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Field trials were carried out in the Sudan Savannah of Nigeria to assess the usefulness of

CERES–maize crop model as a decision support tool for optimizing maize production

through manipulation of plant dates. The calibration experiments comprised of 20

maize varieties planted during the dry and rainy seasons of 2014 and 2015 at Bayero

University Kano and Audu Bako College of Agriculture Dambatta. The trials for model

evaluation were conducted in 16 different farmer fields across the Sudan (Bunkure

and Garun—Mallam) and Northern Guinea (Tudun-Wada and Lere) Savannas using

two of the calibrated varieties under four different sowing dates. The model accurately

predicted grain yield, harvest index, and biomass of both varieties with low RMSE-values

(below 5% of mean), high d-index (above 0.8), and high r-square (above 0.9) for the

calibration trials. The time series data (tops weight, stem and leaf dry weights) were

also predicted with high accuracy (% RMSEn above 70%, d-index above 0.88). Similar

results were also observed for the evaluation trials, where all variables were simulated

with high accuracies. Estimation efficiencies (EF)-values above 0.8 were observed for all

the evaluation parameters. Seasonal and sensitivity analyses on Typic Plinthiustalfs and

Plinthic Kanhaplustults in the Sudan and Northern Guinea Savannas were conducted.

Results showed that planting extra early maize varieties in late July and early maize

in mid-June leads to production of highest grain yields in the Sudan Savanna. In the

Northern Guinea Savanna planting extra-early maize in mid-July and early maize in late

July produced the highest grain yields. Delaying planting in both Agro-ecologies until

mid-August leads to lower yields. Delaying planting to mid-August led to grain yield

reduction of 39.2% for extra early maize and 74.4% for early maize in the Sudan Savanna.

In the Northern Guinea Savanna however, delaying planting to mid-August resulted in

yield reduction of 66.9 and 94.3% for extra-early and early maize, respectively.
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INTRODUCTION

The total annual national production of maize in Nigeria has
increased from 0.66 M tons in 1978, to about 11.3 M tons in
2013 (FAOSTAT, FAO, 2014). Despite the increased area under
maize production, yields have remained quite low. The average
yield of maize in Nigeria was 1.4 tons ha−1 in 2013 compared
to 9.5 tons ha−1 in the USA and the world average of 5.5 tons
ha−1 (FAOSTAT, FAO, 2013). The major factors limiting the
yield of maize in Nigeria include the inherently poor soils (Jibrin
et al., 2012), frequent droughts (Kamara et al., 2009), lack of
proper adherence to improved agronomic practices (especially
planting dates and densities) and low use of improved inputs
such as fertilizers and seeds (Badu-Apraku et al., 2009). Maize
production in Nigeria was initially restricted to the Derived
Savanna and Humid Forests due to high amounts of annual
precipitation (Sowunmi and Akintola, 2010). In recent years,
new early and extra early maturing maize varieties have been
developed for the wet and dry Savannas of Nigeria because of
the short growing periods in these areas (Badu-Apraku et al.,
2011). The Nigerian Savannas are divided into Guinea Savanna
and Sudan Savannah. This classification is based on the similarity
of climatic elements and the type of vegetation that can be
supported (Ogungbile et al., 1998; Sowunmi and Akintola, 2010).

It has been generally agreed that in order to increase maize
production in the Nigerian Savannas, production practices
should be properly designed to tolerate the low precipitation
and high temperatures that characterize the zone (Jibrin et al.,
2012). Growing adaptable maize cultivars and choosing optimum
planting dates are avenues to increase yields that farmers can
adopt. Because of the short growing season, early and extra-
early maturing maize cultivars with drought tolerance are desired
(Kamara et al., 2009). The optimum planting date for early
maturing maize in the Sudan and Northern Guinea Savannas
has been reported to be the last week of June, while extra-early
maturing varieties are planted in first or second week of July
(Jaliya et al., 2008; Kamara et al., 2009). In the Savannas of
Nigeria, the length of growing season is determined by the date
of first rains and thus is highly variable from year to year. Climate
change (majorly rise in temperatures) has led to a shift in the
onset of the rainy season. In most areas of West and Central
Africa, delays in onset of the rainy season has been consistently
observed (Graef and Haigis, 2001; Marteau et al., 2011). Also,
long dry spells at the beginning, mid and end of the rainy season
are becoming more frequent even in the wetter Southern and
Northern Guinea Savannas. As a result of these constraints,
rainfed agricultural production is becoming more variable, and
farmers are faced with more risks during production, as a result,
optimal timing of all production practices is becoming more
important (Staggenborg et al., 1999). It becomes necessary for
producers to know the extent to which planting can be delayed
and also the likely yield penalty they could experience as a result
of late planting.

