
IJDAR (2015) 18:317–335

DOI 10.1007/s10032-015-0249-8

ORIGINAL PAPER

CERMINE: automatic extraction of structured metadata

from scientific literature

Dominika Tkaczyk1
· Paweł Szostek1

· Mateusz Fedoryszak1
· Piotr Jan Dendek1

·

Łukasz Bolikowski1

Received: 10 December 2014 / Revised: 4 May 2015 / Accepted: 19 June 2015 / Published online: 3 July 2015

© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract CERMINE is a comprehensive open-source sys-

tem for extracting structured metadata from scientific articles

in a born-digital form. The system is based on a modu-

lar workflow, whose loosely coupled architecture allows for

individual component evaluation and adjustment, enables

effortless improvements and replacements of independent

parts of the algorithm and facilitates future architecture

expanding. The implementations of most steps are based on

supervised and unsupervised machine learning techniques,

which simplifies the procedure of adapting the system to new

document layouts and styles. The evaluation of the extrac-

tion workflow carried out with the use of a large dataset

showed good performance for most metadata types, with the

average F score of 77.5 %. CERMINE system is available

under an open-source licence and can be accessed at http://

cermine.ceon.pl. In this paper, we outline the overall work-

flow architecture and provide details about individual steps

implementations. We also thoroughly compare CERMINE

to similar solutions, describe evaluation methodology and

finally report its results.

B Dominika Tkaczyk

d.tkaczyk@icm.edu.pl

Paweł Szostek

pawel.szostek@gmail.com

Mateusz Fedoryszak

m.fedoryszak@icm.edu.pl

Piotr Jan Dendek

p.dendek@icm.edu.pl

Łukasz Bolikowski

l.bolikowski@icm.edu.pl

1 Interdisciplinary Centre for Mathematical and Computational

Modelling, University of Warsaw, ul. Prosta 69,

00-838 Warsaw, Poland

Keywords Metadata extraction · Bibliography

extraction · Content classification · Reference parsing ·

Scientific literature analysis

1 Introduction

Academic literature is a very important communication

channel in the scientific world. Keeping track of the latest

scientific findings and achievements, typically published in

journals or conference proceedings, is a crucial aspect of the

research work. Ignoring this task can result in deficiencies

in the knowledge related to the latest discoveries and trends,

which in turn can lower the quality of the research, make

results assessment much harder and significantly limit the

possibility to find new interesting research areas and chal-

lenges. Unfortunately, studying scientific literature, and in

particular being up-to-date with the latest positions, is diffi-

cult and extremely time-consuming. The main reason for this

is huge and constantly growing volume of scientific litera-

ture, and also the fact that publications are mostly available

in the form of unstructured text.

Modern digital libraries support the process of studying

the literature by providing intelligent search tools, proposing

similar and related documents, building citation and author

networks, and so on. In order to provide such high-quality ser-

vices, the library requires an access not only to the sources

of stored documents, but also to their metadata including

information such as title, authors, keywords, abstract or bib-

liographic references. Unfortunately, in practice good quality

metadata is not always available, sometimes it is missing, full

of errors or fragmentary. In such cases, the library needs a

reliable automatic method to extract metadata and references

from documents at hand.

Even limited to analysing scientific literature only, the

problem of extracting the document’s metadata remains

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10032-015-0249-8&domain=pdf
http://cermine.ceon.pl
http://cermine.ceon.pl

318 D. Tkaczyk et al.

difficult and challenging, mainly due to the vast diversity

of possible layouts and styles used in articles. In different

documents, the same type of information can be displayed

in different places using a variety of formatting styles and

fonts. For instance, a random subset of 125,000 documents

from PubMed Central [1] contains publications from nearly

500 different publishers, many of which use original lay-

outs and styles in their articles. What is more, PDF format,

which is currently the most popular format for storing source

documents, does not preserve the information related to

the document’s structure, such as words and paragraphs,

lists and enumerations, the structure of tables, the hier-

archy of sections, or the reading order of the text. This

information has to be reverse engineered based on the text

content and the way the text is displayed in the source

file.

These problems are addressed by CERMINE—a com-

prehensive tool for automatic metadata extraction from

born-digital scientific literature. The extraction algorithm

proposed by CERMINE performs a thorough analysis of the

input scientific publication in PDF format and extracts:

– a rich set of document’s metadata,

– a list of bibliographic references along with their metadata,

– structured full text with sections and subsections (cur-

rently in experimental phase).

CERMINE is based on a modular workflow composed of

three paths and a number of steps with carefully defined

input and output. By virtue of such workflow architecture,

individual steps can be maintained separately. As a result, it

is easy to perform evaluation or training, improve or replace

one step implementation without changing other parts of the

workflow.

Designed as a universal solution, CERMINE is able to

handle a vast variety of publication layouts reasonably well,

instead of being perfect in processing a limited number

of document layouts only. We achieved this by employing

supervised and unsupervised machine learning algorithms

trained on large diverse datasets. This decision also resulted

in increased maintainability of the system, as well as its abil-

ity to adapt to new, previously unseen document layouts.

The evaluation we conducted showed good performance

of the key process steps and the entire metadata extraction

process, with the overall F score of 77.5 % (the details are

provided in Sect. 5.5). The comparison to other similar sys-

tems showed CERMINE performs better for most metadata

types.

CERMINE web service, as well as the source code, can

be accessed online [2].

This article is an extended version of the conference paper

describing CERMINE system [3]. In contrast to the previous

version, the article contains:

– detailed descriptions of all the extraction algorithm com-

ponents,

– the details related to feature selection for zone classifiers,

– new evaluation results for algorithms trained on GRO-

TOAP2 dataset [4],

– the evaluation of the bibliography extraction workflow,

– the comparison to other similar systems.

In the following sections, we describe the state of the art, pro-

vide the details about the overall workflow architecture and

individual implementations and finally report the evaluation

methodology and its results.

2 State of the art

Extracting metadata from articles and other documents is a

well-studied problem. Older approaches expected scanned

documents on the input and were prepared for executing full

digitization from bitmap images. Nowadays, we have to deal

with growing amount of born-digital documents, which do

not require individual character recognition. The approaches

to the problem differ in the scope of the solution, supported

file formats and methods and algorithms used.

Most approaches focus on extracting the article’s metadata

only and often do not process the entire input document.

Proposed solutions are usually based on rules and heuristics

or machine learning techniques.

For example, Giuffrida et al. [5] extract the content from

PostScript files using a tool based onpstotext, while basic

document metadata is extracted by a set of rules and features

computed for extracted text chunks. Another example of a

rule-based system is PDFX described by Constatin et al. [6].

PDFX can be used for converting scholarly articles in PDF

format to their XML representation by annotating fragments

of the input documents and extracts basic metadata, struc-

tured full text and unparsed reference strings. Pdf-extract [7]

is an open-source tool for identifying and extracting semanti-

cally significant regions of scholarly articles in PDF format.

It uses a combination of visual cues and content traits to

perform structural analysis in order to determine columns,

headers, footers and sections, detect references sections and

finally extract individual references.

Machine learning-based approaches are far more popular.

They differ in classification algorithms, document fragments

that undergo the classification (text chunks, lines or blocks)

and extracted features. For example, Han et al. [8] extract

metadata from the headers of scientific papers by two-stage

classification of text lines with the use of support vec-

tor machines and text-related features. Another example of

SVM-based approach is metadata extractor used in CRIS

systems proposed by Kovacevic et al. [9]. The tool classi-

fies the lines of text using both geometric and text-related

123

CERMINE: automatic extraction of structured metadata from scientific literature 319

features in order to extract the document’s metadata from

PDFs. Lu et al. [10] analyse scanned scientific journals in

order to obtain volume level, issue level and article level

metadata. In their approach, the pages are first OCRed, rule-

based pattern matching is used for volume and issue title

pages, while article metadata is extracted using SVM and

both geometric and textual features of text lines.

Other classification techniques include for example hid-

den Markov models, neural classifiers, maximum entropy

and conditional random fields. Marinai [11] extracts charac-

ters from PDF documents using JPedal package, performs

rule-based page segmentation, and finally employs neural

classifier for zone classification. Cui and Chen [12] use HMM

classifier to extract metadata from PDF documents, while text

extraction and page segmentation are done by pdftohtml,

a third-party open-source tool. The system based on Team-

Beam algorithm proposed by Kern et al. [13] is able to

extract a basic set of metadata from PDF documents using an

enhanced Maximum Entropy classifier. Lopez [14] proposes

GROBID system for analysing scientific texts in PDF format.

GROBID uses CRF in order to extract document’s metadata,

full text and a list of parsed bibliographic references. ParsCit,

described by Luong et al. [15] also uses CRF for extracting

the logical structure of scientific articles, including the docu-

ment’s metadata, structured full text and parsed bibliography.

ParsCit analyses documents in text format, and therefore does

not use geometric hints present in the PDF files.

