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In recent developments in the algebraic theory of semigroups attention has been focussing
increasingly on the study of congruences, in particular on lattice-theoretic properties of the
lattice of congruences. In most cases it has been found advantageous to impose some re-
striction on the type of semigroup considered, such as regularity, commutativity, or the property
of being an inverse semigroup, and one of the principal tools has been the consideration of
special congruences. For example, the minimum group congruence on an inverse semigroup
has been studied by Vagner [21] and Munn [13], the maximum idempotent-separating con-
gruence on a regular or inverse semigroup by the authors separately [9, 10] and by Munn
[14], and the minimum semilattice congruence on a general or commutative semigroup by
Tamura and Kimura [19], Yamada [22], Clifford [3] and Petrich [15]. In this paper we study
regular semigroups and our primary concern is with the minimum group congruence, the
minimum band congruence and the minimum semilattice congruence, which we shall con-
sistently denote by a, P and t] respectively.

In § 1 we establish connections between /? and t\ on the one hand and the equivalence
relations of Green [7] (see also Clifford and Preston [4, § 2.1]) on the other. If for any relation
H on a semigroup S we denote by K* the congruence on S generated by H, then, in the
usual notation,

In § 2 we show that the intersection of a with jS is the smallest congruence p on S for which
Sip is a UBG-semigroup, that is, a band of groups [4, p. 26] in which the idempotents form a
unitary subsemigroup. The structure of such semigroups (and indeed of semigroups more
general than this) has been investigated by Fantham [6]; his theorem (or rather the special
case that is of interest here) is described below. A corollary of our result is that a n rj is the
smallest congruence p for which Sjp is a USG-semigroup, that is, a semilattice of groups with
a unitary subsemigroup of idempotents.

These results lead naturally to a study of RU-semigroups (regular semigroups whose
idempotents form a unitary subsemigroup), lSBG-semigroups (bands of groups whose idem-
potents form a subsemigroup) and SG-semigroups (semilattices of groups), and to the considera-
tion of the minimum RU-congruence K, the minimum ISBG-congruence ( and the minimum
SG-congruence ^ on a regular semigroup. The principal results of § 3 are that en/? = £ v K
and a n tj = /; v K.

In § 4 we show that any UBG-congruence on a regular semigroup can be expressed in a
unique way as T ny, where x is a group congruence and y is a band congruence. A similar
result holds for USG-congruences.

t The authors acknowledge support respectively from the American National Science Foundation grant
GP 1791 to Tulane University and the Centre National de la Recherche Scientifique.
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We are indebted to Dr A. H. Clifford and Dr W. D. Munn for many valuable discussions
during the preparation of this paper.

1. Preliminaries; the connection with Green's relations. The notation of Clifford and
Preston [4] will be used throughout. In particular we denote Green's relations by S&, 3?, #f,
2> and $. If a is an element of a regular semigroup S, then a' will denote any inverse of a,
that is, any element of S such that

aa'a = a, a'aa' = a'.

We shall consistently denote the set of idempotents of a semigroup S by E.
For standard definitions and notations regarding congruences the reader is referred to

§ 1.5 of [4], It will be convenient here to regard a binary relation p on a semigroup 5 as a
subset of S x S and to write (x, y) e p rather than xpy. Thus the notations p £ p' and pnp'
have the usual set-theoretic meanings. We shall denote the identical congruence {(x, x): x e S}
on S by is.

If p and p' are congruences on 5 such that p £ p', then the relation p'/p on Sjp defined by

P'lP = {(xp, yp): (x, y) e p'}

is a congruence on Sjp, and is the identical congruence on S/p if and only if p' = p. Moreover,

If y and 5 are congruences on 5 containing p, then y n 8 is again a congruence containing p, and

By the minimum group congruence on a semigroup S we mean the smallest congruence p
on S for which S/p is a group. Of course not every semigroup has a minimum group con-
gruence [4, Ex. 6, p. 21], but, if S is regular, then (since the property of regularity is clearly
preserved by homomorphisms) a homomorphic image of S is a cancellative semigroup if and
only if it is a group. Since it is known [4, p. 18] that there is a minimum cancellative con-
gruence on any semigroup, it follows that there exists on a regular semigroup a minimum
group congruence a. On any semigroup, and so certainly on any regular semigroup, it is
known [4, p. 18] that there exists a minimum band congruence /? and a minimum semilattice
congruence t\.

The following two lemmas will be of use later.

LEMMA 1.1. Ife and fare idempotents in a regular semigroup S, then efhas an idempotent
inverse g in S such that ge =fg = g.