Recommendations for planting dates of maize are usually
based on agronomic field experiments that are specific to fields
and regions (Sorensen et al., 2000). Majority of such trials
cannot be temporally and spatially replicated because of seasonal

variations. Determination of optimum sowing dates for maize
by field experimentation entails repetition over long periods of
time in order to capture seasonal variability in precipitation. Also,
data for one location is not useful for another location because of
variation in not only rainfall but edaphic factors as well. Decision
support tools (DSTs) therefore remain very important diagnostic
tools for analysis of options that relate to sowing date rules and
other crop management strategies. DSTs such as crop simulation
models are not widely used in sub-Saharan Africa due to lack of
knowledge.

Simulation models have been developed as tools to support
strategic decision-making in research, production, land use and
policy (Penning de Vries et al., 1993). These models can be
used to evaluate agricultural production risk as a function of
climate variability, to assess regional yield potential across a wide
range of environmental conditions and to determine fertilizer
applications, suitable planting dates, and other management
factors for increasing crop yield (Egli and Bruening, 1992; Hunt
and Boote, 1998; Kaur and Handal, 1999). There are several
different crop and soil simulation models available to simulate
maize growth and management, such as agricultural production
systems simulator (APSIM; Keating et al., 2003), a cropping
systems simulator (CropSyst; Stöckle et al., 2003), erosion-
productivity impact calculator (EPIC; Jones et al., 1991;Williams,
1995), and decision support system for agro-technology transfer
(DSSAT; Jones et al., 2003). CERES–maize model is a module
within the DSSAT cropping system model (CSM). The DSSAT
CSM can facilitate the evaluation of the effects of different
production practices on crop yields, growth rates, and nutrient
losses, and also it helps improve our understandings of crop
physiology, genetics, soil management, and weather effects on
crop production and environmental quality (Cabrera et al., 2007;
Boote et al., 2010). The DSSAT CSM uses common soil C/N
and water models, which integrate mathematical equations to
describe the transformation and fluxes of various components of
the of soil carbon, water and nutrient cycles on a daily or hourly
basis. At the same time, it also predicts the temporal changes
in crop growth, nutrient uptake, water use, final yield as well as
other plant traits, and outputs (Boote et al., 2010). Therefore, the
dynamic CSM can integrate the effects of soil management and
climate, which enable us to predict the impact on crop production
and environmental quality.

CERES–maize model has been found to be able to accurately
predict yield variability, N uptake and maize growth response
to nitrogen (Pang et al., 1997; Bert et al., 2007) and to assess
site-specific nitrogen management to maximize field level net
return and minimize environmental impact by using spatially
variable management practices (Paz et al., 1999; Batchelor et al.,
2002; Link et al., 2006; Miao et al., 2006; Thorp et al., 2008).
Gungula et al. (2003) employed CERES-maize to simulate maize
phenology under nitrogen-stressed conditions in Nigeria, and
showed that the model could be reliably used for predicting
maize phenology only under non-limiting N conditions and
then suggested that an N stress factor is required to predict
crop phenology in low-N tropical soils. Jagtap et al. (1993)
reported that CERES–maize model predicted grain yield, stalk
and leaf weight, and aboveground biomass within 10% of the
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field observed data, which means that the built-in partitioning
rules in the model are robust and adequate. Soler et al. (2008),
used CERES–millet model to determine optimum planting dates
of millet in Niger Republic. Wolf et al. (2015), used CERES–
maize model to identify sowing rules for estimating rainfed yield
potential of sorghum and maize in Burkina Faso.

The objective of this study is to calibrate and evaluate the
CSM–CERES–maize model’s ability in simulating yield of early
and extra early maturing maize varieties in the Savannas of
Nigeria and evaluate the ability of themodel in simulating yield of
maize under varying planting dates in contrasting environments.

MATERIALS AND METHODS

Field Experiments
Two different sets of experiments were conducted for model
calibration and evaluation. For model calibration, eight (8) field
trials were conducted in the rainy and dry seasons of 2014 and
2015 at the Bayero University, Kano (BUK) Agricultural Research
Farm (11◦59′N; 8◦25′E; 466m asl) and Audu Bako College of
Agriculture Dambatta (12◦19′N; 8◦31′E; 504m asl). The dry-
season experiments were conducted under irrigated conditions
between early March to early June 2014 and 2015, while the rainy
season experiments were planted under rainfed conditions with
supplementary irrigations between mid-June to early October
2014 and 2015. The experiments were laid out as a single factor
experiment in a randomized complete block design (RCBD) with
three replications. Twenty maize varieties (only two were used in
the present study due to popularity and utilization in the study
areas) were randomized and assigned to plots, plot sizes were six
ridges (0.75m between ridges) each 5m in length making each
main plot 30 m2 [(8 × 0.75m = 6 m) × 5 m]. Planting was
done at a spacing of 25 cm between stands and 75 cm between
rows, two seeds were planted and later thinned to one stand at 2
weeks after sowing. NPK fertilizers were applied according to soil
analysis so as to ensure optimum nutrient availability. Detailed
soil and weather information from each location and season
were collected according to the minimum data sets required
for calibration of CERES–maize model as suggested by Jones
and Kiniry (1986). All data collections were done in the two
inner rows, 50 cm from each end of the ridge were ignored
and all plants inside were used as net plot, making the net
plot size to be 6 m2. Profile pits were dug prior to the start
of experimentation for soil characterization in both locations.
A Time Domain Reflectometer (TDR, FieldScout TDR300, by
Spectrum Technologies, Inc.) was used to measure soil moisture
content throughout the period of experiment; and supplementary
irrigationwas givenwhen readily available water (RAW)was fully
depleted in order to ensure optimal moisture availability.