Reference sections are typically located in the documents

using heuristics [6,7,16,17] or machine learning [14,18].

Citation parsing, that is extracting metadata from cita-

tion strings, is usually performed using regular expressions

and knowledge-based approaches [19,20], or more popu-

lar machine learning techniques, such as CRF [16–18,21],

SVM [22] or HMM [23].

A number of systems mentioned above are available

online: PDFX [24] (the tool is closed source, available only

as a web service), GROBID [25], ParsCit [26] and Pdf-

extract [7]. In Sect. 5.6, we report the results of comparing the

performance of these tools with CERMINE. Table 1 shows

the scope of the information various metadata extraction sys-

tems are able to extract.

The most important features differentiating CERMINE

from other approaches are:

– CERMINE is able to extract bibliographic information

related to the document, such as journal name, volume,

issue or pages range.

– The algorithms use not only the text content of the doc-

ument, but also its geometric features related to the way

the text is displayed in the source PDF file.

– Our solution is based mostly on machine learning,

which increases its ability to conform to different article

layouts.

– The flexibility of the system implementation is granted by

its modular architecture.

– For most metadata types, the solution is very effective.

– The source code is open and the web service is available

online [2].

Table 1 The comparison of the

scope of the information

extracted by various metadata

extraction systems

CERMINE PDFX GROBID ParsCit Pdf-extract

Title � � � � �

Author � � � � ×

Affiliation � × � � ×

Affiliation’s metadata � × � × ×

Author–affiliation � × � × ×

Email address � � � � ×

Author–email � × � × ×

Abstract � � � � ×

Keywords � × � � ×

Journal � × × × ×

Volume � × × × ×

Issue � × × × ×

Pages range � × × × ×

Year � × � × ×

DOI � × � × ×

Reference � � � � �

Reference’s metadata � × � � ×

The table shows simple metadata types (e.g. title, author, abstract or bibliographic references), relations bet-

ween them (author–affiliation, author–email address), and also metadata in the structured form (references

and affiliations along with their metadata)

123

320 D. Tkaczyk et al.

3 System architecture

CERMINE accepts a scientific publication in PDF format

on the input. The extraction algorithm inspects the entire

content of the document and produces two kinds of output:

the document’s metadata and bibliography.

CERMINE’s extraction workflow is composed of three

paths (Fig. 1):

(A) Basic structure extraction path takes a PDF file on the

input and produces its geometric hierarchical represen-

tation, which stores the entire text content of the input

document and the geometric features related to the way

the text is displayed in the PDF file. More precisely,

the structure is composed of pages, zones, lines, words

and characters, along with their coordinates and dimen-

sions. Additionally, the reading order of all elements is

set and every zone is labelled with one of four general

categories: metadata, references, body or other.

(B) Metadata extraction path analyses metadata parts of the

geometric hierarchical structure and extracts a rich set

of document’s metadata from them.

(C) Bibliography extraction path analyses parts of the struc-

ture labelled as references. The result is a list of

document’s parsed bibliographic references.

Table 2 shows the decomposition of the extraction work-

flow into paths and steps and provides basic information

about tools and algorithms used for every step.

3.1 Models and formats

CERMINE’s input document format is PDF, currently the

most popular format for storing the sources of scientific

publications. A PDF file contains by design the text of the

document in the form of a list of chunks of various length

specifying the position, size and other geometric features

of the text as well as the information related to the fonts and

graphics. PDF documents look the same no matter what soft-

ware or hardware is used for viewing them. Unfortunately,

the format does not preserve any information related to the

logical structure of the text, such as words, lines, paragraphs,

enumerations, sections, section titles or even the reading

order of text chunks. This information has to be deduced

from the geometric features of the text.

Currently, the extraction workflow does not include any

OCR phase, it analyses only the PDF text stream found in

the input document. As a result, PDF documents contain-

ing scanned pages in the form of images will not be properly

processed. We plan to provide this functionality in the future.

Thanks to the flexible architecture of the workflow, the only

required change is adding an alternative implementation of

the character extraction step, able to perform optical charac-

ter recognition on scanned pages and extract characters along

with dimensions and positions. Other parts of the workflow

will remain the same.

CERMINE’s intermediate model of the document con-

structed during the first process path is a hierarchical structure

that holds the entire text content of the article, while also

preserving the information related to the way elements are

displayed in the corresponding PDF file. In this representa-

tion, an article is a list of pages, each page contains a list

of zones, each zone contains a list of lines, each line con-

tains a list of words, and finally each word contains a list

of characters. Each structure element can be described by its

text content and bounding box (a rectangle enclosing the ele-

ment). The structure contains also the natural reading order

for the elements on each level. Additionally, labels describing

the role in the document are assigned to zones.

The smallest elements in the structure are individual char-

acters. A word is a continuous sequence of characters placed

in one line with no spaces between them. Punctuation marks

and typographical symbols can be separate words or parts

of adjacent words, depending on the presence ofspaces.

Fig. 1 CERMINE’s extraction

workflow architecture. At the

beginning, the basic structure is

extracted from the PDF file.

Then, metadata and

bibliography are extracted in

two parallel paths

123

CERMINE: automatic extraction of structured metadata from scientific literature 321

Table 2 The decomposition of CERMINE’s extraction workflow into independent processing paths and steps

Path Step Goal Implementation

A. Basic structure extraction A1. Character extraction Extracting individual characters along with their

page coordinates and dimensions from the input

PDF file

iText library

A2. Page segmentation Constructing the document’s geometric

hierarchical structure containing (from the top

level) pages, zones, lines, words and characters,

along with their page coordinates and dimensions

Enhanced Docstrum

A3. Reading order resolving Determining the reading order for all structure

elements

Bottom-up heuristic-based

A4. Initial zone classification Classifying the document’s zones into four main

categories: metadata, body, references and other

SVM

B. Metadata extraction B1. Metadata zone

classification

Classifying the document’s zones into specific

metadata classes

SVM

B2. Metadata extraction Extracting atomic metadata information from

labelled zones

Simple rule-based

C. Bibliography extraction C1. Reference strings

extraction

Dividing the content of references zones into

individual reference strings

K-means clustering

C2. Reference parsing Extracting metadata information from references

strings

CRF

Hyphenated words that are divided into two lines appear in

the structure as two separate words that belong to different

lines. A line is a sequence of words that forms a consistent

fragment of the document’s text. Words placed geometrically

in the same line of the page, that are parts of neighbouring

columns, in the structure do not belong to the same line. A

zone is a consistent fragment of the document’s text, geomet-

rically separated from surrounding fragments and not divided

into paragraphs or columns.

All bounding boxes are rectangles with edges parallel to

the page’s edges. A bounding box is defined by two points:

left upper corner and right lower corner of the rectangle. The

coordinates are given in typographic points (1 typographic

point equals to 1/72 of an inch). The origin of the coordinate

system is the left upper corner of the page.

The model can be serialized using XML TrueViz for-

mat [27]. The listing below shows a fragment of an example

TrueViz file. Repeated fragments or fragments that are not

used by the system have been omitted.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE Document SYSTEM "Trueviz.dtd">

<Document>

[...]

<Page>

<PageID Value="0"/>

[...]

<PageNext Value="1"/>

<Zone>

<ZoneID Value="0"/>

<ZoneCorners>

<Vertex x="55.4" y="34.3"/>

<Vertex x="250.5" y="58.3"/>

</ZoneCorners>

<ZoneNext Value="1"/>

<Classification>

<Category Value="BIB_INFO"/>

<Type Value=""/>

</Classification>

<Line>

<LineID Value="0"/>

<LineCorners>

<Vertex x="55.4" y="34.3"/>

<Vertex x="250.5" y="58.3"/>

</LineCorners>

<LineNext Value="1"/>

<LineNumChars Value=""/>

<Word>

<WordID Value="0"/>

<WordCorners>

<Vertex x="55.4" y="34.3"/>

<Vertex x="115.3" y="58.3"/>

</WordCorners>

<WordNext Value="1"/>

<WordNumChars Value=""/>

<Character>

<CharacterID Value="0"/>

<CharacterCorners>

<Vertex x="55.4" y="34.3"/>

<Vertex x="74.1" y="58.3"/>

</CharacterCorners>

<CharacterNext Value="1"/>

<GT_Text Value="B"/>

</Character>

<Character>

[...]

</Word>

[...]

</Line>

[...]

</Zone>

</Page>

</Document>

123

322 D. Tkaczyk et al.

The output format of the extraction workflow is NLM

JATS [28]. JATS (Journal Article Tag Suite) defines a rich

set of XML elements and attributes for describing scientific

publications and is an application of NISO Z39.96-2012 stan-

dard [29]. Documents in JATS format can store a wide range

of structured metadata of the document (title, authors, affil-

iations, abstract, journal name, identifiers, etc.), the full text

(the hierarchy of sections, headers and paragraphs, structured

tables, equations, etc.), the document’s bibliography in the

form of a list of references along with their identifiers and

metadata, and also the information related to the text format-

ting.

