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(rough applying the Kober fractional q-calculus apprehension, we preliminary implant and introduce new types of univalent
analytical functions with a q-differintegral operator in the open disk U � ξ ∈ C:∣ξ|< 1{ }. (e coefficient inequality and distortion
theorems are among the results examined with these forms of functions. Specific cases are responded and addressed immediately.
(e findings include an expansion of the numerous established results in the q-theory of analytical functions.

1. Introduction and Preliminary

(e q-analysis theory has been applied in recent times in
several fields of science and engineering. (e fractional
q-calculus is indeed an analog of the conventional fractional
calculus in q-theory. Very recently, Wang et al. [1] and Yan
et al. [2] investigated the properties of subclasses of mul-
tivalent analytic or meromorphic functions expressed with
q-difference operators. Furthermore, Srivastava [3] inves-
tigated the excellent work with q-calculus and fractional
q-calculus operators, which is quite valuable for academics
working on these issues. (e applications of fractional
q-calculus operators have been investigated by Purohit and
Raina [4] to describe several new classes of analytic functions
in open disk U � ξ ∈ C: |ξ|< 1{ }. Moreover, Mur-
ugusundaramoorthy et al. [5], Purohit [6], and Purohit and
Raina [4, 7] gave related work and added various classes of
univalent and multivalently analytic functions in open unit
disk U. Several others have also released new classes of
analytical functions with the resources of q-calculus oper-
ators. For any more inquiries on the analytic functions
classes, we refer to [1, 2, 8–13] for functions described by
applying q-calculus operators and subject related to this
work.

In the current inquiry, we are planning to develop few
additional families of analytic functions applying the Kober
differential and integral operators in q-calculus. (e results
obtained must also provide the coefficient inequalities and
distortion theorems for the subclasses established here be-
low. First, we use the main notations and definitions in the
q-calculus which are relevant to grasp the object of the study.

For each complex number P, the q-shifted factorials are
delimited by

(P; q)m �∏m− 1
j�0

1 − qjP( ); m ∈ N,

(P; q)0 � 1,

(1)

and with regard to the basic analog of the gamma function,

qP; q( )
m
�
Γq(P +m)(1 − q)m

Γq(P)
; m> 0, (2)

in which the q-gamma function is set by (see [14])

Γq(P) �
(q; q)∞(1 − q)

1− P

qP; q( )∞ ; 0< q< 1. (3)
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(e recurrence relationship specified by Gaspar and
Rahman [15] for the q-gamma function is

Γq(1 +P) �
1 − qP( )Γq(P)

1 − q
. (4)

If |q|< 1, then equation (1) shall continue to play a role
m �∞ as an infinite product of convergence:

(P; q)∞ �∏∞
j�0

1 − Pqj( ), (5)

and we have

(P; q)m �
(P; q)∞
Pqm; q( )∞; m ∈ N∪ ∞{ }. (6)

(e q-binomial expansion is now as follows:

(a − b)τ � a
τ − b

a
; q( )

τ

� aτ
1ϕ0 q− τ

; − ; q,
bqτ

a
[ ]. (7)

[15] accounts for Jackson’s q-integral and q-derivative of
a function f, which are described on a subset of C, as

Dqf(ξ) �
f(ξ) − f(qξ)

ξ(1 − q)
; ξ ≠ 0, q≠ 0, (8)

with

D
μ
ξ �

1 − qμ( )ξμ− 1

1 − q
,

∫ξ

0
f(y)dqy � ξ(1 − q)∑∞

k�0

qkf ξqk( ).
(9)

2. The Fractional q-Calculus Operators

Purohit and Raina [4] described the fractional q-integral
operator of function f(ξ) given by

I
P

q,ξf(ξ) �
1

Γq(P)
∫ξ

0
(ξ − yq)P− 1f(y)dqy, (10)

where P> 0 is the order of integral and f(ξ) is an analytic
function in U, and (7) the (ξ − yq)P− 1 be expressed as

(ξ − yq)P− 1 � ξP− 11ϕ0 q1− P; − ; q,
yqP

ξ
[ ], (11)

where 1ϕ0[P; − ; q, ξ] is special case of basic hypergeometric
series 2ϕ1[P;J; c; q, ξ] for c � J is single valued for
|arg(ξ)|< π and |ξ|< 1 (see [15]).