The second sets of experiments were conducted for the
purpose of model evaluation. On-farm trials were set in 16
farmers’ fields across the Sudan and Northern Guinea Savannas
of Nigeria in 2014. The experiments were conducted in Bunkure,
Garun-Mallam, Tudun-Wada, and Lere local governments. The
evaluation trials were set under researcher managed conditions
in farmers’ field. The treatments for the evaluation trials includes
one early (EVDTW2009STR) and one extra-early maize variety

(2009TZEEWDTSTR) under four different planting windows
(Early June, Mid-June, Early July, and Mid-July). Planting was
done on 5th June, 16th June, 3rd July, and 17th July across all
locations. Optimum fertilizer recommendations were used in all
locations, two seeds were planted at an intra-row spacing of 0.25
m, and later thinned to one seedling per stand at 2 weeks after
planting. The plots for evaluation trials were eight ridges (0.75m
apart) by 5m length which gave a plant population of 53,333
plants ha−1. All recommended agronomic practices for the areas
were strictly followed.

Pedo-Climatic Conditions
Table 1 shows the soil properties of pedons in BUK and
Dambatta experimental sites. Pedons 1 and 2 represents the 2014
and 2015 trials at BUK, while pedons 3 and 4 represents the
2014 and 2015 trials at Dambatta. The surface horizon at BUK
experimental site had a Loamy sand texture, slightly acidic to
neutral pH, low organic carbon content, and medium level of
total nitrogen. The available phosphorus was in the medium
fertility class while cation exchange capacity was low in both
2014 and 2015. On the other hand, the surface horizon at
Dambatta experimental site had a sandy loam to loamy sand
texture, moderately acidic to slightly acidic pH, low organic
carbon content, andmedium level of total nitrogen. The available
phosphorus was in the medium fertility class while cation
exchange capacity was also low in both 2014 and 2015. The
pedons were classified according to the USDA Soil Taxonomy
(Soil Survey Staff, 2014).

The soils for the evaluation sites were all similar to the
calibration experiments. The Ap horizon for the soils in Bunkure
had neutral pH of 6.6, organic carbon contents of 2.7 g/kg,
available P of 12.72 mg/kg, and total nitrogen of 1.78 g/kg. In
Garun-Mallam, the soils had slightly higher pH (6.62), more
organic carbon contents (3.0), higher available P (13.0), andmore
total nitrogen 1.81 g/kg. In the northern Guinea Savanna, the
soils from both locations had neutral pH, higher organic carbon
contents (3.3 and 3.8 g/kg), higher available P-values (13.1 and
13.3 g/kg), and more total nitrogen (1.87 and 1.92).

Weather data for both years and experimental locations are
shown in Figure 1. For the calibration experiments, weather data
were collected from weather stations (Watchdog 2000 Series,
Spectrum Technologies) adjacent to both experimental sites.
For evaluation and sensitivity analysis however, weather data
were obtained from the IITA Station in Kano and the Nigerian
Meteorological Agency (NIMET). Higher amounts of rainfall
were recorded in the NGS for both years as expected, while
higher amount of rainfall was recorded in 2014 than in 2015.
Figure 2 shows 26 years (1990–2015) total annual rainfall for
Sudan Savanna (Bunkure) andNorthernGuinea Savanna (Zaria).

Plant Measurements
Plant measurements used for model calibration were: grain yield
at maturity, tops weight at anthesis, tops weight at maturity,
and harvest index. While for model evaluation, grain yield at
harvest, tops weight at harvest, and stalk weight at anthesis
weremeasured. Phenological studies during vegetative stage were
conducted by counting the leaves’ collar appearance daily for
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FIGURE 1 | Total rainfall, mean, minimum, and maximum temperature and mean solar radiation for calibration sites: (A) BUK 2014; (B) Dambatta 2014; (C) BUK

2015; (D) BUK 2015.

FIGURE 2 | Twenty six years (1990–2015) total annual rainfall for Northern Guinea (Zaria) and Sudan Savanna (Bunkure).

each variety to be used in calibration. Tasseling and silking were
recorded when tassels and silks become visible outside on 50%
of the plants of each plot. For measurement of physiological
maturity, regular sampling of two cobs per plot was done to
assess the presence of black layers at the base of the grains.
Destructivemethod of sampling was used to obtain above ground
biomass by sampling 1m of row from the sampling rows of
each plots every 18 days. Sampled plants were separated into
different parts and oven dried to constant weight and the weight
recorded. Manual harvesting was done to determine the final
harvest measurements. Harvest was conducted in the two middle
ridges by harvesting 5m× two ridges, with the ridges measuring

0.75 cm apart. Sampled plants were then separated into leaf, stem,
ears, and husks and later oven dried before weighing. Kernel
moisture was determined by collecting samples, weighing them,
drying in an oven, and weighted again. Five plants were sampled
per plot (15 per replication) to determine the average number of
grains.