4 Extraction workflow implementation

In this section, we describe in detail the approaches and algo-

rithms used to implement all the individual workflow steps.

4.1 Layout analysis

Layout analysis is the initial phase of the entire workflow.

Its goal is to create a hierarchical structure of the document

preserving the entire text content of the input document and

features related to the way the text is displayed in the PDF file.

Layout analysis is composed of the following steps:

1. Character extraction (A1)—extracting individual charac-

ters from a PDF document.

2. Page segmentation (A2)—joining characters into words,

lines and zones.

3. Reading order determination (A3)—calculating the read-

ing order for all the structure levels.

4.1.1 Character extraction

The purpose of the character extraction step is to extract

individual characters from the PDF stream along with their

positions on the page, widths and heights. These geometric

parameters play important role in further steps, in particular

page segmentation and content classification.

The implementation of character extraction is based on

open-source iText [30] library. We use iText to iterate

over PDF’s text-showing operators. During the iteration, we

extract text strings along with their size and position on the

page. Next, extracted strings are split into individual charac-

ters and their individual widths and positions are calculated.

The result is an initial flat structure of the document, which

consists only of pages and characters. The widths and heights

computed for individual characters are approximate and can

slightly differ from the exact values depending on the font,

style and characters used. Fortunately, those approximate val-

ues are sufficient for further steps.

4.1.2 Page segmentation

The goal of page segmentation step is to create a geometric

hierarchical structure storing the document’s content. As a

result the document is represented by a list of pages, each

page contains a set of zones, each zone contains a set of

text lines, each line contains a set of words, and finally each

word contains a set of individual characters. Each object in

the structure has its content, position and dimensions. The

structure is heavily used in further steps, especially zone clas-

sification and bibliography extraction.

Page segmentation is implemented with the use of a

bottom-up Docstrum algorithm [31]:

1. The algorithm is based to a great extent on the analysis

of the nearest-neighbour pairs of individual characters. In

the first step, five nearest components for every character

are identified (red lines in Fig. 2).

2. In order to calculate the text orientation (the skew angle),

we analyse the histogram of the angles between the ele-

ments of all nearest-neighbour pairs. The peak value is

assumed to be the angle of the text. Since in the case

of born-digital documents, the skew is almost always

horizontal, and this step is mostly useful for documents

containing scanned pages.

3. Next, within-line spacing is estimated by detecting the

peak of the histogram of distances between the nearest

neighbours. For this histogram, we use only those pairs,

in which the angle between components is similar to the

estimated text orientation angle (blue lines in Fig. 2). All

the histograms used in Docstrum are smoothed to avoid

detecting local abnormalities. An example of a smoothed

distance histogram is shown in Fig. 3.

4. Similarly, between-line spacing is also estimated with the

use of a histogram of the distances between the nearest-

neighbour pairs. In this case, we include only those pairs

that are placed approximately in the line perpendicular

to the text line orientation (green lines in Fig. 2).

5. Next, line segments are found by performing a tran-

sitive closure on within-line nearest-neighbour pairs.

Fig. 2 An example fragment of a text zone in a scientific article. The

figure shows five nearest neighbours of a given character (red lines),

neighbours placed in the same line used to determine in-line spacing

(blue lines), and neighbours placed approximately in the line perpendic-

ular to the text line orientation used to determine between-line spacing

(green lines) (color figure online)

123

CERMINE: automatic extraction of structured metadata from scientific literature 323

0

250

500

750

1000

1250

0 5 10 15 20

Distance

C
o
u
n
t

original
smoothed

Fig. 3 An example of a nearest-neighbour distance histogram. The fig-

ure shows both original and smoothed versions of the histogram. The

peak distance chosen based on the original data would be the global

maximum, even though the histogram contains two close peaks of sim-

ilarly high frequency. Thanks to smoothing both local peaks are taken

into account, shifting the resulting peak slightly to the left and yielding

more reliable results

To prevent joining line segments belonging to different

columns, the components are connected only if the dis-

tance between them is sufficiently small.

6. The zones are then constructed by grouping the line

segments on the basis of heuristics related to spatial

and geometric characteristics: parallelness, distance and

overlap.

7. The segments belonging to the same zone and placed in

one line horizontally are merged into final text lines.

8. Finally, we divide the content of each text line into words

based on within-line spacing.

A few improvements were added to the Docstrum-based

implementation of page segmentation:

– the distance between connected components, which is

used for grouping components into lines, has been split

into horizontal and vertical distance (based on estimated

text orientation angle),

– fixed maximum distance between lines that belong to the

same zone has been replaced with a value scaled relatively

to the line height,

– merging of lines belonging to the same zone has been

added,

– rectangular smoothing window has been replaced with

Gaussian smoothing window,

– merging of highly overlapping zones has been added,

– words determination based on within-line spacing has

been added.

4.1.3 Reading order resolving

A PDF file contains by design a stream of strings that under-

goes extraction and segmentation process. As a result, we

obtain pages containing characters grouped into zones, lines

and words, all of which have a form of unsorted bag of items.

The aim of setting the reading order is to determine the right

sequence in which all the structure elements should be read.

This information is used in zone classifiers and also allows

to extract the full text of the document in the right order. An

example document page with a reading order of the zones is

shown in Fig. 4.

Reading order resolving algorithm is based on a bottom-up

strategy: first characters are sorted within words and words

within lines horizontally, then lines are sorted vertically

within zones, and finally we sort zones. The fundamental

principle for sorting zones was taken from [32]. We make

use of an observation that the natural reading order in most

modern languages descends from top to bottom, if successive

zones are aligned vertically, otherwise it traverses from left

to right. There are few exceptions to this rule, for example,

Arabic script, and such cases would not be handled prop-

erly by the algorithm. This observation is reflected in the

distances counted for all zone pairs: the distance is calcu-

lated using the angle of the slope of the vector connecting

Fig. 4 An example page from a scientific publication. The image

shows the zones and their reading order

123

324 D. Tkaczyk et al.

zones. As a result, zones aligned vertically are in general

closer than those aligned horizontally. Then, using an algo-

rithm similar to hierarchical clustering methods, we build a

binary tree by repeatedly joining the closest zones and groups

of zones. After that, for every node its children are swapped,

if needed. Finally, an in order tree traversal gives the desired

zones order.

4.2 Content classification

The goal of content classification is to determine the role

played by every zone in the document. This is done in two

steps: initial zone classification (A4) and metadata zone clas-

sification (B1).

The goal of initial classification is to label each zone with

one of four general classes: metadata (document’s metadata,

e.g. title, authors, abstract, keywords, and so on), references

(the bibliography section), body (publication’s text, sections,

section titles, equations, figures and tables, captions) or other

(acknowledgments, conflicts of interests statements, page

numbers, etc.).

The goal of metadata zone classification is to classify all

metadata zones into specific metadata classes: title (the title

of the document), author (the names of the authors), affilia-

tion (authors’ affiliations), editor (the names of the editors),

correspondence (addresses and emails), type (the type speci-

fied in the document, such as “research article”, “editorial” or

“case study”, abstract (document’s abstract), keywords (key-

words listed in the document), bib_info (for zones containing

bibliographic information, such as journal name, volume,

issue, DOI, etc.), dates (the dates related to the process of

publishing the article).

The classifiers are implemented in a similar way. They

both employ support vector machines, and the implementa-

tion is based on LibSVM library [33]. They differ in target

zone labels, extracted features and SVM parameters used.

The features, as well as SVM parameters were selected using

the same procedure, described in Sects. 4.2.1 and 4.2.2.

Support vector machines is a very powerful classification

technique able to handle a large variety of input and work

effectively even with training data of a small size. The algo-

rithm is based on finding the optimal separation hyperplane

and is little prone to overfitting. It does not require a lot of

parameters and can deal with highly dimensional data. SVM

is widely used for content classification and achieves very

good results in practice.

The decision of splitting content classification into two

separate classification steps, as opposed to implementing

only one zone classification step, was based mostly on aspects

related to the workflow architecture and maintenance. In fact

both tasks have different characteristics and needs. The goal

of the initial classifier is to divide the article’s content into

three general areas of interest, which can be then analysed

independently in parallel, while metadata classifier performs

far more detailed analysis of only a small subset of all

zones.

The implementation of the initial classifier is more stable:

the target label set does not change, and once trained on a

reasonably large and diverse dataset, the classifier performs

well on other layouts as well. On the other hand, metadata

zones have much more variable characteristics across differ-

ent layouts, and from time to time there is a need to tune the

classifier or retrain it using a wider document set. What is

more, sometimes the classifier has to be extended to be able

to capture new labels, not considered before (for example a

special label for zones containing both author and affiliation,

a separate label for categories or general terms).

