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Introduction

Kulkarni and Shalen [6] explained topologically Ahlfors' ίiniteness theorem
and its two major supplements, the area-inequalities [2] and the finiteness of
the cusps [16], considering the core of the quotient 3-manifold of finitely
generated torsion-free Kleinian groups. As a consequence, they obtained the
sharp inequalities on the number of cusps.

In this article we treat chiefly another result from the finiteness theorem.
It is that every component subgroup of a finitely generated Kleinian group is
also finitely generated. This assertion is qualitative. So we will estimate
quantitatively the minimal number of generators of component subgroups. Our
consequence (§2) is;

THEOREM. Let G be a torsion-free Kleinian group with r generators. Then
for any component subgroup H of G, the minimal number of generators of H is
not more than 2r—l.

Moreover we construct examples of Kleinian groups which attain the
equalities in those estimates along the line from the finiteness theorem (§3).

Another part of this article is concerned with Ahlfors' measure zero problem
(§4). Bonahon's theorem [3] shows us a sufficient condition for the limit set
to be null on the 2-dimensional Lebesgue measure. With the aid of this result,
we have;

THEOREM. Let G be a torsion-free Kleinian group with r generators. If
{the hyperbolic area of i2(G)/G}^4π(r—2), then the limit set Λ{G) has measure
zero.

I want to thank the referee for his careful reading and valuable suggestions.

§ 1. Definitions.

In this paper, Kleinian groups are finitely generated and torsion-free discrete
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subgroups of Mδbius transformations of the second kind. Let G be a Kleinian
group. We denote the region of discontinuity by Ω(G) and the limit set by
Λ{G). Its action on the Riemann sphere can be naturally extended to the upper
half space H3. Its quotient bordered 3-manifold is denoted by M(G); that is,
M(G)=H3U(Ω)/G. Let Δ be a connected component of Ω(G). Then we call
the stabilizer of Δ in G the component subgroup for Δ. Consider the Riemann
surface Δ/stab(Δ). It is a component of dM(G). Ahlfors' finiteness theorem
asserts that dM(G) consists of a finite number of components and each of them
is analytically finite.

Although M(G) may not be compact in general, by Scott's theorem, there
is a compact submanifold of M(G) which is homotopy equivalent to M(G). We
call such a compact submanifold a core of M(G). Kulkarni and Shalen's work
was dene by constructing a core which contains the compact part of dM(G)
under some assumptions. Their argument was refined by McCullough to the
following form.

PROPOSITION 1.1 ([14]). Let Y be aZ-manifold with finitely generated funda-

mental group. Let C be a compact submanifold of dY. Then there is a core X

of Y such that XίΛdY = C.

A cusp in M(G) is the projection of some region in HB\jΩ(G) associated
with a parabolic fixed point (cf. [8, §2]). It is homeomorphic to (cylinder) X
(0, 1) or (torus) X(0, 1), according as the parabolic subgroup is isomorphic to Z
or Z-\-Z. We call its border in M(G) a cusp cylinder or cusp torus respectively.

By Proposition 1.1, we can take a core of M(G)—{cuspidal parts}, which is
also a core of M(G) so that it may contain all the dM(G) except for small
neighborhoods of punctures on dM(G), all the cusp cylinders except for open
ends, and all the cusp tori. The core which has such a property is denoted by
N=N(G). For the detailed construction, see [12]. The cuspidal parts in dN
is denoted by dpN. Therefore 8N—dpN consists of topologically finite surfaces
in dM and "degenerate" surfaces.

Notations.
r : = t h e rank of a Kleinian group, i.e. the minimal number of generators
b:=#{components of dM or dN—dpN}
X:=(—l)X{Euler characteristic}
βt:—the 2-th Betti number
m:=Lebesgue measure on C.

§ 2. The ranks of component subgroups

We begin with starting a useful proposition for our estimates (cf. [4]).