Purohit and Raina [4] defined the DP

q,ξf(ξ) fractional
q-derivative operator of a function f(ξ) by

D
P

q,ξf(ξ) �
1

Γq(1 − P)
Dq,ξ ∫ξ

0
(ξ − yq)− Pf(y)dqy, (12)

where 0≤P< 1 and f(ξ) is suitably constrained with
D
− P

q,ξ f(ξ) � I
P

q,ξf(ξ).

(e Kober fractional q-integral operator for a real valued
function f(x) is determined by Garg and Chanchalani [16]
as

Ic,Pq f(x) �
x− c− P

Γq(P)
∫x
0
(x − yq)P− 1y

cf(y)dqy, (13)

where c being real or complex andP is an absolute order of
integration with R(P)> 0. For q⟶ 1, operator (13) is
reduced to Kober operator Ic,Pf(x) as defined in [17]. For
c � 0, this operator is converted to Riemann–Liouville
fractional q-integral operator with a power weight function
as I0,Pq f(x) � x− PIPq f(x).

(e Kober fractional q-derivative operator for a real
valued function f(x) is detailed by Garg and Chanchalani
[16] as

Dc,P
q f(x) �∏m

j�1

[c + j]q + xq
c+jDq( ) Ic+P,m− Pq f(x)( ),

(14)
where P is order of derivative with R(P)> 0 and
m � [R(P)] + 1, m ∈ N. For q⟶ 1, operator (14) is re-
duced to Kober operator Dc,Pf(x) as defined in [17].

We are now defining q-calculus operators with a view to
applying these operators to the geometric function theory of
complex analysis.

Definition 1. Kober fractional q-integral operator:
For the function f(ξ), the Kober fractional q-integral

operator is demarcated by

Ic,Pq f(ξ) �
x− c− P

Γq(P)
∫ξ

0
(ξ − yq)P− 1y

cf(y)dqy, (15)

where c is the real or complex, P is an absolute order of
integration with R(P)> 0, and the q-binomial
(ξ − yq)P− 1is expressed as in (11).

For q⟶ 1, operator (15) is reduced to Kober integral
operator Ic,Pf(ξ) as defined in [17].

Definition 2. Kober fractional q-derivative operator:
(e Kober fractional q-derivative operator for the

function f(ξ) is demarcated by

Dc,P
q f(ξ) �∏m

j�1

[c + j]q + ξqc+jDq( ) Ic+P,m− Pq f(ξ)( ),
(16)

where P is the order of derivative with R(P)> 0 and
m � [R(P)] + 1, m ∈ N. For q⟶ 1, operator (16) is re-
duced to Kober derivative operator Dc,Pf(ξ) as defined in
[17].

Under Kober q-integral and q-derivative operators fixed
by (15) and (16), we offer the following image formulae for
function ξμ.

Remark 1. If P, c, μ ∈ C, R(c +P + μ + 1)> 0, and
R(c + μ + 1)> 0, then
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Dc,P
q ξμ

�
Γq(c +P + μ + 1)

Γq(c + μ + 1)
ξμ. (17)

Remark 2. If P, c, μ ∈ C, R(c + μ + 1)> 0, and
R(c +P + μ + 1)> 0, then

Ic,Pq ξμ
�
Γq(c + μ + 1)

Γq(c +P + μ + 1)
ξμ. (18)

3. New Classes of Functions

Let Am represent the function class of the form

f(ξ) � ξ + ∑∞
k�m+1

akξ
k
; m ∈ N, (19)

which are analytic and univalent in open unit disk U. Above,
let A−

m highlight the subclass of Am imposing of analytical
and univalent functions articulated in the form

f(ξ) � ξ − ∑∞
k�m+1

akξ
k
; ak ≥ 0, m ∈ N. (20)

For the dedication of this work, we describe a fractional
q-differintegral operator Ωc,Pq for a function f(ξ) of the
form (20) by