For these reasons, we decided to implement content clas-

sification in two separate steps. As a result, we can maintain

them independently, and for example adding another meta-

data label to the system does not change the performance of

recognizing the bibliography sections. It is also possible that

in the future the metadata classifier will be reimplemented

using a different technique, allowing to add new training

cases incrementally, for example using a form of online

learning.

For completeness, we compared the performance of a sin-

gle zone classifier assigning all needed labels in one step to

the classifier containing two separate classifiers executed in

a sequence (our current solution). The results can be found

in Sect. 5.3.

4.2.1 Feature selection

The features used by the classifiers were selected with the

use of the zone validation dataset (all the datasets used for

experiments are described in Sect. 5.1). For each classifier,

we analysed 97 features in total. The features capture various

aspects of the content and surroundings of the zones and can

be divided into the following categories:

– geometric—based on geometric attributes, some examples

include: zone’s height and width, height to width ratio,

zone’s horizontal and vertical position, the distance to the

nearest zone, empty space below and above the zone, mean

line height, whether the zone is placed at the top, bottom,

left or right side of the page;

– lexical—based upon keywords characteristic for different

parts of narration, such as: affiliations, acknowledgments,

abstract, keywords, dates, references, or article type; these

features typically check, whether the text of the zone con-

tains any of the characteristic keywords;

– sequential—based on sequence-related information,

some examples include the label of the previous zone

(according to the reading order) and the presence of the

123

CERMINE: automatic extraction of structured metadata from scientific literature 325

same text blocks on the surrounding pages, whether the

zone is placed in the first/last page of the document;

– formatting—related to text formatting in the zone, exam-

ples include font size in the current and adjacent zones,

the amount of blank space inside zones, mean indentation

of text lines in the zone;

– heuristics—based on heuristics of various nature, such

as the count and percentage of lines, words, uppercase

words, characters, letters, upper/lowercase letters, digits,

whitespaces, punctuation, brackets, commas, dots, etc;

also whether each line starts with enumeration-like tokens,

or whether the zone contains only digits.

In general, feature selection was performed by analysing

the correlations between the features and between features

and expected labels. For simplicity, we treat all the features as

numerical variables; the values of binary features are decoded

as 0 or 1. The labels, on the other hand, are an unordered

categorical variable.

Let L be a set of zone labels for a given classifier, n the

number of the observations (zones) in the validation dataset

and k = 97 the initial number of analysed features. For i th

feature, where 0 ≤ i < k, we can define fi ∈ Rn , a vector

of the values of the feature i th for subsequent observations.

Let also l ∈ Ln be the corresponding vector of zone labels.

In the first step, we removed redundant features, highly

correlated with other features. For each pair of feature

vectors, we calculated the Pearson’s correlation score and

identified all the pairs fi , f j ∈ Rn , such that

|corr(fi , f j)| > 0.9

Next, for every feature from highly correlated pairs, we

calculated the mean absolute correlation:

meanCorr(fi) =
1

k

k−1∑

j=0

corr(fi , f j)

and from each highly correlated pair, the feature with higher

meanCorr was eliminated. This left us with 78 and 75 fea-

tures for initial and metadata classifiers, respectively. Let’s

denote the number of remaining features as k′.

After eliminating features using correlations between

them, we analysed the features using their associations with

the expected zone labels vector l. To calculate the correla-

tion between a single feature vector fi (numeric) and label

vector l (unordered categorical), we employed Goodman and

Kruskal’s τ (tau) measure [34]. Let’s denote it as τ(fi , l).

Let f0, f1, . . . fk′−1 be the sequence of the feature vectors

ordered by non-decreasing τ measure, that is

τ(f0, l) ≤ τ(f1, l) ≤ · · · ≤ τ(fk′−1, l)

The features were then added to the classifier one by one,

starting from the best one (the mostly correlated with the

labels vector, fk′−1), and at the end the classifier contained the

entire feature set. At each step, we performed a fivefold cross-

validation on the validation dataset and calculated the overall

F score as an average for individual labels. For completeness,

we also repeated the same process with reversed order of the

features, starting with less useful features. The results for

initial and metadata classifier are shown in Figs. 5 and 6,

respectively.

Using these results, we eliminated a number of the least

useful features f0, f1, . . . ft , such that the performance of

the classifier with the remaining features was similar to the

performance of the classifier trained on the entire feature set.

Final feature sets contain 53 and 51 features for initial and

metadata classifier, respectively.

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50 60 70 80

Number of features

A
v
e
ra

g
e
 F

1
 s

c
o
re

increasing tau decreasing tau

Fig. 5 Average F score for initial classifier for fivefold cross-

validation for various number of features. Blue line shows the change

in F score, while adding features from the most to the least useful one,

and the red line shows the increase with the reversed order. The vertical

line marks the feature set chosen for the final classifier (color figure

online)

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50 60 70

Number of features

A
v
e
ra

g
e
 F

1
 s

c
o
re

increasing tau decreasing tau

Fig. 6 Average F score for metadata classifier for fivefold cross-

validation for various number of features. Blue line shows the increase

in F score while adding features from the most to the least useful one,

and the red line shows the increase with the reversed order. The vertical

line marks the feature set chosen for the final classifier (color figure

online)

123

326 D. Tkaczyk et al.

4.2.2 SVM parameters adjustment

SVM parameters were also estimated using the zone vali-

dation dataset. The feature vectors were scaled linearly to

interval [0, 1] according to the bounds found in the learning

samples. In order to find the best parameters for the classi-

fiers we performed a grid search over a three-dimensional

space 〈K , Γ, C〉, where K is a set of kernel function types

(linear, fourth degree polynomial, radial-basis and sigmoid),

Γ = {2i |i ∈ [−15, 3]} is a set of possible values of the kernel

coefficient γ , and C = {2i |i ∈ [−5, 15]} is a set of possi-

ble values of the penalty parameter. For every combination

of the parameters, we performed a fivefold cross-validation.

Finally, we chose those parameters, for which we obtained

the highest mean F score (calculated as an average for indi-

vidual classes). We also used classes weights based on the

number of their training samples to set larger penalty for less

represented classes.

Parameters for the best obtained results are presented in

Tables 3 and 4. In both cases, we chose radial-basis kernel

function, and chosen values of C and γ parameters are 25

and 2−3 in the case of initial classifier and 29 and 2−3 in the

case of metadata classifier.

4.3 Metadata extraction

The purpose of this phase is to analyse zones labelled as

metadata and extract a rich set of document’s metadata

information, including: title, authors, affiliations, relations

author–affiliation, email addresses, relations author–email,

Table 3 The results of SVM parameters searching for initial classifi-

cation

Initial classification

Kernel Linear 4th poly. RBF Sigmoid

log2(C), log2(γ) 7, 1 9, −5 5, −3 15, −13

Mean F1 (%) 90.7 93.5 93.9 90.1

The table shows the mean F score values for all kernel function types

obtained during fivefold cross-validation, as well as related values of C

and γ parameters

Table 4 The results of SVM parameters searching for metadata clas-

sification

Metadata classification

Kernel Linear 4th poly. RBF Sigmoid

log2(C), log2(γ) 4, −9 7, −4 9, −3 11, −7

Mean F1 (%) 85.0 87.5 88.6 81.0

The table shows the mean F score values for all kernel function types

obtained during fivefold cross-validation, as well as related values of C

and γ parameters

abstract, keywords, journal, volume, issue, pages range, year

and DOI.

The phase contains two steps:

1. Metadata zone classification (B1)—assigning specific

metadata classes to metadata zones, described in detail

in Sect. 4.2.

2. Metadata extraction (B2)—extracting atomic informa-

tion from labelled zones.

During the last step (B2), a set of simple heuristic-based

rules is used to perform the following operations:

– zones labelled as abstract are concatenated,

– as type is often specified just above the title, it is removed

from the title zone if needed (based on a dictionary of

types),

– authors, affiliations and keywords lists are split with the

use of a list of separators,

– affiliations are associated with authors based on indexes

and distances,

– email addresses are extracted from correspondence and

affiliation zones using regular expressions,

– email addresses are associated with authors based on

author names,

– pages ranges placed directly in bib_info zones are parsed

using regular expressions,

– if there is no pages range given explicitly in the document,

we also try to retrieve it from the pages numbers on each

page,

– dates are parsed using regular expressions,

– journal, volume, issue and DOI are extracted from

bib_info zones based on regular expressions.

4.4 Bibliography extraction

The goal of bibliography extraction is to extract a list of bib-

liographic references with their metadata (including author,

title, source, volume, issue, pages and year) from zones

labelled as references.

Bibliography extraction path contains two steps:

1. Reference strings extraction (C1)—dividing the content

of references zones into individual reference strings.

2. Reference parsing (C2)—extracting metadata from ref-

erence strings.