PROPOSITION 2.1. Let G be a Kleinian group with r(G)=r. Then the foU
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lowings are equivalent:
(a) G is free.
(b) i81(Aί(G))=r and β2(M(G))=0.

Proof. (a)-Kb): Since 7Γi(iV(G)) is free, we known N(G) is a handlebody
of genus r [5, Ch. 5]. Then βί(M(G))=β1(N(G))=r and β2(M(G))=β2(N(G))
=0. (b)-»(a): Because M(G) (Λf(G)) is aspherical [8, p. 388], the homology groups
of G of coefficient Z with trivial action are isomorphic to the ordinary homo-
logy groups of M(G) (cf. [5, p. 75]). That is, Ht(G, Z)^Ht{M(G), Z) ( ι = l , 2, •••).
Since M(G) is homotopy equivalent to a 2-dimensional CW-complex, j88(M(G))=0
implies that H2(G, Z)^H2(M(G), Z)=0. Here we use the following lemma [15,
p. 179]. "Let G be a group such that H2(G, Z)=Q. Let{xj} be a set of elements
of G whose images under the canonical epimorphism φ: G-*HX(G, Z) are linearly
independant over Z. Then {xj} is a basis of a free subgroup of G". Let {Xj}
= {xu •" , xr} be a minimal system of generators of G. To apply the lemma
to our case, we have only to check that φ(xι)> •••, φ(xr) are linearly independent
over Z. It is easy: They generate Hλ(G, Z)9 for φ is surjective. And
rank HX(G, Z)=β1(M(G))=r means that they are linearly independent. D

Bers [2] proved that for a finitely generated Kleinian group G which may
contain elliptic elements, the hyperbolic area of Ω(G)/G is bounded by 4ττ(r(G)—1).
In the case without torsion, this theorem can be explained simply by using the
core N(G). Further, the condition which attain the equality is obtained. The
result itself is originally due to Abikoff [1] :

PROPOSITION 2.2 (Area-inequalities). Let G be a Kleinian group. Then,
X(8M(G))£X(dN(G))<2(r(G)-l). The first equality holds if and only if G is
geometrically finite. The second equality holds if and only if G is free.

Proof. By Poincare's duality theorem, we know X(dN(G))=2X(N(G)). Let
βtz=βi(N(G))=βi(M(G)). Since J30=l, βs=O, βi^r and /32^0, it follows that
X(dM)<X(dN)=2(β1—β2-l)<2(r-l). By Marden's characterization of geometric
finiteness [8, Prop. 4.2], X(dM(G))=X(βN(G)) if and only if G is geometrically
finite. 2(/3 1 -/3 2 -l)=2(r-l) if and only if βx=r and 02=O. By Proposition 2.1,
it is that G is free.

Now we prove our main theorem mentioned in the introduction.

THEOREM 2.3. Let G be a non-elementary Kleinian group with r{G)—r.
Then for any component subgroup H of G, r(H)<2r—l. The equality holds if
and only if (1) G is geomertically finite and dM{G) is connected, (2) G is free,
and (3) dM{G) is incompressible in M{G). Further, there are examples for every
r ^ 2 , which attain the equality.
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Remark. (3) is equivalent to the fact that all the components of Ω(G) are
simply connected. dM(G) is connected if and only if all the components of Ω(G)
are conjugate to one another by G.

Proof. Let //=stab(Δ) and S=A/H. We consider two cases; S is not
closed, or S is closed. (I) If 5 is not closed, then r(//)^r(τri(S))=χ(S)+l. Since
X(S)<X(dN) and X(dN)<2(r-l) (Proposition 2.2), we see r(H)^2r-l. (II) If S
is closed, then r(H)<Lr(πx(S))=X(S)Λ-2. Here we may assume that G is not
free, for if G is free and dM(G) has a closed surface, G must be a Schottky
group, hence G—E and r(H)—r. By Proposition 2.1, it implies either βι<r or
/32>0 that G is not free, thus X(dN)£2(r-2). In this case, r(H)^X(S)+2£X(dN)
+2<2r-2<2r-l. Note that in (II), the equality r(H)=2r-l cannot occur.

