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1. Introduction. Let An+1 be an (n + 1)-dimensional, n ≥ 2, affine
space considered as a homogeneous space under the action of the unimodu-
lar affine group ASL(n+ 1,R). We denote by (∇̃, Θ̃) the natural equiaffine
structure on An+1, i.e. the standard torsion-free connection ∇̃ and the vol-
ume element Θ̃ given by the determinant which is parallel with respect to
this connection.

Suppose that M is a non-degenerate hypersurface in An+1 with the affine
normal ξ and with induced equiaffine structure (∇, Θ) (we refer to [23] and
[31] for the construction of ξ and (∇, Θ)). Thus we have

∇̃XY = ∇XY + h(X,Y )ξ ,(1.1)

∇̃Xξ = −SX(1.2)

for all vector fields X and Y tangent to M , where h is a non-degenerate
symmetric bilinear form and S a (1, 1)-tensor field on M . The tensor field
S is called the affine shape operator . The fundamental equations of M in
An+1 (i.e. the equations of Gauss, Codazzi and Ricci) are (see [23], [24],
[22]):

(1.3) R(X,Y )Z = h(Y, Z)SX − h(X,Z)SY ,

(1.4) C(X,Y, Z) = C(Y,X,Z) ,

(1.5) (∇XS)Y = (∇Y S)X ,

(1.6) h(X,SY ) = h(SX, Y ) ,

where R is the curvature tensor of ∇ defined by

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z
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and the (0, 3)-tensor C is given by

C(X,Y, Z) = (∇h)(Y, Z;X) = Xh(Y, Z)− h(∇XY, Z)− h(Y,∇XZ) ,

X, Y, Z begin vector fields tangent to M . The tensor field C is called the
cubic form of M .

A non-degenerate hypersurface M in An+1 is said to be an affine hyper-
sphere if the equality

S = λI, λ ∈ R ,

holds on M , where I denotes the identity (1, 1)-tensor field on M . If λ 6= 0
(resp. λ = 0), then a hypersurface M is called a proper affine hypersphere
(resp. an improper affine hypersphere).

The basic definitions and formulas are given in Section 2. In Section 3
we obtain some results on non-degenerate hypersurfaces M in An+1 satis-
fying certain curvature conditions imposed on its cubic form. In Section 4
we consider a curvature condition imposed on the tensor R of M . These
subjects are a continuation of the investigations presented in [1] and [31],
respectively. In these sections we also consider curvature conditions imposed
on the generalized curvature tensor R∗ defined in [27]. Moreover, in Section
4 we consider affine-quasi-umbilical hypersurfaces M in An+1. This class of
hypersurfaces was introduced in [26]. We prove (see Theorem 4.8) that such
hypersurfaces in An+1, n ≥ 4, are characterized by the vanishing on M of
the Weyl curvature tensor W (R∗) corresponding to the tensor R∗.

This paper was prepared during my stay at the Katholieke Universiteit
Leuven in 1989, sponsored by a Research Fellowship and by Research Project
KUL OT/89/11 of that University.

I would like to express my hearty thanks to Professors K. Nomizu and
L. Verstraelen for the invitation to the subject of affine differential geometry.
Thanks are also due to Drs. B. Opozda, F. Dillen, Z. Olszak, P. Verheyen
and L. Vrancken for the comments and discussions during the preparation
of this paper.

2. Pseudosymmetry curvature conditions on affine hypersur-
faces. Let M be a connected n-dimensional, n ≥ 2, smooth Riemannian
manifold with a not necessarily definite metric h. We denote by ∇, R, R,
Ricc(R) and W (R) the Levi-Cività connection, the curvature tensor, the
Riemann–Christoffel curvature tensor, the Ricci tensor and the Weyl con-
formal curvature tensor of (M,h), respectively. Denote by X(M) the Lie
algebra of vector fields on M .

For a symmetric (0, 2)-tensor field D on M define the endomorphism
X ∧D Y of X(M) by

(2.1) (X ∧D Y )Z = D(Y, Z)X −D(X,Z)Y ,
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where X,Y, Z ∈ X(M). The endomorphism X ∧h Y will be denoted simply
by X ∧ Y . Further, for a (1, 3)-tensor field B on M satisfying

(2.2) B(X,Y, Z) = −B(Y,X,Z) ,

we denote by B(X,Y ) the endomorphism of X(M) defined by

B(X,Y )Z = B(X,Y, Z) .

