus and 
the raphe nucleus cease firing completely.38,39 REM-related aboli-
tion of activity in these neurons may alter baseline vascular tone 
and/or result in divergent responses to perturbing stimuli. We 
speculate that the increases in CBFV observed following arousal 
from REM sleep were initiated by abrupt increases in cortical 
metabolic rate and/or perfusion pressure and that the absence 
of vasoconstrictor restraint may have played a permissive role. 
This scenario is not necessarily inconsistent with the relatively 
high levels of sympathetic vasoconstrictor outflow to the skeletal 
muscle circulation that have been observed during REM sleep.40 
Neuronal activity in the locus ceruleus and raphe nucleus exerts a 
powerful influence on the cerebral circulation, whereas interven-
tions that increase sympathetic outflow to skeletal muscle have 
little influence on cerebral blood flow.41

Does Arousal from rEM Sleep compromise cerebrovascular 
Autoregulation?

In our subjects, the immediate increase in CBFV after arous-
al from REM sleep occurred in parallel with the increase in 
mean arterial pressure. To our knowledge, we are the first to 
report this finding, which suggests a transient failure of auto-
regulation. We know that autoregulation is not perfect; in fact, 
prior studies indicate that autoregulation can be overridden, at 
least in part, by relatively rapid changes in arterial pressure.42 
It has been reported that cerebral autoregulation responds more 
effectively to low- vs. high-frequency changes in blood pres-
sure.43 In addition, autoregulation is much less effective in the 
presence of hypercapnia,44 which would be present at the time 
of arousal due to the sleep-related elevation in arterial PCO2.

Summary

This study demonstrated a qualitative difference in the CBFV 
response to arousal in NREM vs. REM sleep. The reduction in 
CBFV during NREM and the increase in REM sleep raise the 
possibility that the cerebral vasculature is regulated by different 
pathways depending on sleep state. The clinical significance of 
the present findings requires further investigation. Arousal-in-
duced increases and decreases in CBFV could increase the sus-
ceptibility to periodic breathing by altering the chemical milieu 
at the central chemoreceptor. If autoregulation is compromised 
during REM sleep, the susceptibility to adverse cerebrovascular 
events during this sleep stage could be increased.
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