CSM–CERES–Maize Model Evaluation
Model Calibration
The eight experiments (four in two locations) conducted in
2014 and 2015 were used for model calibration. The DSSAT
model inputs include cultivar coefficients, weather data (min.
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and max. temperature, rainfall, and relative humidity), initial
soil moisture, soil organic C, N and soil inorganic N and
P, soil topography/surface information, such as slope, soil
color, and crop management details (Jones et al., 1994).
The major physiological processes (photosynthesis, respiration,
accumulation, and partitioning of assimilates) in the CERES–
maize model are governed by six genetic coefficients (Table 3)
found in the maize cultivar file (Hoogenboom et al., 2010).
The six parameters are user adjustable and they determine
growth, phenology, and yield of the cultivars. For the purpose of
this calibration, the sequential approach was adopted. Growing
degree days (GDD) or thermal time, drive the phenological phase
of development in the CERES–maize models. GDD is computed
based on the daily maximum and minimum temperature
(Equation 1). In some growth stages, day length is also considered
(Jones and Kiniry, 1986; Jones et al., 2003).

GDD =
Tmax + Tmin

2
− Tbase (1)

Where GDD is growing degree days, Tmax is maximum
temperature, Tmin is minimum temperature and Tbase is base
temperature (Tbase for maize = 8◦C). GDD is cumulative and is
measured in ◦C day−1.

From the calibration experiments; P1, P5, G2, G3, and PHINT
were estimated. In addition to the cultivar coefficients, two
genetic coefficients [the soil fertility coefficient (SLPF), and the
radiation use efficiency (RUE)] were also calibrated in order to
be able to properly simulate above ground biomass and grain
yield across locations and seasons. The SLPF was calibrated
to optimize the soil variability across fields while the RUE
optimized the variation across seasons. The Genotype Coefficient
Calculator (GENCALC) of DSSAT 4.6 was used to estimate
the maize cultivar coefficients. The statistics used for model
calibration were r-square and RMSE, in addition normalized
RMSE (RMSEn) was used for multiple targets because it is
difficult to use RMSE alone (Anothai et al., 2008). RMSEn is
shown in Equation (2), and it gives a normalized value that allows
averaging over multiple characteristic targets providing a single
index for their goodness of fit.

RMSE =

√

∑n
i = 1(mi − si )

n
(2)

RMSEn =
RMSE × 100

m̄
(3)

Model Evaluation
The 16 on-farm experiments were used for model evaluation.
Experiments were set in 16 locations across the Sudan and
the Northern Guinea Savannas of Nigeria. The evaluation
experiments were used to test the optimized parameters achieved
from calibration experiments. The data used for evaluation were:
days to anthesis, days to physiological maturity, grain yield at
harvest, stalk weight at anthesis, and tops weight at harvest.
Evaluation of model performance was done by calculating root
mean square error (RMSE), model forecasting efficiency (EF),
and mean error (E) based on previous model evaluation studies

(Yang and Huffman, 2004). In addition, an index of agreement
(d) statistic was employed in this study. The d statistic is
recommended for making cross-comparisons when the d-value
is both relative and has bounded measures (Willmott, 1982).

EF =

∑n
i = 1 (m1 − m̄)2 −

∑n
i = 1 si −mi

∑n
i = 1 (mi − m̄)2

(4)

d = 1−

∑n
i = 1 (mi − Si)

2

∑n
i = 1 |Si| + |mi|)

2
(5)

Where is the number of measured dataset, Si is the simulated
data,mi is the measured data, and m̄ is the mean of the measured
data, Si′ = Si − m̄ andmi′ =mi − m̄.

Sensitivity Analysis (Model Application)

Sensitivity analysis was carried out to test the effect of varying
planting dates on yield of maize in two locations; Bunkure in
the Sudan Savanna and Zaria in the Northern Guinea Savanna.
Generally, Bunkure had a shorter growing season with mean
rainfall of 825 mm and growing season of 3.5 months. Average
rainfall in the Zaria is 1,125 mm with growing period of 5
months. Historical weather records (1990–2015) were obtained
from NIMET and used for seasonal analysis. Ten planting dates
were simulated using the seasonal analysis tool of DSSAT 4.6. The
planting dates started from 20th May and were repeated every 10
days until 20th August. Cumulative frequency plots were used
to present the results of simulated yields over 26 years. Stable
means for 26 years for each sowing date, variety and location were
calculated together with maximum and minimum obtainable.
In addition, percentage yield reduction for each planting date,
locations, and varieties were calculated.