4.4.1 Extracting reference strings

References zones contain a list of reference strings, each of

which can span over one or more text lines. The goal of ref-

erence strings extraction is to split the content of those zones

123

CERMINE: automatic extraction of structured metadata from scientific literature 327

into individual reference strings. This step utilizes unsuper-

vised machine learning techniques, which allows to omit

time-consuming training set preparation and learning phases,

while achieving very good extraction results.

Every bibliographic reference is displayed in the PDF doc-

ument as a sequence of one or more text lines. Each text line

in a reference zone belongs to exactly one reference string,

some of them are first lines of their reference, others are inner

or last ones. The sequence of all text lines belonging to bibli-

ography section can be represented by the following regular

expression:

(

<first line of a reference>

(

<inner line of a reference>*

<last line of a reference>

)?

)*

In order to group text lines into consecutive references,

first we determine which lines are first lines of their refer-

ences. A set of such lines is presented in Fig. 7. To achieve

this, we transform all lines to feature vectors and cluster them

into two sets (first lines and all the rest). We make use of

a simple observation that the first line from all references

blocks is also the first line of its reference. Thus, the cluster

containing this first line is assumed to contain all first lines.

After recognizing all first lines, it is easy to concatenate lines

to form consecutive reference strings.

For clustering lines, we use KMeans algorithm with

Euclidean distance metric. In this case K = 2, since the

line set is clustered into two subsets. As initial centroids, we

set the first line’s feature vector and the vector with the largest

distance to the first one. We use five features based on line

relative length, line indentation, space between the line and

the previous one, and the text content of the line (if the line

starts with an enumeration pattern, if the previous line ends

with a dot).

4.4.2 Reference strings parsing

Reference strings extracted from references zones con-

tain important reference metadata. In this step, metadata is

extracted from reference strings and the result is the list of

document’s parsed bibliographic references. The information

we extract from the strings include: author, title, source, vol-

ume, issue, pages and year. An example of a parsed reference

is shown in Fig. 8.

First a reference string is tokenized. The tokens are then

transformed into vectors of features and classified by a super-

vised classifier. Finally, the neighbouring tokens with the

same label are concatenated, the labels are mapped into final

metadata classes and the resulting reference metadata record

is formed.

The heart of the implementation is a classifier that assigns

labels to reference tokens. For better performance, the clas-

sifier uses slightly more detailed labels than the target ones:

first_name (author’s first name or initial), surname (author’s

surname), title, source (journal or conference name), volume,

issue, page_first (the lower bound of pages range), page_last

(the upper bound of pages range), year and text (for sepa-

rators and other tokens without a specific label). The token

classifier employs conditional random fields and is built on

top of GRMM and MALLET packages [35].

Fig. 7 A fragment of the references section of an article. Marked lines are the first lines of their references. After detecting these lines, the references

section content can be easily split to form consecutive references strings

Fig. 8 An example of a bibliographic reference with various metadata information highlighted using different colors, and these are in order: author,

title, journal, volume, issue, pages and year (color figure online)

123

328 D. Tkaczyk et al.

CRF classifiers are a state-of-the-art technique for cita-

tion parsing. They achieve very good results for classifying

instances that form a sequence, especially when the label of

one instance depends on the labels of previous instances.

The basic features are the tokens themselves. We use 42

additional features to describe the tokens:

– Some of them are based on the presence of a particular

character class, e.g. digits or lowercase/uppercase letters.

– Others check whether the token is a particular character

(e.g. a dot, a square bracket, a comma or a dash), or a

particular word.

– Finally, we use features checking if the token is contained

by the dictionary built from the dataset, e.g. a dictionary

of cities or words commonly appearing in the journal title.

It is worth to notice that the token’s label depends not

only on its feature vector, but also on the features of the

surrounding tokens. To reflect this in the classifier, the token’s

feature vector contains not only features of the token itself,

but also features of two preceding and two following tokens.

After token classification, fragments labelled as first_name

and surname are joined together based on their order to form

consecutive author names, and similarly fragments labelled

as page_first and page_last are joined together to form pages

range. Additionally, in the case of title or source labels, the

neighbouring tokens with the same label are concatenated.

The result of bibliography extraction is a list of document’s

bibliographic references in a structured form, each of which

contains the raw text as well as additional metadata.

5 Evaluation

We performed the evaluation of the key steps of the algorithm

and the entire extraction process as well. The ground truth

data used for the evaluation is based mainly on the resources

of PubMed Central Open Access Subset [1].

Evaluated steps include: page segmentation (Sect. 5.2),

initial and metadata zone classification (Sect. 5.3) and ref-

erence parsing (Sect. 5.4). Other steps were not directly

evaluated, mainly due to the fact that creating ground truth

datasets for them would be difficult and time-consuming.

Since all the steps affect the final extraction result, they were

all evaluated indirectly by the assessment of the performance

of the entire CERMINE system (Sect. 5.5) and the compari-

son with similar tools as well (Sect. 5.6).

5.1 Datasets preparation

Table 5 provides details about all the datasets used for the

experiments. In general, we use three types of data. Subsets

of PubMed Central were used directly to evaluate the entire

extraction workflow (metadata test set) and compare the per-

formance of CERMINE with similar systems (comparison

test set). Additionally, PMC resources served as a base for

constructing GROTOAP and GROTOAP2 datasets, which

were used for the experiments related to page segmentation

(segmentation test set) and zone classification (zone vali-

dation set and zone test set). A set used for citation parser

evaluation was build using PMC and also CiteSeer [36] and

Cora-ref [37] (citation test set).

PubMed Central Open Access Subset [1] contains life sci-

ences publications in PDF format, and their corresponding

metadata in the form of NLM JATS files. NLM files contain

a rich set of document’s metadata (title, authors, affiliations,

abstract, journal name, etc.), full text (sections, section titles,

paragraphs, tables, equations) and also document’s bibliog-

raphy. Subsets of PMC were used to: (1) evaluate the entire

metadata and references extraction workflow (metadata test

set) and (2) compare the system performance with other tools

(comparison test set).

Unfortunately, the quality of data in ground truth NLM

JATS files varies from perfectly labelled documents to doc-

uments containing no valuable information at all. In some

cases, NLM files lack the entire sections of the document

(usually the bibliography and/or the body). Such files were

filtered out in both sets, and for evaluation we used only doc-

uments, whose metadata files contained all three important

sections: front matter, body and bibliography.

What is more, ground truth files from PMC contain only

the annotated text of the document and do not preserve geo-

metric features related to the way the text is displayed in

PDF files. As a result, PMC could not be directly used for

training and evaluation of the individual steps, such as page

segmentation and zone classification. For these tasks, we

built GROTOAP [38] and GROTOAP2 [4] datasets.

GROTOAP is a dataset of 113 documents in TrueViz for-

mat preserving not only the text content, but also geometric

features of the text and zone labels. GROTOAP was built

semi-automatically from PMC resources. First PDF docu-

ments were processed by automatic tools in order to extract

the geometric structure along with zone labels, and the results

were corrected manually by human experts. Since the task

of correcting the geometric structure and zone labelling of

the entire document is time-consuming, we were able to pro-

duce only a small set of documents. GROTOAP was used to

evaluate page segmentation (segmentation test set).

GROTOAP2 is a successor of GROTOAP. GROTOAP2 is

a much larger and diverse dataset, also containing informa-

tion related to the document’s text, geometric features and

zone labels. The label set in GROTOAP2 is a union of all

labels used in both zone classifiers.

GROTOAP2 was created semi-automatically using PMC

resources (Fig. 9). Our goal was to create a fairly large

dataset, useful for machine learning algorithms. Unfortu-

123

CERMINE: automatic extraction of structured metadata from scientific literature 329

Table 5 The summary of all the datasets used in the experiments

Name Source Format Content Purpose

Segmentation test set GROTOAP TrueViz 113 documents The evaluation of page segmentation

(Sect. 5.2)

Zone validation set GROTOAP2 TrueViz 100 documents containing 14,000

labelled zones, 2743 of which are

metadata zones

Zone classifiers feature selection

(Sect. 4.2.1) and SVM parameters

determination (Sect. 4.2.2)

Zone test set GROTOAP2 TrueViz 2551 documents containing 355,779

zones, 68,557 of which are metadata

zones

Zone classifiers evaluation (Sect. 5.3)

and final classifiers training

Citation test set CiteSeer, Cora-ref

and PMC

NLM JATS 4000 parsed citations (2000 from

CiteSeer and Cora-ref, 2000 from

1991 different PMC documents)

The evaluation of the references parser

(Sect. 5.4)

Metadata test set PubMed Central PDF + NLM JATS 47,983 PDF documents with

corresponding metadata records

The evaluation of the entire metadata

and bibliography extraction

workflow (Sect. 5.5)

Comparison test set PubMed Central PDF + NLM JATS 1943 PDF documents with

corresponding metadata records

The comparison of CERMINE’s

performance with the performance

of other similar tools (Sect. 5.6)

nately, an approach used for GROTOAP would not allow

to create a large dataset, due to the manual correction of

every document. Instead, we decided to make use of the

text labelling already present in the PMC’s NLM JATS files

to assign labels to zones automatically, while the zones

themselves were constructed using CERMINE tools. More

precisely, GROTOAP2 was created with the following steps:

1. First, PDF files from PMC were processed automatically

by CERMINE in order to extract the hierarchical geomet-

ric structure and the reading order.