Ωc,Pq f(ξ) �
Γq(c + 2)

Γq(c +P + 2)
ξ− 1Dc,P

q f(ξ)

� 1 − ∑∞
k�m+1

Γq(c + 2)Γq(c +P + k + 1)

Γq(c +P + 2)Γq(c + k + 1)
,

Ωc,Pq f(ξ) � 1 − ∑∞
k�m+1

A(P, c, k, q)akξ
k− 1,

(21)

where

A(P, c, k, q) �
Γq(c + 2)Γq(c +P + k + 1)

Γq(c +P + 2)Γq(c + k + 1)
, (22)

and R(c + 2)> 0, 0< q< 1, ξ ∈ U, m ∈ N, R(P)> 0, and
D

c,P
q f(ξ) represent a fractional q-derivative of f(ξ) of order

P. We announce here the alike classes of functions con-
necting operator (21):

S
c,P
q (T) � f ∈ A −

m,
Ωc,Pq f(ξ) − 1

Ωc,Pq f(ξ) − 2T + 1

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣<J


, (23)

where
R(P)> 0,R(c + 2)> 0, 0≤T< 1, 0≤J< 1, 0< q< 1, ξ ∈ U.

And

T
c,P
q (τ) � f ∈ A−

m,R (1 − τ)Ωc,Pq f(ξ) + τ
1 − q1− P

1 − q
( )Ωc,P+1q f(ξ)( )>J{ }. (24)

(e subsequent coefficient bounds for functions of the
form (20) that belong to the classesSc,P

q (T) andTc,P
q (τ) are

now obtained (interpreted above).

Theorem 1. A function f defined by (20) is connected to the
class Sc,P

q (T) if and only if

∑∞
k�m+1

A(P, c, k, q)ak(1 +J)≤ 2J(1 − T), (25)

where

A(P, c, k, q) �
Γq(c + 2)Γq(c +P + k + 1)

Γq(c +P + 2)Γq(c + k + 1)
. (26)

The result is sharp.

Proof. Let us consider that inequality (25) holds, and for
|ξ| � 1, we have

Ωc,Pq f(ξ) − 1
∣∣∣∣∣ ∣∣∣∣∣ − J Ωc,Pq f(ξ) − 2T + 1

∣∣∣∣∣ ∣∣∣∣∣
� − ∑∞

k�m+1

A(P, c, k, q)akξ
k− 1

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣ − J 2(1 − T) − ∑∞

k�m+1

A(P, c, k, q)akξ
k− 1

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣

≤ ∑∞
k�m+1

A(P, c, k, q)ak(1 +J) − 2J(1 − T)≤ 0,

(27)
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and by our assumption, this indicates that f(ξ) ∈ Sc,P
q (T).

For the proof of converse part, suppose that
f(ξ) ∈ Sc,P

q (T), and then it follows that

Ωc,Pq f(ξ) − 1

Ωc,Pq f(ξ) − 2T + 1

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣<J, (28)

which implies that

Ωc,Pq f(ξ) − 1

Ωc,Pq f(ξ) − 2T + 1

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣

� − ∑∞
k�m+1

A(P, c, k, q)akξ
k− 1

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣ 2(1 − T) − ∑∞

k�m+1

A(P, c, k, q)akξ
k− 1

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣
− 1

<J.

(29)

Since |R(ξ)|≤ |ξ| for any ξ, therefore on choosing values
of ξ on the real axis so that Ωc,Pq f(ξ) is real and allowing
ξ⟶ 1 all through real values, we obtain from above
inequality

∑∞
k�m+1

A(P, c, k, q)ak ≤ 2J(1 − T) − J ∑∞
k�m+1

A(P, c, k, q)ak,

(30)
which implies that

∑∞
k�m+1

A(P, c, k, q)ak(1 +J)≤ 2J(1 − T), (31)

which is desired result. Here, we notice that assumption (25)
of (eorem 1 is sharp and the external function is assumed
by

f(ξ) � ξ −
2J(1 − T)

(1 +J)A(P, c, m + 1, q)
ξm+1; m ∈ N, (32)

where A(P, c, k, q) is defined in (26). □

Theorem 2. A function f defined by (20) is connected to the
class Tc,P

q (τ) if and only if

∑∞
k�m+1

A(P, c, k, q)Ak,q(P, c, τ)ak ≤ (1 − J − τ) + τ 1 − q1− P( ),
(33)

where

Ak,q(P, c, τ) � (1 − τ)(1 − q) + τ 1 − q1− P( ) 1 − qc+P+k+1

1 − qc+P+2
( )[ ].