We extend the endomorphismsX∧DY and B(X,Y ) to derivations (X∧DY )·
and B(X,Y )· of the algebra of tensor fields on M , assuming that they
commute with contractions and

(X ∧D Y ) · f = 0 , B(X,Y ) · f = 0 ,

for any function f on M . Now, for any (l, k)-tensor field T on M we define
the (l, k + 2)-tensors B · T and Q(D,T ) by

(B · T )(ω1, . . . , ωl, X1, . . . , Xk;X,Y )
= (B(X,Y ) · T )(ω1, . . . , ωl, X1, . . . , Xk)

= −
l∑

i=1

T (ω1, . . . , B(X,Y ) · ωi, . . . , ωl, X1, . . . , Xk)

−
k∑

j=1

T (ω1, . . . , ωl, X1, . . . , B(X,Y ) ·Xj , . . . , Xk) ,

Q(D,T )(ω1, . . . , ωl, X1, . . . , Xk;X,Y )
= −((X ∧D Y ) · T )(ω1, . . . , ωl, X1, . . . , Xk)

=
l∑

i=1

T (ω1, . . . , (X ∧D Y ) · ωi, . . . , ωl, X1, . . . , Xk)

+
k∑

j=1

T (ω1, . . . , ωl, X1, . . . , (X ∧D Y ) ·Xj , . . . , Xk)

respectively, where X,Y,X1, . . . , Xk ∈ X(M) and ω1, . . . , ωl are real-valued
1-forms on M .

Two (l, k)-tensor fields T1 and T2 onM are pseudosymmetric related with
respect to a (1, 3)-tensor B satisfying (2.2) and a symmetric (0, 2)-tensor D
if

(∗) B · T1 and Q(D,T2) are linearly dependent at every point of M .

In the special case when T1 = T2 = T , we say that the tensor field T is
pseudosymmetric with respect to B and D. A tensor field T on M will
be called semisymmetric with respect to a (1, 3)-tensor B satisfying (2.2) if
B · T vanishes on M .
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A tensor field B of type (1, 3) on M is said to be a generalized curvature
tensor [21] if

B(X1, X2, X3) +B(X2, X3, X1) +B(X3, X1, X2) = 0 ,

B(X1, X2, X3) = −B(X2, X1, X3), B(X1, X2, X3, X4) = B(X3, X4, X1, X2),
where B(X1, X2, X3, X4) = h(B(X1, X2, X3), X4) and X1, . . . , X4 ∈ X(M).
The Ricci tensor Ricc(B) of B is the trace of the linear mapping X1 7−→
B(X1, X2, X3). If n = dimM ≥ 3 then we can define the Weyl curvature
tensor W (B) of B by

W (B)(X1, . . . , X4) = B(X1, . . . , X4) +
K(B)

(n− 1)(n− 2)
h((X1 ∧X2)X3, X4)

− 1
n− 2

(h((X1 ∧Ricc(B) X2)X3, X4)− h((X1 ∧Ricc(B) X2)X4, X3)) ,

where K(B) is the scalar curvature of B.
For a generalized curvature tensor B we define the tensor Z(B) by

Z(B)(X1, . . . , X4) = B(X1, . . . , X4)−
K(B)
n(n− 1)

h((X1 ∧X2)X3, X4) .

The following proposition gives examples of pseudosymmetric related
tensors.

Proposition 2.1. If B is a (1, 3)-tensor field on a manifold (M,h) of
the form

(2.3) B(X,Y, Z) = A(Y, Z)AX −A(X,Z)AY ,

where A is a (1, 1)-tensor field on M and A is the symmetric (0, 2)-tensor
field defined by A(X,Z) = h(X,AZ), then

(2.4) B ·B = Q(Ricc(B), B)

on M .

The above assertion is an immediate consequence of (2.3) and the defi-
nitions of B, B ·B and Q(Ricc(B), B).

Manifolds satisfying (2.4) were considered in [14]. For instance, it was
proved (see [14], Theorem 1) that if B is a generalized curvature tensor field
on M , then (2.4) is satisfied at each point of M at which there exists a
non-zero covector w satisfying

(2.5) w(X1)B(X2, X3, X4) + w(X2)B(X3, X1, X4)
+w(X3)B(X1, X2, X4) = 0 ,

where X1, . . . , X4 are tangent vectors at x. Examples of manifolds fulfilling
(2.4) for B = R or B = W (R) are given in [14] and [2]. Furthermore, in
[8] it was proved that any conformally flat manifold M of dimension ≥ 4
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satisfying (2.4) with B = R is pseudosymmetric. A Riemannian manifold M
is said to be pseudosymmetric if the Riemann–Christoffel curvature tensor
R is pseudosymmetric with respect to the curvature tensor R and the metric
tensor h [12]. Recently, pseudosymmetric manifolds were studied in [3]–[5],
[10]–[12], [15]–[16], and [18]–[20].

Ricci-pseudosymmetric manifolds and Weyl-pseudosymmetric manifolds
can be defined in a similar manner. Such manifolds were investigated in
[6], [7], [9], [13], [17] and [25]. Certain properties of pseudosymmetric (with
respect to R and h) generalized curvature tensors were also obtained in [11],
[12] and [16].

A (0, k)-tensor field T on M is said to be totally symmetric (cf. [1]) if

T (X1, . . . , Xk) = T (Xσ(1), . . . , Xσ(k))

for any permutation σ of {1, . . . , k} and X1, . . . , Xk ∈ X(M).
Let now M be a non-degenerate hypersurface of the affine space An+1.

The following proposition states that on M there exist tensor fields which
are pseudosymmetric related with respect to the tensors R and h.