2. The text content of every zone was then compared to

labelled text from NLM files with the use of Smith–

Waterman sequence alignment algorithm [39]. This

allowed to assign labels to zones.

3. Files with a lot of zones labelled as “unknown”, that is

zones, for which the labelling process was unable to find

a concrete label, were filtered out.

4. A small sample of the remaining files was inspected man-

ually. This resulted in identifying a number of repeated

problems and errors in the dataset.

5. Based on the results of the analysis, we developed a set

of heuristic-based rules and applied them to the dataset

in order to increase the labelling accuracy.

More details about GROTOAP2 dataset and its creation

process can be found in [4].

Since GROTOAP’s creation process did not contain man-

ual correction of every document, the dataset contains errors,

caused by both segmentation and labelling steps. Segmen-

tation errors were comparatively rare. According to the

evaluation we performed on a random sample of 50 docu-

ments, the accuracy of zone labelling is 93 %. Despite this

Fig. 9 Semi-automatic method of creating GROTOAP2 dataset. First

automatic tools extracted the hierarchical geometric structure and the

reading order of a document. Next, we automatically assigned labels

to zones by matching their text to labelled fragments from NLM files.

Finally, additional rules were developed manually and applied to the

dataset in order to increase the labelling accuracy. It should be noted that

since CERMINE was not involved in the process of assigning labels, the

dataset can be used to evaluate the performance of zone classification

drawback, the lack of manual correction of every document

guaranteed the scalability of the method, which allowed to

create much larger dataset than in the case of more traditional

approaches.

Since CERMINE was not involved in the process of

assigning labels, subsets of GROTOAP2 could be used for

the experiments with zone classification: feature selection

and SVM parameters adjustment (zone validation set), and

final zone classifiers evaluation and training (zone test set).

123

330 D. Tkaczyk et al.

For reference parser evaluation, we used CiteSeer [36],

Cora-ref [37] and PubMed Central resources combined

together into a single set (citation test set).

CiteSeer and Cora-ref already contain parsed references.

Unfortunately, due to some differences in the labels used,

labels mapping had to be performed. Labels from original

datasets were mapped in the following way: title and year

remained the same; journal, booktitle, tech and type were

mapped to source; date was mapped to year. Labels author

and pages were split, respectively, into givenname and sur-

name, page_first and page_last using regular expressions.

All remaining tokens were labelled as text.

NLM files from PMC also contain parsed references.

Unfortunately, in most cases, they do not preserve the entire

reference strings from the original PDF file, and separators

and punctuation are often omitted. For this reason, the refer-

ence set was built using a similar technique as in the case of

GROTOAP2. We extracted reference strings from PDF files

using CERMINE tools and labelled them using annotated

data from NLM files.

5.2 Page segmentation

Page segmenter was evaluated using the entire GROTOAP

dataset. For each structure type (zone, line, word), we cal-

culated the overall accuracy over all documents that is the

percentage of elements correctly constructed by the algo-

rithm. An item is considered constructed correctly if it

contains exactly the same set of characters as the original

element. Since in our ground truth dataset every table and

figure is placed in one zone, and Docstrum usually divides

these (often sparse) areas into more zones, these regions were

excluded from the evaluation.

We performed the evaluation of two versions of the

segmentation algorithm: the original Docstrum and the algo-

rithm with the modifications listed in Sect. 4.1.2. The results

are shown in Fig. 10. For all structure types, the modifications

resulted in increased extraction accuracy.

5.3 Zone classification

Both zone classifiers were evaluated by a fivefold cross-

validation using zone test set (described in Sect. 5.1). The

Tables 6 and 7 show the confusion matrices as well as pre-

cision and recall values for individual classes for initial and

metadata classification, respectively.

For a class C , precision and recall were calculated in the

following way:

PrecisionC =
|SC |

|CC |
, RecallC =

|SC |

|GC |

where SC is a set of zones correctly recognized as C by the

classifier, CC is a set of zones labelled as C by the classifier

0

20

40

60

80

100

zones lines words

a
c
c
u

ra
c
y

Docstrum

original
modified

Fig. 10 The results of page segmentation evaluation. The plot shows

the accuracy of extracting zones, lines and words for the original

Docstrum algorithm and Docstrum with modifications proposed in

Sect. 4.1.2

and GC is a set of zones labelled as C in the ground truth

data.

Initial classifier achieved the following results calculated

as mean values for individual classes: precision 97.2 %, recall

95.4 %, F score 96.3 %. The results achieved by metadata

classifier were as follows: precision 95.4 %, recall 95.1 %, F

score 95.3 %.

We also compared the performance of the classification

obtained from our two classifiers executed in sequence with

one combined classifier, which assigns both general cate-

gories and specific metadata classes (more details about the

two approaches and the decision to use two classification

steps instead of one can be found in Sect. 4.2). The com-

bined classifier achieved 95.1 % accuracy and 85.2 % mean F

score, while two separate classifiers working together (the

current solution) achieved 95.3 % accuracy and 85.9 % F

score. The performance of these approaches is thus very sim-

ilar to each other.

5.4 Reference parsing

Bibliographic reference parser was evaluated with the use of

a fivefold cross-validation on the citation test set (described

in Sect. 5.1). For every metadata class, we computed pre-

cision and recall in a similar way as in the case of zone

classification. This time the objects in SC , CC and GC sets

were not individual tokens, but entire reference substrings.

As a consequence, a token correctly labelled with a class C

contributes to the overall success rate only if the entire token

sequence of class C containing the given token is correctly

labelled.

123

CERMINE: automatic extraction of structured metadata from scientific literature 331

Table 6 Confusion matrix for

initial classification for fivefold

cross-validation

Metadata Body References Other Precision (%) Recall (%)

Metadata 66,042 2181 75 259 96.6 96.3

Body 1551 232,464 177 934 97.9 98.9

References 47 806 17,489 67 98.2 95.0

Other 733 2118 65 30,771 96.1 91.3

Rows and columns represent the desired and obtained classification result, respectively

Bold values on the main matrix diagonal are the numbers of correctly classified zones of respective classes

Figure 11 shows precision and recall values for individual

metadata classes. The parser achieved the following scores

calculated as mean values for individual classes: precision

92.9 %, recall 93.8 %, F score 93.3 %.

5.5 Metadata extraction evaluation

The evaluation of the entire workflow was performed with the

use of metadata test set (described in Sect. 5.1). The PDF files

were processed by CERMINE and the resulting metadata

(the “tested” documents) was compared to metadata stored

in NLM files (the “ground truth” documents).

For each type of metadata, we used different measures of

correctness. In general, we deal with two types of metadata

fields: those that appear at most once per document (these are:

title, abstract, journal, volume, issue, pages range, year and

DOI) and those present as lists (authors, affiliations, email

addresses, keywords and bibliographic references).

In the first case, for every document, a single string from

NLM file was compared to the extracted string, which gives

a binary output: information extracted correctly or not. The

overall precision and recall scores for a metadata class C are

calculated in the following way:

PrecisionC =
|SC |

|CC |
, RecallC =

|SC |

|GC |

where SC is a set of documents from which the non-empty

information of a class C was correctly extracted, CC is a

set of tested documents with non-empty field of class C , and

finally GC is a set of ground truth documents with non-empty

field of class C .

Some information types from this group, such as article’s

volume, issue, DOI, dates and pages, were considered cor-

rect only if exactly equal to NLM data. As the journal name

is often abbreviated, we marked it as correct if it was a sub-

sequence of the ground truth journal name. Article’s title

and abstract were tokenized and compared with the use of

Smith–Waterman sequence alignment algorithm [39].

In the case of list metadata types, for every document

the elements of tested and ground truth lists were compared

using cosine distance. This resulted in individual precision

and recall for every document. The overall precision and

recall were computed as mean values over all documents.

In the case of bibliographic references, only their full text

was compared, and the detailed metadata was ignored.

The evaluation results are shown in Fig. 12. CERMINE

achieved the following results calculated as mean values for

individual metadata classes: precision 81.0 %, recall 74.7 %,

F score 77.5 %.

5.6 Comparison evaluation

Comparison test set (described in Sect. 5.1) was used to com-

pare the performance of CERMINE with similar extraction

systems. The results are shown in Table 8. The evaluation

methodology was the same as before, with the exception of

ParsCit system. Since ParsCit analyses only the text content

of a document, PDF files were first transformed to text using

pdftotext tool. What is more, the output of ParsCit can

contain multiple titles or abstracts; thus, for this system, all

metadata classes were treated as list types.

For most metadata classes, CERMINE performs the best.