RESULTS

CSM–CERES–Maize Model Evaluation
Model Calibration
Genotype specific parameters generated from the calibration
experiments of the two varieties are presented in Table 2.
Thermal time from seedling emergence to the end of juvenile
phase (P1) for EVDT was 205 while that of TZEE was 196.1.
Calculated value for P2 (Delay in development for each hour
that day-length is above 12.5 h) was set as 0.5 for both varieties
since both varieties are photo-insensitive. Yield determining
parameters (P5, G2, and G3) were also higher for EVDT
than TZEE, this makes EVDT to potentially have higher yield
and longer maturity period than TZEE. After generating the
coefficients, the model was evaluated for its ability to simulate
days to anthesis, days to physiological maturity, tops weight
at anthesis, tops weight at harvest, and grain yield at harvest
maturity of the two varieties. This was done by comparing
model simulated variables to actual observed variables from the
field experiments and then calculating evaluation statistics. The
model slightly over predicted all the parameters for both varieties,
although it was within acceptable range. Tops weight at anthesis
and at harvest were under-predicted for EVDT (Table 3). The
model over predicted grain yield at harvest maturity by 212 Kg
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TABLE 2 | Genotype specific parameters for maize varieties used.

Coefficient Description EVDT TZEE

P1 (◦ days) Thermal time from seedling emergence to the end of juvenile phase 205.0 196.1

P2 (days) Delay in development for each hour that day-length is above 12.5 h 0.50 0.50

P5 (◦ days) Thermal time from silking to time of physiological maturity 860 822

G2 (#) Maximum kernel number per plant 652 630

G3 (mg day−1) Kernel growth rate during linear grain filling stage under optimum conditions 7.8 6.6

PHINT (
◦
C day tip−1) Thermal time between successive leaf tip appearance 40.0 37.6

ha−1. The over prediction for days to anthesis and physiological
maturity were not up to a full day. The mean observed grain
yield for TZEE under rain fed and irrigated conditions were
3,883 and 4,018 Kg ha−1, respectively with lower RMSE observed
under rain fed than irrigated (Table 4). For harvest index,
a lower RMSE was observed under irrigated than rain fed.
The mean grain yield of EVDT under rain fed and irrigated
conditions were 4,989 and 5,216 Kg ha−1, respectively. Similarly,
lower RMSE and higher R2-values were recorded for rain fed
conditions than irrigated conditions for grain yield, days to
anthesis, and days to maturity. Table 5 shows the mean and
range for normalized root mean square error (RMSEn) and d
index for model evaluation with time series data for maize grown
during the 2014 and 2015 Seasons. The mean d index observed
for TZEE and EVDT were 0.88 and 0.86, respectively, with a
lower RMSEn recorded for TZEE. Figures 3, 4 show 1:1 lines
between simulated and observed calibration parameters. For both
varieties, better fits were observed for phenological variables
when compared with yield and yield attributes. Generally,
lower values of RMSEn were recorded for TZEE than EVDT
but the ranges were wider for EVDT than TZEE. For stem
and leaf dry weight, the d index and RMSEn-values were
higher for EVDT than TZEE. Generally, phenological and yield
parameters were simulated with higher accuracy than growth and
biomass.

Model Evaluation
Table 6 shows the result of model evaluation including evaluation
statistics for the two varieties in both locations. There was a
good fit in the model prediction for grain yield with D-index
and EF-values of 0.93 and 0.94, respectively, for TZEE at all
locations in the Sudan Savanna while in the Northern Guinea
Savanna, lower values were recorded for the same variety (0.85
and 0.86, respectively). Grain yield of EVDT was also simulated
with high accuracy in both environments, with both D-index
and EF-values recorded above 0.8. Stalk weight at anthesis and
tops weight at physiological maturity also showed good predicted
vs. observed fits, with D-index and EF-values above 0.8 in all
cases, except for EVDT in Bunkure where D-index value of
0.77 was recorded. For days to anthesis, D-index, and EF-values
were observed to be above 0.86 in both environments, with the
highest D-index value (0.96) recorded for EVDT in Zaria and
highest EF-value (0.97) recorded for the same variety at the same
location. The values of D-index and EF for all the measured
variables showed that observed and simulated characters were in

good agreement with each other, which means that the model is
robust and accurate in measuring both phenology and yield/yield
attributes.