Proposition 2.2. On any non-degenerate hypersurface M in An+1 we
have

R · h = Q(h, S) ,(2.6)
R · S = Q(h, S2) ,(2.7)
R · C = Q(h,CS) ,(2.8)

where CS is the (0, 3)-tensor fields defined by

(2.9) CS(X,Y, Z) = C(SX, Y, Z)

and S and S2 are the (0, 2)-tensor fields defined by

S(X,Y ) = h(SX, Y ) and S2(X,Y ) = S(SX, Y ) ,

respectively.

The above proposition is an immediate consequence of the following
proposition:

Proposition 2.3. Let T be a totally symmetric (0, k)-tensor field , k ≥ 1,
on a non-degenerate hypersurface M in An+1. Then

R · T = Q(h, TS)

on M , where TS is the (0, k)-tensor field defined by

TS(X1, . . . , Xk) = T (SX1, X2, . . . , Xk) .

P r o o f. This is a consequence of the Gauss equation (1.3) and the
definition of pseudosymmetric related tensors.
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Moreover, it can be easily noted that the following proposition is also
true.

Proposition 2.4. Any tensor field on an affine hypersphere M in An+1

is pseudosymmetric with respect to R and h.

We give another example of pseudosymmetric related tensors. On a
non-degenerate hypersurface M in An+1 consider the generalized curvature
tensor R defined by ([27])

(2.10) R∗(X,Y, Z) = R(X,Y )SZ = S(Y, Z)SX − S(X,Z)SY .

The equality (2.10) implies

R∗(X1, . . . , X4) = h(R∗(X1, X2, X3), X4)(2.11)
= S(X1, X4)S(X2, X3)− S(X1, X3)S(X2, X4) .

From Proposition 2.1 we easily obtain the following corollary.

Corollary 2.5. Let M be a non-degenerate hypersurface in An+1. Then

R∗ ·R∗ = Q(Ricc(R∗), R∗)

on M .

A non-degenerate hypersurfaceM in An+1 is said to be an affine Einstein
hypersurface ([27]) if Ricc(R∗) is proportional to h. Thus Corollary 2.5 yields

Corollary 2.6. The curvature tensor R∗ of a non-degenerate affine
Einstein hypersurface in An+1 is pseudosymmetric with respect to R∗ and h.

To end this section, we prove some lemmas.

Lemma 2.7 ([8], Theorem 3.5). Let B be a generalized curvature tensor
on a Riemannian manifold (M,h), n ≥ 4, with a not necessarily definite
metric h. Moreover , suppose the Weyl curvature tensor W (B) vanishes on
M . Then

B ·B = Q(Ricc(B), B)
on M if and only if at each point of M the Ricci tensor Ricc(B) has the
form

Ricc(B) = αh+ βa⊗ a , α, β ∈ R ,

where a is a covector.

Lemma 2.8. Let A and B be two symmetric (0, 2)-tensors at a point x of
a Riemannian manifold (M,h) with a not necessarily definite metric h.

(i) If Q(A,B) = 0 at x then A and B are linearly dependent.
(ii) If A ◦B = B ◦A at x and

(2.12) αQ(h,A) + γQ(A,B) + βQ(h,B) = 0 , α, β, γ ∈ R , γ 6= 0 ,
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at x then the tensors

A− 1
n

tr(A)h and B − 1
n

tr(B)h

are linearly dependent , where A ◦ B is the (0, 2)-tensor with the local com-
ponents (A ◦B)rs = hpqArpBqs.

P r o o f. (i) The proof was given in [8] (see the proof of Lemma 3.4).
(ii) Contracting the equality

αQ(h,A)rstu + γQ(A,B)rstu + βQ(h,B)rstu = 0

with hru we obtain

α

(
A− 1

n
tr(A)h

)
+ γ

(
1
n

tr(A)B − 1
n

tr(B)A
)

+ β

(
B − 1

n
tr(B)h

)
= 0 ,

which yields

αQ(h,A) + γQ

(
1
n

tr(A)h,B
)
− γQ

(
1
n

tr(B)h,A
)

+ βQ(h,B) = 0 .

Next, subtracting the above equality from (2.12) we get

γQ

(
A− 1

n
tr(A)h,B − 1

n
tr(B)h

)
= 0 .

Now (i) completes the proof.

Lemma 2.9. Let (M,h), dimM ≥ 4, be a Riemannian manifold with a
not necessarily definite metric h. If a symmetric (0, 2)-tensor A satisfies at
x ∈M the condition

(2.13) A((X1 ∧A X2)X3, X4)

=
1

(n− 1)(n− 2)
((n− 2)τ − %‖a‖2)h((X1 ∧X2)X3, X4)

+
1

n− 2
(h((X1 ∧a⊗a X2)X3, X4)

− h((X1 ∧a⊗a X2)X4, X3)) , τ, % ∈ R ,

then A = αh+ βb⊗ b, α, β ∈ R, at x, where ‖a‖2 is the square of the norm
of the covector a.