(34)
The accomplishment is sharp.

Proof. To prove above theorem, we address the elementary
assertion that

R(g(ξ))≥J⇔ 1 − J + g(ξ){ }≥ 1 +J − g(ξ){ }. (35)

Now,

g(ξ) �(1 − τ)Ωc,Pq f(ξ) + τ
1 − q1− P

1 − q
( )Ωc,P+1q f(ξ)

�(1 − τ) 1 − ∑∞
k�m+1

A(P, c, k, q)akξ
k− 1  + τ

1 − q1− P

1 − q
( ) 1 − ∑∞

k�m+1

A(P + 1, c, k, q)akξ
k− 1 

�(1 − τ) + τ
1 − q1− P

1 − q
( ) − 1

(1 − q)
∑∞

k�m+1

Ak,q(P, c, τ)akξ
k− 1,

(36)

where
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Ak,q(P, c, τ) � (1 − τ)(1 − q) + τ 1 − q1− P( ) 1 − qc+P+k+1

1 − qc+P+2
( )[ ].

(37)

In (35), it then suffices to show that

2 − J − τ + τ
1 − q1− P

1 − q
( ) − 1

(1 − q)
∑∞

k�m+1

A(P, c, k, q)Ak,q(P, c, τ)akξ
k− 1

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣

− J + τ − τ
1 − q1− P

1 − q
( ) + 1

(1 − q)
∑∞

k�m+1

A(P, c, k, q)Ak,q(P, c, τ)akξ
k− 1

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣≥ 0.

(38)

Now,

2 − J − τ + τ
1 − q1− P

1 − q
( ) − 1

(1 − q)
∑∞

k�m+1

A(P, c, k, q)Ak,q(P, c, τ)akξ
k− 1

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣

− J + τ − τ
1 − q1− P

1 − q
( ) + 1

(1 − q)
∑∞

k�m+1

A(P, c, k, q)Ak,q(P, c, τ)akξ
k− 1

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣

≥ 2

(1 − q)
(1 − J − τ)(1 − q) + τ 1 − q1− P( ) − ∑∞

k�m+1

A(P, c, k, q)Ak,q(P, c, τ)ak|ξ|
k− 1 ≥ 0.

(39)

(is accomplishes the proof of theorem.
We accommodate that answer (33) is sharp.(e external

function is assumed by

f(ξ) � ξ −
(1 − J − τ) + τ 1 − q1− P( ){ }

A(P, c, m + 1, q)Am+1,q(P, c, τ)
ξm+1; m ∈ N,

(40)

where Ak,q(P, c, τ) is given by (34). □

4. Distortion Theorems

Theorem 3. Suppose that the function f is defined by (20) in
the class Sc,P

q (T), then

|ξ| − |ξ|m+1
2J(1 − T)

1 +J
( )B(P, c, m, q)≤ |f(ξ)|≤ |ξ| +|ξ|m+1 2J(1 − T)

1 +J
( )B(P, c, m, q), (41)

where

B(P, c, m, q) �
1

A(P, c, m + 1, q)
�
Γq(c +P + 2)Γq(c +m + 2)

Γq(c + 2)Γq(c +P +m + 2)
. (42)

Furthermore,

|ξ| − |ξ|m+1
2J(1 − T)

1 +J
( )≤ ξΩc,Pq f(ξ)

∣∣∣∣∣ ∣∣∣∣∣≤ |ξ| +|ξ|m+1 2J(1 − T)

1 +J
( ), (43)
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where c> − 2,R(P)> 0, 0< q< 1.