Sensitivity Analysis (Model Application)
Themean, maximum, andminimum simulated grain yields from
26 years’ seasonal analysis for the different planting windows
is shown in Table 7. When TZEE was planted in Bunkure, the
highest grain yield was produced in early June. When planting
was delayed to early, mid and late July, grain yields still remained
within 3 tons per hectare threshold with the lowest grain yield
recorded in the late July planting window. For EVDT however,
the highest grain yield was observed when planting was done in
late June contrary to TZEE. Planting EVDT in July produced high
grain yields (<5,200 Kg/ha). Planting both varieties in early and
mid-May in Bunkure produced minimum yields of 0 Kg/ha while
delaying planting to mid and late August produced minimum
grain yields of 1,254 and 742 Kg/ha for TZEE and 1,906 and
1,410 Kg/ha for EVDT, respectively. In Zaria however, TZEE
produced highest grain yield (4,217 Kg/ha) when planting was
done in late July. Yields above 4 tons/ha were observed for all
planting dates from mid-May to late July. Delaying planting date
to early and mid-August led to significant decline in grain yield
(2,881 and 2,557 Kg/ha, respectively). Planting EVDT in Zaria
produced similar response to TZEE, with the highest simulated
grain yield of 6,079 produced in late July. The lowest minimum
grain yield (1,622 and 1,738 Kg/ha) for TZEE and EVDT were
observed when planting was delayed to late August. The highest
maximum yields for both varieties (5,050 for TZEE and 6,966
EVDTKg/ha) were observed when planting was done in late July.
Yield reduction of only 15%was observed when planting of TZEE
was delayed from June to July in Bunkure, while delaying planting
further to August resulted in yield decline of 64.5%. In Zaria
however, the yield reduction between planting in July and August
was 66.9%. For EVDT, delaying planting from July to August led
to a yield decline of 74.4% in the Bunkure and 94.3% in Zaria.

Figures 5A,B, 6A,B shows cumulative function plots for
simulated grain yields of TZEE and EVDT in Bunkure and
Zaria. The CF plots shows that for TZEE, delaying planting to
August produced yields below 3,000 Kg/ha more than 75% of the
time in Bunkure. For EVDT however, yields below 4 tons were
observed when planting was done in August with probability of
0.5. Planting TZEE in early June and EVDT in late July produced
the highest grain yield more than 90% of the time in Bunkure.
In Zaria however, planting in early and mid-August leads to low
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TABLE 4 | Mean observed values for harvest index, days to anthesis, and grain

yield per hectare of maize with corresponding RMSE, r-square, and EF-values

combined for 2014 and 2015 under irrigated and rainfed conditions.

Variable TZEE EVDT

Mean Obs.a RMSE r-square Mean Obs. RMSE r-square

RAINFED TRIALS

Harvest index 0.25 0.04 0.63 0.31 0.04 0.91

Days to anthesis 50.5 2.37 0.70 53.3 1.96 0.91

Days to maturity 84.1 3.12 0.67 95.8 3.02 0.92

Grain yield ha−1 3,883 43.04 0.83 4,989 41.92 0.97

IRRIGATED TRIAL

Harvest index 0.28 0.02 0.71 0.38 0.02 0.91

Days to anthesis 51.7 2.08 0.79 55.5 2.19 0.87

Days to maturity 85.7 3.25 0.77 97.1 4.77 0.85

Grain yield ha−1 4,018 86.34 0.89 5,216 107.86 0.88

TABLE 5 | Mean and range for normalized root mean square error (RMSEn) and d

index for model evaluation with time series data for maize grown during the 2014

and 2015 rainy and dry seasons.

Crop character RMSEn (%) d index

Mean Range Mean Range

TZEE

Tops weight (ton/ha) 51 49–53 0.88 0.79–0.91

Stem dry weight 62 60–66 0.79 0.68–0.88

Leaf dry weight 64 58–66 0.81 0.73–0.92

EVDT

Tops weight (ton/ha) 58 53–62 0.86 0.77–0.92

Stem dry weight 65 61–70 0.90 0.84–0.96

Leaf dry weight 68 66–71 0.91 0.86–0.98

yields with more than 80% probability. The probability of getting
high yields for TZEE was highest (0.8) when planting was done
in late July. Highest grain yields were observed for EVDT when
planted in early June (probability = 0.75). Planting TZEE in mid
and late May at Bunkure produced 0 yields with probability of
0.1. The tendency of having 0 yields as a result of planting in May
was higher (0.4) when EVDT was planted in mid and late May at
Zaria.

DISCUSSIONS

Sowing date recommendations for maize in Nigeria are usually
based on local knowledge. Recommendations are made from
large-scale cropping experiments conducted across regions
(NAERLS, 2013). Most of the time, the same sowing date is
recommended for multiple years and multiple locations without
considering seasonal and spatial variations. Farmers also take risk
by planting with the first onset of rain because of the uncertainty
of rainfall duration in the Nigerian savannas. Wolf et al. (2015)
suggested that sowing rules in Sub-Saharan Africa should have a
time window that is at most 40 days around the roughly estimated
best date of sowing. The recommended sowing date for maize in
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FIGURE 3 | Comparisons of observed and simulated variables for the calibration of TZEE. Solid lines represent 1:1 relationships, dashed line represents linear

regression, and each point represents a plot for both dry and rainy seasons. (A) Days to Anthesis; (B) Grain Yield, (C) Tops Weight at Anthesis, (D) Days to

Physiological maturity, (E) Harvest Index, and (F) Tops Weight at Maturity.