P r o o f. (2.13) can be written in the form

(2.14) AruAst −ArtAsu

=
1

(n− 1)(n− 2)
((n− 2)τ − ‖a‖2%)(hruhst − hrthsu)

+
1

n− 2
%(hruasat + hstarau − hrtasau − hsuarat) .
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Contracting this with hru we obtain

(2.15) tr(A)Ast −A2
st = τhst + %asat ,

where Aru, A2
ru, hru, and ar are the local components of the tensors A,

A2 = A ◦A, h and a, respectively.
Next, transvecting (2.15) with Ar

p = Aqph
rq we obtain

A2
ruAst −A2

rtAsu(2.16)

=
1

(n− 1)(n− 2)
((n− 2)τ − %‖a‖2)(Aruhst −Arthsu)

+
1

n− 2
%(Aruasat −Artasau + hstPrau − hsuPrat) ,

where Pr = apA
p
r. Further, contracting the above relation with hst, we get

tr(A)A2
ru −A3

ru = τAru + %Prau , A3
ru = A2

prh
pqAqu .

From this it follows immediately that

%Pr = %λar , λ ∈ R .

Using the above equality and (2.15) we can write (2.16) in the form

tr(A)(AruAst −ArtAsu)− τ(hruAst − hrtAsu)− β(arauAst − aratAsu)

=
1

(n− 1)(n− 2)
((n− 2)τ − %‖a‖2)(Aruasat −Artasau)

+
1

n− 2
%(asatAru − asauArt + λ(arauhst − arathsu)) .

This, by symmetrization in r and s, yields

(2.17)
(
n− 2
n− 1

τ +
1

n− 2
%‖a‖2

)
Q(h,A)rstu +

n− 3
n− 2

%Q(a⊗ a,A)rstu

+
1

n− 2
λ%Q(a⊗ a, h)rstu = 0 .

If % 6= 0 then from Lemma 2.8(ii) it follows that the tensors A − 1
n tr(A)h

and a⊗ a− 1
n‖a‖

2h are linearly dependent. So A has the required form. If
% = 0 then (2.17) yields τQ(h,A) = 0, whence we get A − 1

n tr(A)h = 0 or
τ = 0. In the second case, i.e. when τ = 0, (2.14) implies that rank(A) = 1.
The last remark completes the proof.

3. Curvature conditions imposed on the cubic form. Let M be
non-degenerate hypersurface in the affine space An+1, n ≥ 2. Let A be the
(0, 4)-tensor field on M defined by

(3.1) A(X1, X2, X3, X4)
= (∇C)(X1, X2, X3;X4)− (∇C)(X1, X2, X4;X3) ,
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where X1, . . . , X4 are vector fields tangent to M . Note that in virtue of
(1.3), A satisfies the condition

(3.2) A = R · h .
From this and (2.6) it follows that A vanishes if and only if the tensor S is
proportional to h (i.e. ∇C is totally symmetric). Non-degenerate hypersur-
face in An+1 with ∇C and ∇2C totally symmetric were considered in [1].
∇C and ∇2C are both totally symmetric if and only if C = 0 or S = 0 ([1],
Theorem 1). In the special case when ∇C = 0 and C 6= 0, then S = 0, ∇
is flat, the Pick invariant of M vanishes and h is a hyperbolic metric with
zero Ricci tensor ([1], Corollary). Of course, if ∇2C is totally symmetric,
then R · C = 0 (i.e. C is semisymmetric with respect to R). As a general-
ization of the semisymmetry of C with respect to R, we can consider the
pseudosymmerty of C with respect to R and h. Note that Q(h,C) vanishes
at x ∈M if and only if C vanishes at x. Thus

(3.3) R · C = LCQ(h,C)

on the set UC of all points of M at which C is non-zero, where LC is a
function defined on UC .

Proposition 3.1. Let M be a non-degenerate hypersurface in An+1.
Then C satisfies (3.3) on UC if and only if

(3.4) C((S − LCI)X,Y, Z) = 0

on UC , where X,Y, Z are vector fields tangent to UC .

P r o o f. If (3.4) holds on UC then (3.3) is also satisfied. This is an
immediate consequence of (2.8). Assume now that (3.3) holds on UC . Let
U ⊂ UC be a coordinate neighbourhood. We can write (3.3) in the form

−CpstR
p
rvw − CrptR

p
svw − CrspR

p
tvw

= LC(hrwCvst + hswCrvt + htwCrsv − hrvCwst − hsvCrwt − htvCrsw) ,

where Rp
rvw, Crst and hrw are the local components of R, C and h, respec-

tively. Applying (1.3) to the above equality, we get

hrwVv
pCpst + hswVv

pCprt + htwVv
pCprs

−hrvVw
pCpst − hsvVw

pCprt − htvVw
pCprs = 0 ,

where Vv
p = Sv

p − LCδ
p
v . The above relation, by contraction with hrw,

yields

(3.5) (n+ 1)Vv
pCpst = hsvV

pqCpqt + htvV
pqCpqs ,

whence, by contraction with hst and making use of the apolarity condition
hpqCpqs = 0, we obtain

(3.6) V pqCpqt = 0 ,
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where V pq = hpsVs
q and hps are the local components of h−1. Substituting

(3.6) into (3.5) we obtain (3.4) on U , which completes the proof.