We investigate the condition for the equality. From Proposition 2.2,
(1) is equivalent to the fact that X(S)=X(βN), and (2) is X(dN)=2(r-l). (3) is a
sufficient condition for Kττi(5))=r(//), Thus the equality holds if (1), (2)
and (3) are satisfied. Conversely if the equality holds, then by the above
notice, S is not closed, i.e. only (I) is in our attention. For the equality, it is
necessary that r(H)=r(πί(S)), X(S)=X(dN) and χ(3ΛO=2(r-l) are satisfied.
From the last two equalities, (1) and (2) are derived. We have only to show
(3). Assume that 5 is compressible. Then there are some relations in π^S) by
which H is the quotient group of τri(S). Here H is free, because G is free by
(2) which has been already obtained. So H has less rank than π^S) [7, Prop.
2.7]. From this argument, we know S must be incompressible for the equality.

The examples of sharpness for r>2 will be discussed in the following sec-
tion (Example 2).

§ 3. Other inequalities and examples of sharpness

In this section we exhibit the examples of Kleinian groups which attain the
equality in Theorem 2.3. Incidentally we also show that the area-inequalities
(§2.) and the following two estimates are sharp. They are corresponding re-
spectively to Theorems 2, 3 and 4 of Abikoff [1], which are shown under some
assumption. (See also Marden [8, §7].) The assumption can be removed by
McCullough's work. For the convenience of the readers, we now sketch their
proofs here.

PROPOSITION 3.1. Let G be a non-elementary Kleinian group. Then, b(dM(G))
^2(r(G)—1). The equality holds if and only if G is geometrically finite, free
and all the components of dM(G) are thrice punctured spheres or once punctured
tori.

Proof. For each component S of dM(G), X(S)^L It follows that b(dM(G))
^X{dM(G)). The equality holds if and only if X(S)=l for any S. Combining
with Proposition 2.2, we have the assertion. D
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PROPOSITION 3.2 (Finiteness of Cusps). Let G be a non-elementary Kleinian
group. Then, # {conjugacy classes of parabolic fixed points} rg3(r(G)—l). (We
count the fixed point of a parabolic abelian subgroup of rank 2 twice.) The
equality holds if and only if G is geometrically finite, free, and all the com-
ponents of dM(G) are thrice punctured spheres.

Proof. Let {Sj} O'=l, 2, ••• , b) be the components of dN(G)-dvN(G). Let
gj and n3 be the numbers of handles and holes of S3 respectively. Then we
have 2(j8 1 - i 8 2 -l)=Z(3iV)=Σj-ΛS i )=Σ(2^-2+n i ), where βι=βi(N(G)). There-
fore #{cusp cylinders} = ( l / 2 ) Σ w J = j 8 1 - j 9 2 - l - Σ ( ^ - l ) . Here - Σ ( g W ) ^ ^
2(β1—β2—l) by the same reason as Proposition 3.1. So #{cusp cylinders}^
3(jSi—jS2—1). The equality is attained if and only if every S, is a sphere with
three holes.

On the other hand #{cusp tori}^/32, because they generate linearly inde-
pendent elements in H2(N, Z). Hence, #{conjugacy classes of parabolic fixed
points} = #{cusp cylinders}+2#{cusp tori} ^3(βί-β2-l)-{-2β2=3(βί-l)-β2^
3(r-l) .

It is now clear that it attains the equality if the conditions stated in this
proposition are satisfied. For the converse, we have only to remark that a
sphere with three holes cannot be a degenerate surface. It is because a Fuchsian
group of signature (0, 3) has rigidity [12, §5]. If every S3 is such a surface,
then G is geometrically finite. D

All our examples are on boundaries of Schottky spaces. The theorem of
Maskit on parabolic elements [11] guarantees that such groups are obtained by
squeezing some simple disjoint primitive loops on the closed Riemann surfaces
which bound the handlebodies.