The worst values were obtained in the case of ParsCit system,

which was probably caused by the fact that the algorithm

inspects only the text content of a documents, ignoring hints

related to the way the text is displayed in the PDF file.

5.7 Error analysis

The errors made by the extraction workflow can be divided

into two groups: metadata was not extracted or the extracted

information is incorrect. The majority of errors happen in the

following situations:

– When two (or more) zones with different roles in the docu-

ment are placed close to each other, they are often merged

together by the segmenter. In this case, the classification

is more difficult and by design only one label is assigned

to such a hybrid zone. A potential solution would be to

introduce additional labels for pairs of labels that often

appear close to each other, for example title_author or

author_affiliation, and split the content of such zones later

in the workflow.

– The segmenter introduces other errors as well, such as

incorrectly attaching an upper index to the line above the

current line, or merging text written in two columns. These

123

332 D. Tkaczyk et al.

T
a
b

le
7

C
o

n
fu

si
o

n
m

at
ri

x
fo

r
m

et
ad

at
a

cl
as

si
fi

ca
ti

o
n

fo
r

fi
v
ef

o
ld

cr
o

ss
-v

al
id

at
io

n

A
b
st

ra
ct

A
ffi

li
at

io
n

A
u
th

o
r

B
ib

_
in

fo
C

o
rr

es
p
o
n
d
en

ce
D

at
es

E
d
it

o
r

K
ey

w
o
rd

s
T

it
le

T
y
p
e

C
o
p
y
ri

g
h
t

P
re

ci
si

o
n

(%
)

R
ec

al
l

(%
)

A
b

st
ra

ct
6
8
6
6

8
7

6
2

8
1

1
2
3

7
5

1
0

9
7
.7

9
8
.1

A
ffi

li
at

io
n

1
1

3
5
3
2

1
6

3
1

6
2

5
8

3
1

6
6

9
5
.5

9
6
.0

A
u
th

o
r

4
1
4

2
6
8
4

4
2

1
8

0
3

1
6

6
4

9
6
.9

9
6
.5

B
ib

_
in

fo
7
5

2
2

1
4

4
0
,
9
8
2

2
5

1
1
9

1
4
1

1
6

1
1
5

1
0
0

9
8
.7

9
8
.9

C
o
rr

es
p
.

9
1
0
7

1
5

3
2

1
6
1
6

2
0

3
1

1
3

9
2
.8

9
0
.3

D
at

es
5

1
4

1
3
6

3
2
8
3
5

0
1

0
2

1
3

9
4
.7

9
4
.5

E
d
it

o
r

0
2

1
0

0
0

4
7
3

0
0

0
0

9
6
.9

9
9
.4

K
ey

w
o
rd

s
2
8

8
5

8
6

1
6

1
8
9
6

5
7

1
9
1
.5

8
5
.8

T
it

le
9

0
1
3

2
6

0
0

0
3

2
5
7
4

6
2

9
8
.3

9
7
.8

T
y
p
e

4
0

4
8
8

0
2

1
6

6
1
4
9
7

2
9
1
.0

9
3
.0

C
o
p
y
ri

g
h
t

1
4

5
7

4
5

8
2
3

0
2

3
0

2
9
2
7

9
5
.4

9
6
.5

R
o
w

s
an

d
co

lu
m

n
s

re
p

re
se

n
t

th
e

d
es

ir
ed

an
d

o
b

ta
in

ed
cl

as
si

fi
ca

ti
o

n
re

su
lt

,
re

sp
ec

ti
v
el

y

B
o

ld
v
al

u
es

o
n

th
e

m
ai

n
m

at
ri

x
d
ia

g
o

n
al

ar
e

th
e

n
u

m
b

er
s

o
f

co
rr

ec
tl

y
cl

as
si

fi
ed

zo
n

es
o
f

re
sp

ec
ti

v
e

cl
as

se
s

Fig. 11 Bibliographic reference parser evaluation. The figure shows

precision and recall values for extracting reference fragments belonging

to individual metadata classes. A given fragment is considered correctly

extracted, if it is identical to the ground truth data

Fig. 12 The evaluation results of CERMINE’s extraction process on

metadata test set. The figure shows precision and recall values for indi-

vidual metadata classes

errors can be corrected by further improvement of the page

segmenter.

– Zone classification errors are also responsible for a lot of

extraction errors. These errors can be improved by adding

training instances to the training set and improving the

labelling accuracy in GROTOAP2.

– Sometimes the metadata, usually keywords, volume, issue

or pages, is not explicitly given in the input PDF file.

Since CERMINE analyses the PDF file only, such infor-

mation cannot be extracted. This is in fact not an extraction

error. Unfortunately, since ground truth NLM data in PMC

usually contains such information, whether it is writ-

ten in the PDF or not, these situations also contribute

to the overall error rates (equally for all evaluated sys-

tems).

123

CERMINE: automatic extraction of structured metadata from scientific literature 333

Table 8 The results of

comparing the performance of

various metadata extraction

systems

CERMINE PDFX GROBID ParsCit Pdf-extract

Title 95.5 85.7 82.5 34.1 49.4

93.4 84.7 77.4 39.6 49.4

94.5 85.2 79.8 36.6 49.4

Authors 90.2 71.2 85.9 57.9 –

89.0 71.5 90.5 48.6 –

89.6 71.3 88.1 52.8 –

Affiliations 88.2 – 90.8 72.2 –

83.1 – 51.8 44.3 –

85.6 – 66.0 54.9 –

Email addresses 51.7 53.0 26.9 28.8 –

42.6 73.6 7.8 36.2 –

46.7 61.6 12.1 32.1 –

Abstract 82.8 71.1 70.4 47.7 –

79.9 66.7 67.7 61.3 –

81.3 68.8 69.0 53.7 –

Keywords 89.9 – 94.2 15.6 –

63.5 – 44.2 3.0 –

74.4 – 60.2 5.1 –

Journal 80.3 – – – –

73.2 – – – –

76.6 – – – –

Volume 93.3 – – – –

83.0 – – – –

87.8 – – – –

Issue 53.7 – – – –

28.4 – – – –

37.1 – – – –

Pages 87.0 – – – –

80.4 – – – –

83.5 – – – –

Year 96.3 – 95.7 – –

95.0 – 40.4 – –

95.6 – 56.8 – –

DOI 98.2 – 99.1 – –

75.0 – 65.4 – –

85.1 – 78.8 – –

References 96.1 91.3 79.7 81.2 80.4

89.8 88.9 66.7 71.8 57.5

92.8 90.1 72.6 76.2 67.0

In every cell, the precision, recall and F score values are shown. The best results in every category are bolded

The most common extraction errors include:

– Title merged with other parts of the document, when title

zone is placed close to another region.

– Title not recognized, for example when it appears on the

second page of the PDF file.

– Title zone split by the segmenter into a few zones, and

only a subset of them is correctly classified.

– Authors zone not labelled, in that case the authors are

missing.

– Authors zone merged with other fragments, such as affil-

iations or research group name, in such cases additional

fragments appear in the authors list.

123

334 D. Tkaczyk et al.

0

20

40

0 10 20 30 40

Number of pages

T
im

e
 [

s
]

Fig. 13 The plot shows CERMINE’s processing time (in seconds) as

a function of the number of pages of a document for a subset of 1238

documents from PMC

– Affiliation zone not properly recognized by the classifier,

for example when it not visually separated from other

zones, or placed at the end of the document. Affiliations

are missing in that case.

– The entire abstract or a part of it recognized as body by the

classifier, as a result the abstract or a part of it is missing.

– The first body paragraph recognized incorrectly as abstract,

as a result the extracted abstract contains a fragment of the

document’s proper text.

– Bibliographic information missing from a PDF file or not

recognized by the classifiers, as a result journal name,

volume, issue and/or pages range are not extracted.

– Keywords missing because the zone was not recognized

or not included in the PDF file.

– A few of the references zones classified as body, and in

such cases some or all of the references are missing.

5.8 Processing time

The processing time of a document depends mainly on its

number of pages. The most time-consuming steps are page

segmentation and initial zone classification.

Figure 13 shows the processing time as a function of the

number of document’s pages for 1238 random documents.

The average processing time for this subset was 9.4 s.

6 Conclusions and future work

The article presents CERMINE—a system for extracting

both metadata and bibliography from scientific articles in

a born-digital form. CERMINE is very useful for digital

libraries and similar environments whenever they have to deal

with documents with metadata information missing, frag-

mentary or not reliable. Automatic extraction tools provided

by CERMINE support a number of tasks such as intelligent

searching, finding similar and related documents, building

citation and author networks, and so on.

The system is open source and available online at http://

cermine.ceon.pl. The modular architecture and the use of

supervised and unsupervised machine learning techniques

make CERMINE flexible and easy to adapt to new document

layouts. The evaluation against a large and diverse dataset

shows good results for the key individual steps and the entire

extraction workflow. For most metadata types, the results are

better than in the case of other similar extraction systems.