Now we will consider non-degenerate hypersurfaces M in An+1 which
have a tensor field A pseudosymmetric with respect to R and h.

Lemma 3.2. Let M be a non-degenerate hypersurface in An+1. Then the
tensor Q(h,A) vanishes at x ∈M if and only if S is proportional to h at x.

P r o o f. Of course, if S is proportional to h at x then both A and
Q(h,A) vanish at x. Assume now that Q(h,A) vanishes at x. Let U ⊂ M
be a coordinate neighbourhood of x. Thus, at x,

hrwAvstu + hswArvtu + htwArsvu + huwArstv(3.7)
−hrvAwstu − hsvArwtu − htvArswu − huvArstw = 0 .

Contracting this with htw and huv we obtain

(3.8) (n− 2)Arsvu = Avsur +Avrus − hsvh
pqApruq − hrvh

pqApsuq ,

(3.9) hpqApsrq = −hpqAprsq .

Similarly, contracting (3.7) with hrw and huv and using (3.9) we find

(3.10) 2hpqApstq = hpqApqts .

On the other hand, from (2.6) and (3.2) it follows that

(3.11) hpqApqts = 0 .

Now (3.8), by (3.11) and (3.10), takes the form

(n− 1)(hruSvs − hrvSus + husSrv − hsvSru) = 2(hrsSuv − huvSrs) ,

whence, by contraction with hrs, we obtain our assertion.

From the last lemma it follows that if a tensor field A is pseudosymmetric
with respect to R and h then

(3.12) R ·A = LAQ(h,A)

on the set UA of all points of M at which A is non-zero, where LA is a
function defined on UA.

Theorem 3.3. Let M be a non-degenerate hypersurface in An+1 with a
tensor field A pseudosymmetric with respect to R and h.

(i) If dimM ≥ 3 then M is an affine hypersphere.
(ii) If dimM = 2 and h is positive definite then M is an affine sphere.
(iii) If dimM = 2 and h is indefinite then M is an affine Einstein surface.

P r o o f. Let UA be the set defined above. We note that (3.12) can be
written in the following form (on a coordinate neighbourhood U ⊂ UA):

(3.13) hrwVv
pApstu + hswVv

pAprtu − hrvVw
pApstu − hsvVw

pAprtu
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−htwVv
pArsup + huwVv

pArstp + htvVw
pArsup − huvVw

pArstp = 0 ,

where Vw
p = Sw

p − LAδ
p
w. Contracting (3.13) with htw we obtain

(3.14) (n− 2)Vv
pArsup = Vv

pApsru + Vv
pAprsu + hrwEsu + hsvEru ,

where Ers = V pqAprsq and V pq = Vr
qhrp. Similarly, contracting (3.13) with

hrw and huv, we find

(3.15) nVv
pApstu = Vv

pAtsup−Vv
pAustp+hsvV

pqApqtu−htvEsu+huvEst ,

(3.16) V pqApqts = 2Est .

On the other hand, from (2.6) and (3.2) it follows that

(3.17) V pqApqts = 0 .

Applying this and (3.16) in (3.14) and (3.15) we find

(n− 2)Vv
pArsup = Vv

pApsru + Vv
pAprsu ,(3.18)

nVv
pApstu = Vv

pAtsup − Vv
pAustp ,(3.19)

respectively. Moreover, using (2.6) and (3.2), we can express Apstu in the
form

(3.20) Apstu = hpuVts + hsuVpt − hptVus − hstVpu ,

where Vup = hpqVu
q. Now (3.18) and (3.19) take the forms

(3.21) (n− 1)(VvrVus + VvsVur − hurV
2
sv − husV

2
rv)

= 2(VuvVrs − hrsV
2
ur) ,

(3.22) (n+ 1)(VuvVts − VtvVus + husV
2
tv − htsV

2
uv) = 0 ,

respectively. From the last equality, by contraction with hus, we obtain

(3.23) V 2
tv =

1
n
λVtv , λ = hpqVpq .

Further, contracting (3.21) with hus, we get

(3.24) λ

(
Vrs −

1
n
λhrs

)
= 0 .

From (3.20) and the definition of the set UA it follows that Vrs − 1
nλhrs is

non-zero at every point of UA. Thus (3.24) yields λ = 0 and, by (3.23), we
also have V 2

rs = 0. Now (3.21) and (3.22) turn into

(n− 1)(VvrVus + VvsVur) = 2VuvVrs ,

(3.25) VuvVts = VusVtv ,

respectively. But from the last two equalities and the assumption n ≥ 3 it
follows immediately that Vus must vanish on UA, i.e. the set UA is empty.
This completes the proof of (i).
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(ii) From (3.25) it follows that

Vrs = λψrψs , λ ∈ R− {0} ,

at every x ∈ U . Together with (3.20), this yields

ψrArstu = λψrψr(ψthus − ψuhts) ,
ψrAustr = ψuVts + ψsVtu − λψrψr(ψshut + ψuhst) .