Proof. Since f(ξ) ∈ Sc,P
q (T), then in interpretation of

(eorem 1, we first show that the function

A(P, c, k, q) �
Γq(c + 2)Γq(c +P + k + 1)

Γq(c +P + 2)Γq(c + k + 1)
� ϕ(k), (let)

(44)

is an increasing function of k for c> − 2 and R(P)> 0.
It follows that

ϕ(k + 1)

ϕ(k)
�
Γq(c +P + k + 2)Γq(c + k + 1)

Γq(c +P + k + 1)Γq(c + k + 2)
�
1 − qc+P+k+1

1 − qc+k+1
, 0< q< 1. (45)

Taking k � m + 1, then

ϕ(m + 2)

ϕ(m + 1)
�
1 − qc+P+m+2

1 − qc+m+2
, 0< q< 1. (46)

(e function ϕ(k) is an increasing function of k if
(ϕ(m + 2)/ϕ(m + 1))≥ 1, and this gives

1 − qc+P+m+2

1 − qc+m+2
≥ 1; 0< q< 1, (47)

which implies

qP ≤ 1, 0< q< 1. (48)

(is inequality abides for R(P)> 0.
(us, ϕ(k), (k≥m + 1, m ∈ N) is an increasing function

of k for R(c + 2)> 0,R(P)> 0 and 0< q< 1.
Now, (25) gives the alike inequality:

A(P, c, m + 1, q) ∑∞
k�m+1

ak(1 +J)≤ ∑∞
k�m+1

A(P, c, k, q)ak(1

+J)≤ 2J(1 − T),

(49)
which implies that

∑∞
k�m+1

ak ≤
2J(1 − T)

1 +J
B(P, c, m, q), (50)

where B(P, c, m, q) is defined in (42), and this last inequality
is in the conjunction with the alike inequality (easily ob-
tained from (20)):

|ξ| − |ξ|m+1 ∑∞
k�m+1

ak ≤ |f(ξ)|≤ |ξ| +|ξ|m+1 ∑∞
k�m+1

ak, (51)

and using (50), we have

|ξ| − |ξ|m+1
2J(1 − T)

1 +J
( )B(P, c, m, q)≤ |f(ξ)|≤ |ξ| +|ξ|m+1 2J(1 − T)

1 +J
( )B(P, c, m, q), (52)

which is result (41) of (eorem 3. Now, on using (21), we observe that for functions of
form (20),

ξΩc,Pq f(ξ)
∣∣∣∣∣ ∣∣∣∣∣≥ |ξ| − ∑∞

k�m+1

A(P, c, k, q)ak|ξ|
k ≥ |ξ| − |ξ|m+1 ∑∞

k�m+1

A(P, c, k, q)ak, (53)

which on using (eorem 1 gives

ξΩc,Pq f(ξ)
∣∣∣∣∣ ∣∣∣∣∣≥ |ξ| − 2J

1 − T

1 +J
( )|ξ|m+1, (54)

and similarly,

ξΩc,Pq f(ξ)
∣∣∣∣∣ ∣∣∣∣∣≤ |ξ| + 2J

1 − T

1 +J
( )|ξ|m+1, (55)
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which implies that

|ξ| − 2J
1 − T

1 +J
( )|ξ|m+1 ≤ ξΩc,Pq f(ξ)

∣∣∣∣∣ ∣∣∣∣∣≤ |ξ| + 2P
1 − T

1 +J
( )|ξ|m+1. (56)

□
Corollary 1. Let the function detailed in (20) be in the class
S

c,P
q (T), then

Γq(c +P + 2)

Γq(c + 2)
|ξ| − 2P

1 − T

1 +J
( )|ξ|m+1{ }≤ Dc,P

q f(ξ)
∣∣∣∣∣ ∣∣∣∣∣
≤
Γq(c +P + 2)

Γq(c + 2)
|ξ| + 2J

1 − T

1 +J
( )|ξ|m+1{ },

(57)

where R(c + 2)> 0,R(P)> 0, and ξ ∈ U. Corollary 2. Let the function detailed in (20) be in the class
S

c,P
q (T), then

Γq(c + 2)

Γq(c +P + 2)
|ξ| − 2J

1 − T

1 +J
( ) Γq(c +P + 2)

Γq(c +P +m + 2)
( )2

|ξ|m+1
  ≤ Ic,Pq f(ξ)

∣∣∣∣∣ ∣∣∣∣∣

≤
Γq(c + 2)

Γq(c +P + 2)
|ξ| + 2J

1 − T

1 +J
( ) Γq(c +P + 2)

Γq(c +P +m + 2)
( )2

|ξ|m+1
 ,

(58)

where R(c + 2)> 0,R(P)> 0, and ξ ∈ U.