Our future plans include:

– extending the workflow, so that the system is able to

process documents in the form of scanned pages as well,

– expanding the workflow architecture by adding a process

path for extracting structured full text containing sections

and subsections, headers and paragraphs,

– adding affiliation parsing step, the goal of which is to

extract affiliation metadata: institution name, address and

country,

– making the citation dataset used for parser evaluation pub-

licly available.

Acknowledgments This work has been supported by the European

Commission as part of the FP7 OpenAIREplus (Grant No. 283595) and

OCEAN projects.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecomm

ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit

to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made.

References

1. PubMed. http://www.ncbi.nlm.nih.gov/pubmed

2. CERMINE. http://cermine.ceon.pl

3. Tkaczyk, D., Szostek, P., Dendek, P.J., Fedoryszak, M.,

Bolikowski, L.: CERMINE—automatic extraction of metadata and

references from scientific literature. In: 11th IAPR International

Workshop on Document Analysis Systems, pp. 217–221 (2014)

4. Tkaczyk, D., Szostek, P., Bolikowski, L.: GROTOAP2—the

methodology of creating a large ground truth dataset of scientific

articles. D-Lib Magazine (2014)

5. Giuffrida, G., Shek, E.C., Yang, J.: Knowledge-based metadata

extraction from postscript files. In: ACM DL, pp. 77–84 (2000)

6. Constantin, A., Pettifer, S., Voronkov, A.: PDFX: fully-automated

pdf-to-xml conversion of scientific literature. In: ACM Symposium

on Document Engineering, pp. 177–180 (2013)

7. Pdf-extract. http://labs.crossref.org/pdfextract/

8. Han, H., Giles, C.L., Manavoglu, E., Zha, H., Zhang, Z., Fox,

E.A.: Automatic document metadata extraction using support vec-

tor machines. In: ACM/IEEE 2003 Joint Conference on Digital

Libraries, pp. 37–48 (2003)

123

http://cermine.ceon.pl
http://cermine.ceon.pl
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.ncbi.nlm.nih.gov/pubmed
http://cermine.ceon.pl
http://labs.crossref.org/pdfextract/

CERMINE: automatic extraction of structured metadata from scientific literature 335

9. Kovacevic, A., Ivanovic, D., Milosavljevic, B., Konjovic, Z., Surla,

D.: Automatic extraction of metadata from scientific publications

for CRIS systems. Program 45(4), 376–396 (2011)

10. Lu, X., Kahle, B., Wang, J.Z., Giles, C.L.: A metadata generation

system for scanned scientific volumes. In: ACM/IEEE Joint Con-

ference on Digital Libraries, JCDL 2008, Pittsburgh, PA, USA,

16–20 June 2008, pp. 167–176 (2008)

11. Marinai, S.: Metadata extraction from PDF papers for digital library

ingest. In: 10th International Conference on Document Analysis

and Recognition, pp. 251–255 (2009)

12. Cui, B., Chen, X.: An improved hidden Markov model for literature

metadata extraction. In: Advanced Intelligent Computing Theories

and Applications, 6th International Conference on Intelligent Com-

puting, pp. 205–212 (2010)

13. Kern, R., Jack, K., Hristakeva, M., Granitzer, M.: Teambeam—

meta-data extraction from scientific literature. D Lib Mag. 18(7/8),

1 (2012)

14. Lopez, P.: GROBID: combining automatic bibliographic data

recognition and term extraction for scholarship publications. In:

Research and Advanced Technology for Digital Libraries, 13th

European Conference, pp. 473–474 (2009)

15. Luong, M., Nguyen, T.D., Kan, M.: Logical structure recovery in

scholarly articles with rich document features. IJDLS 1(4), 1–23

(2010)

16. Councill, I.G., Giles, C.L., Kan, M.: Parscit: an open-source CRF

reference string parsing package. In: Proceedings of the Interna-

tional Conference on Language Resources and Evaluation, LREC

2008, 26 May–1 June 2008, Marrakech, Morocco (2008)

17. Gao, L., Tang, Z., Lin, X.: CEBBIP: a parser of bibliographic

information in chinese electronic books. In: Proceedings of the

2009 Joint International Conference on Digital Libraries, pp. 73–

76 (2009)

18. Zou, J., Le, D.X., Thoma, G.R.: Locating and parsing bibliographic

references in HTML medical articles. IJDAR 13(2), 107–119

(2010)

19. Day, M., Tsai, R.T., Sung, C., Hsieh, C., Lee, C., Wu, S., Wu, K.,

Ong, C., Hsu, W.: Reference metadata extraction using a hierar-

chical knowledge representation framework. Decis. Support Syst.

43(1), 152–167 (2007)

20. Vilarinho, E.C.C., da Silva, A.S., Gonçalves, M.A., de Sá Mesquita,

F., de Moura, E.S.: FLUX-CIM: flexible unsupervised extraction

of citation metadata. In: ACM/IEEE Joint Conference on Digital

Libraries, pp. 215–224 (2007)

21. Zhang, Q., Cao, Y., Yu, H.: Parsing citations in biomedical articles

using conditional random fields. Comput. Biol. Med. 41(4), 190–

194 (2011)

22. Zhang, X., Zou, J., Le, D.X., Thoma, G.R.: A structural SVM

approach for reference parsing. BMC Bioinform. 12(S–3), S7

(2011)

23. Hetzner, E.: A simple method for citation metadata extraction using

hidden markov models. In: ACM/IEEE Joint Conference on Digital

Libraries, pp. 280–284 (2008)

24. PDFX. http://pdfx.cs.man.ac.uk/

25. Grobid. https://github.com/grobid/grobid

26. ParsCit. http://aye.comp.nus.edu.sg/parsCit/

27. Lee, C.H., Kanungo, T.: The architecture of trueviz: a

groundtruth/metadata editing and visualizing toolkit. Pattern

Recognit. 36(3), 811–825 (2003)

28. NLM, JATS. http://dtd.nlm.nih.gov/archiving/

29. NISO Z39.96-2012. http://www.niso.org/apps/group_public/

document.php?document_id=10591

30. iText. http://itextpdf.com/

31. O’Gorman, L.: The document spectrum for page layout analysis.

IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1162–1173 (1993)

32. PdfMiner. http://www.unixuser.org/euske/python/pdfminer/

33. Chang, C., Lin, C.: LIBSVM: a library for support vector machines.

ACM TIST 2(3), 27 (2011)

34. Goodman, L.A., Kruskal, W.H.: Measures of association for cross

classifications iii: approximate sampling theory. J. Am. Stat. Assoc.

58, 310–364 (1963)

35. McCallum, A.K.: MALLET: a machine learning for language

toolkit (2002)

36. Giles, C.L., Bollacker, K.D., Lawrence, S.: Citeseer: an automatic

citation indexing system. In: Proceedings of the 3rd ACM Interna-

tional Conference on Digital Libraries, pp. 89–98 (1998)

37. McCallum, A., Nigam, K., Rennie, J.: Automating the construction

of internet portals with machine learning. Inf. Retr. 3, 127–163

(2000)

38. Tkaczyk, D., Czeczko, A., Rusek, K., Bolikowski, L., Bogacewicz,

R.: GROTOAP: ground truth for open access publications. In: Pro-

ceedings of the 12th ACM/IEEE-CS Joint Conference on Digital

Libraries, pp. 381–382 (2012)

39. Smith, T., Waterman, M.: Identification of common molecular sub-

sequences. J. Mol. Biol. 147(1), 195–197 (1981)

123

http://pdfx.cs.man.ac.uk/
https://github.com/grobid/grobid
http://aye.comp.nus.edu.sg/parsCit/
http://dtd.nlm.nih.gov/archiving/
http://www.niso.org/apps/group_public/document.php?document_id=10591
http://www.niso.org/apps/group_public/document.php?document_id=10591
http://itextpdf.com/
http://www.unixuser.org/euske/python/pdfminer/

	CERMINE: automatic extraction of structured metadata from scientific literature
	Abstract
	1 Introduction
	2 State of the art
	3 System architecture
	3.1 Models and formats

	4 Extraction workflow implementation
	4.1 Layout analysis
	4.1.1 Character extraction
	4.1.2 Page segmentation
	4.1.3 Reading order resolving

	4.2 Content classification
	4.2.1 Feature selection
	4.2.2 SVM parameters adjustment

	4.3 Metadata extraction
	4.4 Bibliography extraction
	4.4.1 Extracting reference strings
	4.4.2 Reference strings parsing

	5 Evaluation
	5.1 Datasets preparation
	5.2 Page segmentation
	5.3 Zone classification
	5.4 Reference parsing
	5.5 Metadata extraction evaluation
	5.6 Comparison evaluation
	5.7 Error analysis
	5.8 Processing time

	6 Conclusions and future work
	Acknowledgments
	References