Now (3.19) turns into

λψrψr(ψthus − ψuhts) = 0 .

Thus, we see that UA must be empty, which completes the proof of (ii).
(iii) The relation (3.25) can be written in the form

SurSts − SusStr = LA(hurSts + htsSur − husStr − htrSus)
− LA

2(hurhts − hushtr) ,

which, by the identity (cf. [9], Lemma 2(iii))

hurSts + htsSur − husStr − htrSus = tr(S)(hurhts − hushtr) ,

turns into

SurSts − SusStr = LA(tr(S)− LA)(hurhts − hushtr) .

Thus, the tensor Ricc(R∗) is proportional to h on UA. But this completes
the proof of (iii).

Theorem 3.4. Let M be an affine Einstein surface in the affine space
A3. If the set UA is non-empty and if (tr(S))2 = 2 tr(S2) on UA then A is
pseudosymmetric with respect to R and h and LA is defined by 2LA = tr(S).

P r o o f. Since M is an Einstein affine surface we have, on a coordinate
neighbourhood U ⊂ UA,

tr(S)Sts − S2
ts = 1

2 ((tr(S))2 − tr(S2))hts .

We put Vrs = Srs − LAhrs, LA = 1
2 tr(S). Now we can easily verify that

hpqVpq = 0 , V 2
ur = 0 , VurVts − VusVtr = 0 , VvrVus + VvsVur = 2VuvVrs .

Further, using the above equalities, we can express the tensor field R · A−
LAQ(h,A) in the form

(R ·A− LAQ(h,A))rstuvw = 2Vrs(huwVvt + htvVuw − htwVuv − huvVtw) ,

which implies (R ·A− LAQ(h,A))rstuvw = 0, completing the proof.

4. Affine hypersurfaces with pseudosymmetric curvature
tensors. Let M be a non-degenerate hypersurface in An+1, n ≥ 3. In [31]
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(Proposition 2) it was proved that the curvature tensor R of M is semisym-
metric (more precisely: R · R = 0 on M) if and only if M is an affine
hypersphere. This fact will be used in the proof of the following theorem.

Theorem 4.1. Let M be a non-degenerate hypersurface in An+1, n ≥ 3.
If the curvature tensor R is pseudosymmetric with respect to R and h, then
M is an affine hypersphere.

P r o o f. We remark that Q(h,R) vanishes at x ∈ M if and only if the
shape operator S is proportional to the identity transformation at x. Denote
by UR the set of all points of M at which Q(h,R) is non-zero. Thus, on UR,

(4.1) R ·R = LRQ(h,R) ,

where LR is a function defined on UR. Let U ⊂ UR be a coordinate neigh-
bourhood. We write (4.1) in the form

Vrv(hstVuw − husVtw)− Vrw(hstVuv − husVtv)
+Vrt(hswVuv − hsvVuw + huwVsv − huvVsw)
−Vru(hswVtv − hsvVtw + htwVsv − htvVsw)
+V 2

rv(hushtw − htshuw)− V 2
rw(hushtv − htshuv)

+LRhtr(hswVuv − hsvVuw + huwVsv − huvVsw)
−LRhur(hswVtv − hsvVtw + htwVsv − htvVsw) = 0 ,

where Vrt = hrpVt
p, Vt

p = St
p − LRδ

p
t and V 2

rt = hrqVr
pVp

q. This, by
contractions with hst, huv and hrw, gives

(4.2) (n− 2)(VuwVrv − VuvVrw + huvV
2
rw − huwV

2
rv)

+LR(hrwVuv − hrvVuw + huwVrv − huvVrw) = 0 ,

(4.3) n(n− 2)V 2
rw − (nLR + (n− 2) tr(V ))Vrw + LR tr(V )hrw = 0 ,

(4.4) n tr(V 2) = (tr(V ))2 ,

where tr(V ) = hpqVpq and tr(V 2) = hpqV 2
pq. From (4.2), by antisym-

metrization and symmetrization with respect to u and r, respectively, we
obtain

(4.5) VrwVuv − VrvVuw = huvV
2
rw − huwV

2
rv + hrwV

2
uv − hrvV

2
uw ,

(4.6) 2LR(huwVrv − huvVrw + hrwVuv − hrvVuw)
+ (n− 2)(hrvV

2
uw − hrwV

2
uv + huvV

2
rw − huwV

2
rv) = 0 ,

respectively. Contracting (4.5) and (4.6) with hrw and huw we get

(4.7) V 2
st =

1
n− 1

(tr(V )Vst − tr(V 2)hst) ,
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(4.8) V 2
st =

2
n− 2

LRVst +
1
n

(
tr(V 2)− 2

n− 2
LR tr(V )

)
hst ,

respectively. Next comparing the right sides of (4.3) and (4.7) and using
(4.4) we obtain(

1
n− 2

LR − 1
n(n− 1)

tr(V )
)(

Vrs −
1
n

tr(V )hrs

)
= 0 .

Of course, the tensor field V − 1
n tr(V )h is non-zero at every point of UR.