Example 1. For every r^2, we construct a geometrically finite free Kleinian
group G with r{G)—r such that all the components of dM(G) are thrice punc-
tured spheres. This is a sharp example for Propositions 2.2, 3.1 and 3.2.

Take a Fuchsian group of signature (0, r+1). If r=2, it is the example.
So we assume r ^ 3 . On the boundary of its Teichmϋller space, there is a terminal
regular 6-group which has r—2 accidental parabolic transformations (A.P.T.)

[9]. Then on the quotient surface of its invariant component, we can choose
r—2 non-trivial, non-mutually-homotopic disjoint simple primitive loops, which
correspond to loxodromic elements (see Fig. 1). Then by Maskit's theorem,
there is a geometrically finite Kleinian group on the boundary of the deforma-
tion space, such that all those loops become representing parabolic elements. It
has (r+l)+(r—2)+(r—2)=3r—3 cusps, and all the components are thrice punc-
tured spheres.
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Fig. 1.

Example 2. First we consider the case r=2. Take two simple primitive
loops on the border of a handlebody N of genus 2 as in Fig. 2. When we
denote two standard generators of π^N) by / and g, those two loops corre-
spond to / and fg2. We can easily see that they don't divide dN. Moreover
dN— {two loops} is incompressible in N. In fact, if not, there is a properly em-
bedded disk in N— {two loops} which induces a non-trivial free product decom-
position πι(N)=G=(py*(qy, such that all the parabolic elements of G are in a
conjugate of </>> or <#>. This means that we can choose some conjugates of /
and fg2 as generators of G. But it is impossible, because every word con-
structed by the generators must have an even integer as the sum of powers of
g, so they cannot generate g itself. For r > 2 , add appropriate r—2 cusp
cylinders as in Fig. 2, so that dN— {loops} may be connected and incompressible.
Then by Maskit's theorem, we obtain the Kleinian groups which are examples
of sharpness in Theorem 2.3 for r>2.

Fig. 2.
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§ 4. The measure zero problem

The remainder of this paper is concerned with Ahlfors' conjecture that is,
finitely generated Kleinian groups have the measure zero limit set.

PROPOSITION 4.1. Let G be a Kleinian group which is constructed from
Kleinian groups satisfying the condition (*) by Klein's combination theorem. Then
m(Λ(G))=0. The condition (*) is as follows:

(*) For every non-trivial free product decomposition G—Λ^B, there is a
parabolic element of G which is not in a conjugate of A or B.

Proof. This is a consequence from Bonahon's theorem [3] and the com-
bination theorem [10]. •

LEMMA 4.2. Let G be a free Kleinian group. Let S be a component of
3N(G)-3PN(G) which is compressible in N(G). Then X(S)^3, or G is geometri-
cally finite.

Proof. Since S is compressible, there is a properly embedded disk D in N
which induces a non-trivial free product decomposition of G with 3D CIS. Let
S—dD be Si and S2 if 3D divides S, or only So if 3D does not divide 5. In
the former case, we denote St\jD by St (i—l, 2). In the latter case, So has
topologically two boundary components corresponding to 3D. So to which two
copies of D are attached is regarded as So. We have X(S)=X(§1)+X(§2)+2 if
3D divides S, or Z(S)=%(S0)+2 if 3D does not divide S.

For /=0, 1, 2, X(St)=—2 does not occur since N is irreducible, and neither
does X(St)=—l since a loop round the hole is not homotopically trivial. Hence
X(St)^0. Assume that X(S)<2. It follows that X(Sι)=0 for z=0, 1, 2. Then
Si is either a torus or a sphere with two holes. In the latter case, a loop round
a hole is freely homotopic in N to a loop round the other hole. Therefore they
correspond to the same conjugacy class of primitive parabolic elements. It
means that these two holes are connected with a cusp cylinder.