FIGURE 4 | Comparisons of observed and simulated variables for the calibration of EVDT. Solid lines represent 1:1 relationships, dashed line represents linear

regression, and each point represents a plot for both dry and rainy seasons. (A) Days to Anthesis; (B) Grain Yield, (C) Tops Weight at Anthesis, (D) Days to

Physiological maturity, (E) Harvest Index, and (F) Tops Weight at Maturity.

Nigeria is early tomid-June in both SS andNGS (NAERLS, 2013).
Findings from our research shows that variations exist between
varieties and locations with respect to best sowing dates. The
locations are influenced by agro-ecological zones.

The close agreement between observed and simulated
variables for both calibration and evaluation experiments means
that the model can be used to predict performance of the two
varieties across different environments in Savannas of Nigeria.
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TABLE 6 | Model evaluation statistics for evaluation experiments in Sudan and Northern Guinea Savannah for EVDT and TZEE.

ANTHESIS DAYS (Number)

Location TZEE EVDT

SIM OBS d-Index EF SIM OBS d-Index EF

Sudan Savanna 47.3 48 0.87 0.89 53.5 55 0.88 0.91

Northern Guinea 48.2 49 0.94 0.95 54.2 55 0.90 0.96

DAYS TO PHYSIOLOGICAL MATURITY (NUMBER)

TZEE EVDT

SIM OBS d-Index EF SIM OBS d-Index EF

Sudan Savanna 90.5 89 0.93 0.94 99.3 98 0.94 0.94

Northern Guinea 92.3 91 0.96 0.96 99.5 100 0.96 0.97

GRAIN YIELD (Kg/ha)

TZEE EVDT

SIM OBS d-Index EF SIM OBS d-Index EF

Sudan Savanna 3,491 3,396 0.93 0.94 5,335 5,298 0.88 0.89

Northern Guinea 3,986 4,211 0.85 0.86 6,014 5,834 0.82 0.84

STALK WEIGHT AT ANTHESIS (Kg/ha)

TZEE EVDT

SIM OBS d-Index EF RMSE SIM OBS d-Index EF

Sudan Savanna 8,001 7,993 0.79 0.82 0.87 8,959 8,873 0.88 0.90

Northern Guinea 8,393 8,145 0.78 0.81 0.85 9,927 9,816 0.86 0.87

Tops WEIGHT AT MATURITY (Kg/ha)

TZEE EVDT

SIM OBS d-Index EF SIM OBS d-Index EF

Sudan Savanna 12,379 11,999 0.86 0.88 13,271 12,998 0.77 0.81

Northern Guinea 13,296 13,775 0.85 0.87 14,012 13,975 0.82 0.84

The outcomes of simulations resulted in high D-index, RMSE,
and EF-values across all treatments and locations and for all
tested variables indicating that the efficiency and robustness
of the model is quite adequate and the model can be used
in the environments under study. In CERES–maize model,
flowering and maturity dates were controlled by the coefficients
P1 and P5 in the genotype file. Accurate prediction of phenology
was observed due to the close agreements between observed
and simulated days to tasseling and days to physiological
maturity for the calibration experiments. Accurate prediction
of maize phenology is the most important stage in model
calibration (Archontoulis et al., 2014). When phenology is
accurately calibrated, it is expected that models will be able
to capture all genotypic variations that affect the leaf area
development, biomass production, and grain yield (Robertson
et al., 2002). Grain yield is affected by radiation interception
by crop canopy, radiation use efficiency (RUE) and harvest
index (Lee and Tollenaar, 2007). Pantazi et al. (2016) suggested
that yield prediction in crop modeling is the most important
variable for the improvement of crop management. The close
agreement between observed and simulated grain yield in both
calibration and evaluation experiments can be attributed to

accurate measurement of G2 and G3 and also to adjustments
made to SLPF and RUE in the cultivar files of CERES–maize
model. The high agreement between observed and simulated
values for the evaluation experiments shows that the model is
robust and accurate enough to make wider applications across
the ecology under study. The result of evaluation trials using
different planting dates indicates that the extra early maize
varieties produced higher yields when planted in early June in
the SS and in mid and late July in the NGS.

The result of both seasonal and sensitivity analysis indicates
that the variation in yield for the different sowing dates tested
was very high. When earlier (Mid and Late May) and later (early
and mid-August) dates were simulated, higher variations in yield
were observed. This is an indication that early planting, which
is a norm by farmers in the Nigerian Savannas is not only risky,
but it could lead to high reduction in yield of maize. Also, early
planting at the onset of rainy season is quite risky, as most of
the time early rains are followed by long dry periods which could
lead to total crop failure. Late planting also leads to a higher yield
reduction and has the potential of resulting in total crop failure.
Late planting results in yield reduction due to failure of the crops
tomature if the rainfall ceases early before the end of the cropping
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TABLE 7 | Result of 26 year seasonal analysis using different planting windows for early and extra-early maize in Bunkure and Zaria.