Theorem 4. Suppose that the function f(ξ) detailed in (20)
be in the class T

c,P
q (τ), then for

R(P)> 0,R(c + 2)> 0, ξ ∈ U, 0< q< 1,
|ξ| − B(c,P, m, q)C|ξ|m+1 ≤ |f(ξ)|≤ |ξ| + B(c,P, m, q)C|ξ|m+1,

(59)
also

|ξ| − C|ξ|m+1 ≤ ξΩc,Pq f(ξ)
∣∣∣∣∣ ∣∣∣∣∣≤ |ξ| + C|ξ|m+1, (60)

where

C �
(1 − J − τ)(1 − q) + τ 1 − q1− P( )

Am+1,q(P, c, τ)
, (61)

and Ak,q(P, c, τ) and B(c,P, m, q) are detailed in (34) and
(42), respectively.

Proof. Since T
c,P
q (τ), then under the hypothesis of (e-

orem 2, we have

∑∞
k�m+1

A(P, c, k, q)ak ≤
(1 − J − τ)(1 − q) + τ 1 − q1− P( )

Am+1,q(P, c, τ)
,

(62)

which implies that

∑∞
k�m+1

A(P, c, k, q)ak ≤C, (63)

where Ak,q(P, c, τ) and C are given by (34) and (61), re-
spectively, and this last inequality, when combined with the
following inequality (which is conveniently obtained from
(20)),

|ξ| − |ξ|m+1 ∑∞
k�m+1

ak ≤ |f(ξ)|≤ |ξ| +|ξ|m+1 ∑∞
k�m+1

ak, (64)

and using (63), we have

|ξ| − B(c,P, m, q)C|ξ|m+1 ≤ |f(ξ)|≤ |ξ| + B(c,P, m, q)C|ξ|m+1,
(65)

which is result (59) of (eorem 4.
Now, from (21), we obtain

|ξ| − |ξ|m+1 ∑∞
k�m+1

A(λ, c, k, q)ak ≤ ξΩc,λq f(ξ)
∣∣∣∣∣ ∣∣∣∣∣, (66)

on using (63), this implies that

|ξ| − C|ξ|m+1 ≤ ξΩc,λq f(ξ)
∣∣∣∣∣ ∣∣∣∣∣, (67)
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similarly, we have

ξΩc,λq f(ξ)
∣∣∣∣∣ ∣∣∣∣∣≤ |ξ| + C|ξ|m+1, (68)

and on combining above two results, we have

|ξ| − C|ξ|m+1 ≤ ξΩc,λq f(ξ)
∣∣∣∣∣ ∣∣∣∣∣≤ |ξ| + C|ξ|m+1. (69)

□

Corollary 3. Let the function detailed in (20) be in the class
T

c,P
q (τ), then for all ξ ∈ U,R(c + λ + 2)> 0, R(c + 2)> 0,

Γq(c + λ + 2)

Γq(c + 2)
|ξ| − C|ξ|m+1{ }≤ Dc,λ

q f(ξ)
∣∣∣∣∣ ∣∣∣∣∣≤ Γq(c + λ + 2)

Γq(c + 2)
|ξ| + C|ξ|m+1{ }. (70)

(e fractional q-calculus operators presented in Section
2 may be used to explore numerous different multivalent (or
meromorphic) analytic function subclass and geometric
characteristics which includes coefficient estimates, distor-
tion bounds, radii of starlikeness, convexity, and so forth.
(e concept of fractional q-calculus can also be used to again
with considerations.
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