If necessary, by jointing such a cusp cylinder to Sl} we may assume that
St is a torus. Since G is free, it bounds a solid torus. Hence TV is a handle-
body of genus 2, and S is the only component of 3N—3PN. Further ScdM(G),
for G has the region of discontinuity. Therefore G is geometrically finite by
Marden's characterization. D

THEOREM 4.3. Let G be a Kleinian group with r(G)=r. If X(3M(G))>
2(r-2), then m(Λ(G))=0.

Proof. Consider components of 3N—dpN. Bonahon's condition (*) is equi-
valent to the fact that all the components of 3N—dpN are incompressible in Λf
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(see [3, p. 72]). Then we know G does not satisfy the assumption of Proposi-
tion 4.1 if and only if there exists a compressible component of 3N—dpN
which is not contained in dM.

In the case G is free, by Lemma 4.2, such a compressible component S has
Z(S)^3. Then X(dM(G))<X(dN)-X(S)£2(r-l)~3<2(r-2). In the case G is not
free, by Proposition 2.1, βx<r or /32>0. It follows that X(dN)<*2(r-2). It is
clear that X(S)^1. Hence X(dM(G))^X(dN)-X{S)<2{r-2)-l<2{r-2). There-
fore if %(dM(G))^>2(r--2), degenerate compressible surfaces can not exist.

COROLLARY 4.4 ([13]). // r(G)=2, fAβn m(Λ(G))=0.

Corollary 4.4 means that if r(G)=2, then dN(G)—dpN(G) has no degenerate
compressible surface. But if r(G)=3, it may consist of two surfaces Si and S2,
Si is not degenerate with Z(SX)=1 and S2 is degenerate with Z(S2)=3. The fol-
lowing theorem asserts that such a group actually exists.

THEOREM 4.5. There is an example of the three generator Kleinian group
G which is geometrically infinite, does not satisfy the condition (*), and whose
dM(G) consists of one incompressible surface.

Proof. Let H be a Fuchsian group of the first kind with two free genera-
tors, acting on the unit disk D. Let / 0 be a loxodromic element such that the
isometric circles of / 0 and fo~

1 are contained in D and the distance of two
fixed points of f0 is small enough. Then by the combination theorem [10],
Go=<//, /o> are geometrically finite Kleinian group and Go=i/*</o>. Let ft=
gtfogΓ1, where {gt} (ί^O) is a continuous path starting at id. in PSL(2, C).
We choose {gt} so that the Euclidian distance between the fixed points of ft

may be larger to infinity as / increases, and all the parabolic elements of Gt —
<//, /ί> are conjugate to elements in H. This can be done because only a
countable number of points in PSL(2, C) violate our second requirement.

Then Gt is a quasiconformal (QC) deformation of Go when t is small, for
Go is QC stable [8, Prop. 9.1]. But there exists

T=sup { t \ for all SCΞ[0, t), Gs is q. c. deformation of Go}

before a fixed point of ft hits at dD. Let fτ be / and Gτ be G.
Since Gt (t<T) has A—{\z\>l}\J{oo} as its component, it is easy to see

that Δ is a component of the region of discontinuity of G, particularly G is
Kleinian. Moreover since Gt is H*(fi> when t<T and Gt converges alge-
braically to G, we know G—//*</>. Therefore G does not satisfy the condition
(*), for any parabolic element of G is in a conjugate of H. Further G is geo-
metrically infinite, for if G were geometrically finite, then G would be QC stable:
it contradicts our definition of T. S—A/H is an incompressible components of
3M(G) with X{S)—1. By Lemma 4.2, we can see that dM(G) has no other com-
ponents than S, because X(dN(G))—4. D
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