By the last equality, we have on U
1

n− 2
LR =

1
n(n− 1)

tr(V ) .

Now, applying this and (4.4) in (4.8), we obtain

V 2
st =

1
n(n− 1)

tr(V )
(

2Vst +
n− 3
n

tr(V )hst

)
,

which, together with (4.7), yields tr(V ) = 0 and, in consequence, LR = 0.
Thus, (4.1) turns into R ·R = 0. On the other hand, in view of Proposition 2
of [31], R·R = 0 implies that S is proportional to the identity transformation.
Thus we see that the set UR must be empty. This completes the proof.

Let B be a generalized curvature tensor field on a non-degenerate hy-
persurface M in An+1, n ≥ 2. The tensor Q(h,B) vanishes at x ∈M if and
only if Z(B) = 0 at x (cf. [4], Lemma 1.1(iii)). Denote by UB̄ the set of all
points of M at which Z(B) = 0. If B is pseudosymmetric with respect to
R and h then

(4.9) R ·B = LB̄Q(h,B)

on UB̄ , where LB̄ is a function defined on UB̄ . We can easily prove the fol-
lowing property of generalized curvature tensors which are pseudosymmetric
with respect to R and h.

Lemma 4.2. Let B be a generalized curvature tensor field on non-degene-
rate hypersurface M in An+1, n ≥ 2. Then (4.9) holds on UB̄ if and only
if

(4.10) B((S − LB̄I)X1, X2, X3, X4) =
1

n− 1
h((X4 ∧D X3)X2, X1)

on UB̄ , where D is a (0, 2)-tensor field on UB̄ defined by

(4.11) D(X1, X2) =
n∑

i=1

εiεj(S − LB̄h)(Ei, Ej)B(Ei, X1, X2, Ej)

for any local orthonormal basis {E1, . . . , En}.
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Let M be a non-degenerate hypersurface in An+1, n ≥ 2. We define on
M the following tensors:

(4.12) V (X1, X2) = S(X1, X2)− Lh(X1, X2) ,

(4.13) V 2(X1, X2) =
n∑

i=1

εiV (X1, Ei)V (X2, Ei) ,

(4.14) V 3(X1, X2) =
n∑

i=1

εiV
2(X1, Ei)V (X2, Ei) ,

(4.15) F (X1, X2, X3, X4) = − 1
n− 1

h((X1 ∧E X2)X3, X4)

+ (V 2 + LV )((X1 ∧V X2)X3, X4) + L(V 2 + LV )((X1 ∧X2)X3, X4) ,

for any orthonormal basis {E1, . . . , En}, where L is a function on M and

E = −V 3 − 2LV 2 + (tr(V 2) + L tr(V )− L2)V + L(tr(V 2) + L tr(V ))h .

Now using (4.12) and (4.13) we can write the curvature tensor R∗, the Ricci
tensor Ricc(R∗) and the scalar curvature K(R∗) in the following form:

R∗(X1, X2, X3, X4)(4.16)
= V ((X1 ∧V X2)X3, X4) + L2h((X1 ∧X2)X3, X4)

+ L(h((X1 ∧V X2)X3, X4)− h((X1 ∧V X2)X4, X3)) ,

(4.17) Ricc(R∗) = −V 2 + (tr(V ) + (n− 2)L)V + L(tr(V ) + (n− 1)L)h ,

(4.18) K(R∗) = − tr(V 2) + (tr(V ))2 + 2(n− 1)L tr(V ) + n(n− 1)L2 ,

respectively. We note that the tensor D corresponding to the tensor R∗

satisfies the equation

(4.19) D = E .

If n = dimM ≥ 3 then we can define the Weyl curvature tensor W (R∗)
of R∗ ([26]) by

W (R∗)(X1, X2, X3, X4)

= R∗(X1, X2, X3, X4) +
1

(n− 1)(n− 2)
K(R∗)h((X1 ∧X2)X3, X4)

− 1
n−2

(h((X1 ∧Ricc(R∗)X2)X3, X4)−h((X1 ∧Ricc(R∗)X2)X4, X3)) .

This, by making use of (4.16)–(4.18), turns into

(4.20) W (R∗)(X1, X2, X3, X4) = − 1
n− 2

tr(V )(h((X1 ∧V X2)X3, X4)
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− h((X1 ∧V X2)X4, X3)) + V ((X1 ∧V X2)X3, X4)

+
1

(n− 1)(n− 2)
((tr(V ))2 − tr(V 2))h((X1 ∧X2)X3, X4)

+
1

n− 2
(h((X1 ∧V 2 X2)X3, X4)− h((X1 ∧V 2 X2)X4, X3)) .

The Weyl curvature tensor corresponding to the curvature tensor R of
a hypersurface in An+1 was constructed in [30]. Of course, the two tensors
are different in general.

We denote by UR̄∗ the set all points of M at which Z(R∗) 6= 0. If R∗ is
pseudosymmetric with respect to R and h then

(4.21) R ·R∗ = LR̄∗Q(h,R∗)

on UR̄∗ , where LR̄∗ is a function on UR̄∗ .
The following lemma is an immediate consequence of Lemma 4.2.