Sowing window Grain Yield (Kg ha−1) TZEE Bunkure Grain Yield (Kg ha−1) TZEE Zaria

Mean Max. Min. St. Dev Mean Max. Min. St. Dev

Mid May 3,096 4,499 0 474.5 4,125 4,436 3,462 253.8

Late May 3,390 4,261 0 674.6 4,123 4,609 1,901 556.4

Early June 3,887 4,613 2,243 486.2 4,090 4,525 2,676 393.1

Mid-June 3,837 4,632 2,596 260.7 4,163 4,586 3,564 284.1

Late June 3,522 4,625 2,391 442.1 4,169 4,606 3,202 382.4

Early July 3,318 4,575 2,402 406.6 4,175 4,750 2,937 444.6

Mid July 3,211 4,242 1,875 643.2 4,217 4,752 2,910 429.1

Late July 3,067 4,079 1,832 424.2 4,141 5,050 2,982 472.5

Early August 2,823 3,990 1,254 482.5 2,881 4,887 2,872 531.6

Mid-August 2,362 3,856 742 556.4 2,527 4,628 1,622 701.4

Grain Yield (Kg ha−1) EVDT Bunkure Grain Yield (Kg ha−1) EVDT Zaria

Mid May 3,167 6,815 0 694.1 5,534 6,254 4,084 640.3

Late May 4,473 7,194 0 525.1 5,545 6,294 2,526 904.1

Early June 4,943 7,426 2,611 611.8 5,600 6,348 2,004 915.6

Mid-June 5,435 7,665 2,364 346.5 5,572 6,043 4,222 414.5

Late June 6,092 7,685 4,760 410.7 5,701 6,329 4,522 379.7

Early July 5,865 7,665 3,780 584.3 5,799 6,400 4,670 315.1

Mid July 5,846 7,665 3,601 359.2 5,939 6,400 5,091 414.2

Late July 5,281 7,124 3,560 733.1 6,079 6,966 5,116 646.3

Early August 3,571 5,898 1,906 815.2 3,782 6,536 3,758 640.2

Mid-August 3,493 5,195 1,410 694.1 3,128 6,889 1,785 644.3

FIGURE 5 | Cumulative function plots for simulated grain yields of TZEE in Bunkure (A) and Zaria (B).

season. This will also have a detrimental effect on the final grain
yield (Lauer, 1998; Jibrin et al., 2012). In the Nigerian Savannas,
the rainy season establishes in late June and ends in October.
Late plating in August will not allow the plants to complete
their life cycle before the end of the rainy season. Maize crops
planted in August will therefore experience severe drought stress
at flowering stage which is critical for maize productivity. The
high yields observed for planting in mid and late July means
that maize farmers in the Sudan and Northern Guinea Savannas

can get reasonably high yields in seasons where delay in rainfall
establishment is experienced. For the early varieties, higher yields
were observed when planted in late June in the SS and mid-
late July in the NGS. This is a clear indication that early and
extra-early varieties could be planted in places where delay in
onset of rainy season is experienced. The delay in establishment
of rainfall is becoming prevalent in the Nigerian savannas, thus
the result of the seasonal analysis means that planting early and
extra early maize is best delayed until the first or second week
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FIGURE 6 | Cumulative function plots for simulated grain yields of EVDT in Bunkure (A) and Zaria (B).

of July in both savannas. The result of this work is in agreement
with findings by Kamara et al. (2009) who reported higher grain
yield of maize in the Sudan Savanna, although on different soils,
when planting was delayed to early andmid-July. Also Jibrin et al.
(2012) reported that CERES–maize model predicted decrease in
grain yield with delay in planting date to early August except for
TZB-SR at Azir, North-East Nigeria in 2006 where planting on
July 13 gave higher yield than planting on June 29. The reason for
differential response to maize planting dates could be attributed
to variation in thematurity periods. Extra early and early varieties
complete their life cycles earlier as a result there is room to
delay planting especially in the Northern Guinea Savanna. Jaliya
et al. (2008) made similar findings from field trials with different
maturingmaize varieties, they reported that planting inmid-June
to late July in both Sudan and Northern Guinea Savannas leads to
high yields of maize. They also reported that when early planting
is done before proper establishment of rains low population
as well as poor plant vigor/establishment could be experienced
this might lead to reduction in yield. Late planting results in
flowering coinciding with cessation of rains, this could lead to
reduction in number of kernels/cob and drastic reduction in final
yield.

CONCLUSION

The ability of CERES–maize to reasonably predict phenology,
grain yield and tops weight of the varieties used in this study
is an indication of its usefulness as a decision-support tool for
maize researchers and extension workers in the Savanna regions
of Nigeria. The Model suggests that both early and extra-early
varieties yield higher when planted in mid to late June in SS, and
mid-late July in NGS. While both varieties yield higher when
planted in mid to late July in the NGS. Delays in planting to
August can result in significant yield reductions. In both SS and
NGS planting in May and August are quite risky and could lead
to total crop failure.
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