Lemma 4.3. Let the tensor field R∗ of a non-degenerate hypersurface M
in An+1, n ≥ 2, be pseudosymmetric with respect to R and h. Then on UR̄∗

the equalities (4.21) and F = 0 (with L = LR̄∗) are equivalent.

Lemma 4.4. Let M be a non-degenerate hypersurface in An+1, n ≥ 2. If
the shape operator S of M satisfies

(4.22) S2 + µS = %I , µ, % ∈ R ,

at x ∈M , then R ·R∗ = −µQ(h,R∗) at x.

P r o o f. We note that (4.22) can be written at x in the form

(4.23) V 2 − 1
n

tr(V 2)h = µ

(
V − 1

n
tr(V )h

)
,

where V 2 and V (with L = −µ) are defined by (4.13) and (4.12), respec-
tively. Next, applying (4.23) and (4.14) in (4.15) we see that F vanishes at
x. Now Lemma 4.3 completes the proof.

Lemma 4.5. Suppose the curvature tensor R∗ of a non-degenerate hyper-
surface M in An+1, n ≥ 2, satisfies

R ·R∗ = −µQ(h,R∗) , µ ∈ R ,

at x ∈M . Then (4.22) holds at x.

P r o o f. From Lemma 4.3 it follows that F (X1, X2, X3, X4) = 0 at x
(with L = −µ). From this, by symmetrization with respect to X3 and X4,
we obtain

(4.24) (n− 1)(Q(V, V 2) + LQ(h, V 2) + L2Q(h, V ))
−Q(h, V 3)− 2LQ(h, V 2) + (tr(V 2) + L tr(V )− L2)Q(h, V ) = 0 ,
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whence we get

(4.25) V 3 =
1
n

tr(V 3)h+ (n− 3)L
(
V 2 − 1

n
tr(V )h

)
+(tr(V 2)+L tr(V )+(n−2)L2)

(
V − 1

n
tr(V )h

)
+
n− 1
n

(tr(V )V 2−tr(V 2)V ) .

Substituting this in (4.24) we find

Q(V, V 2) =
1
n

tr(V )Q(h, V 2)− 1
n

tr(V 2)Q(h, V ) ,

whence, in view of Lemma 2.8(ii), it follows that the tensors V 2− 1
n tr(V 2)h

and V − 1
n tr(V )h are linearly dependent. Evidently, our assertion is true

when V − 1
n tr(V )h = 0. Otherwise

V 2 − 1
n

tr(V 2)h = λ

(
V − 1

n
tr(V )h

)
, λ ∈ R ,

at x. The last formula can be written in the form

S2 + (2µ− λ)S =
1
n

(tr(S2)− (λ− 2µ) tr(S))I .

From Lemma 4.4 it follows that 2µ− λ = µ. Thus the above relation yields
(4.22), which completes the proof.

Combining the last two lemmas we obtain the following

Theorem 4.6. Let M be a non-degenerate hypersurface in An+1, n ≥ 2.
Then on UR̄∗ the equations R · R∗ = LR̄∗Q(h,R∗) and S2 − 1

n tr(S2)I =
LR̄∗(S − 1

n tr(S)I) are equivalent.

Using this theorem we can obtain a curvature characterization of affine
Einstein hypersurfaces.

Corollary 4.7. Let M be a non-degenerate hypersurface in An+1, n ≥
2. Then M is an affine Einstein hypersurface if and only if R · R∗ =
tr(S)Q(h,R∗) on UR̄∗ .

A non-degenerate hypersurface M in An+1, n ≥ 2, is said to be affine-
quasi-umbilical ([26]) if

(4.26) S = αh+ βa⊗ a , α, β ∈ R ,

at every x ∈M , where a is a covector at x.

Theorem 4.8. Let M be a non-degenerate hypersurface in An+1, n ≥ 4.
Then M is affine-quasi-umbilical if and only if the Weyl conformal curvature
tensor W (R∗) vanishes on M .
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P r o o f. Assume that (4.26) is fulfilled at x ∈ M . We put V = S − Lh,
L = α. Thus we have

V 2 = tr(V )V and tr(V 2) = (tr(V ))2 .

Applying these formulas in (4.20) we easily obtain W (R∗) = 0.
Assume now that W (R∗) vanishes at x. From Corollary 2.5 and Lemma

2.7 it follows that

Ricc(R∗) = τh+ %a⊗ a , τ, % ∈ R ,

at x, where a is a covector. Now, using the above formula and the definitions
of R∗ and Ricc(R∗), we can rewrite the equality W (R∗) = 0 in the form

S((X1∧S̄X2)X3, X4) =
1

(n− 1)(n− 2)
((n−2)τ−%‖a‖2)h((X1∧X2)X3, X4)

+
1

n− 2
%(h((X1 ∧a⊗a X2)X3, X4)− h((X1 ∧a⊗a X2)X4, X3)) .

Now Lemma 2.9 completes the proof.
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