Proof. Certainly e/has an inverse x in S, since S is regular:

efxef= ef xefx = x.
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Then {fxe)2 =f(xefx)e =fxe, and

ef-fxe • ef = efxef = ef,

fxe •ef-fxe =f(xefx)e —fxe.

Thus/re is the required idempotent inverse.

The other lemma is effectively Lemma 2.2 in [10] and is quoted here for convenience.

LEMMA 1.2. If ' p is a congruence on a regular semigroup S, then every idempotent ofSjp is a
p-class of S containing an idempotent.

We now state the first of the two chief results of this section.

THEOREM 1.3. If ft is the minimum band congruence on a regular semigroup S, then

Proof. It is clear from the definition of #? that, if two elements a and b in S are equivalent
mod W in S, then a/? and b/i are equivalent mod y/f in Sjf5. Since an Jf-class cannot contain
more than one idempotent [4, Lemma 2.15], we must have that aP = b/i. Thus «3f £/?.
Since /? is thus a congruence on S containing ffl, it must contain the smallest congruence
containing #P\ that is, fisjtf'*. Notice that this part of the argument does not use any
assumption of regularity.

On the other hand, for any a in S and any inverse a' of a, we have that (a, aa') e Si by
[4, Lemma 2.12]. It follows that (a2, aa'a)eSi*, i.e. that (a2, a)eS$*. Thus SjM* is a band
and so /? s Si*. A similar argument establishes that ft c j£f* and so the proof is complete.

It is worth remarking that the inclusions in the above theorem can be strict. First, if we
consider the bicyclic semigroup B [4, pp. 43-45], we find that 2/f - 2/C* = tB, while

p = n = m* = :s?* = si* = / • = B x B.

On the other hand, in the free band Fon three generators xu x2, x3 considered by Green and
Rees [8], we find that, for two elements a and b of F (each being a word in the " letters" xu

x2, x3 in which no letter or sequence of letters ever occurs twice in succession): (i) (a, b) e 8$
if and only if a and b have the same letters, the same initial and the same initial mark, in the
sense of [8]; (ii) (a, b) e Si* if and only if a and b have the same letters and the same order of
first appearance of letters. Dual statements apply to j£? and ££*. Hence

(x1x2x1x3x2x1, xlx2x3x2xl) e S%* nJi?*

and so, since clearly /? = iF, we have fic:<%* r\SC*.

THEOREM 1.4. If r\ is the minimum semilattice congruence on a regular semigroup S, then
t] = Q>* = / * .

Proof. It is clear from the definition of £ that if two elements a and b are equivalent
mod Ji in S, then ar\ and br\ are equivalent mod £ in S\r\. By commutativity in S\r\ we have
that J = <# = is/n; thus ar\ = h] and so $ S r\. Since n is a congruence it follows that
fl* £ r\. Again notice that we have used no assumption of regularity in this part of the
argument.
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On the other hand, since SjSIt* is a band and since 02* £ Si*, we have that SjSi* is a
band. To show that n £ Si* we must show that S\S* is commutative. As a first step we have

LEMMA 1.5. If e and f are idempotents of a regular semigroup S, then (effe) e Si*.

Proof. By Lemma 1.1 we know that e/has an idempotent inverse g such thatge =fg = g.
By [4, Lemma 2.12] we can deduce that

S><=S>*. (1)

Since 3>* is a congruence, it follows that (f-ef-e, fge)eS*, i.e. that ((fe)2,g) eS*. It
follows by the transitivity of S* that (fe, g) e S*, and this together with (1) gives us the result
of the lemma.

Now let a and b be arbitrary elements of 5. By the lemma just proved we have that
(aa'bb', bb'aa') e S. But (a, aa') and (b, bb') are both in S> by [4, Lemma 2.12] and so both
(ab, aa'bb') and (ba, bb'aa') are in 3>*, since 2)* is a congruence. It follows that (ab, ba) e 3*.
Thus SjS>* is a semilattice and so n s S>*.

Now, it is known [7] (see also [4, p. 48]) that @> s £'. Hence certainly 3>* £ ^* and
so we have

from which it follows that n = Si* = £* as required. This completes the proof of Theorem
1.4.

If S is an inverse semigroup (a regular semigroup in which idempotents commute), then by
a result due to Vagner [20] and Preston [16] any homomorphic image of S is again an inverse
semigroup. In particular, SIP is both a band and an inverse semigroup; that is, S/P is a semi-
lattice. It follows that P = n and so, using Theorems 1.3 and 1.4, we obtain

THEOREM 1.6. Ifr\ is the minimum semilattice congruence on an inverse semigroup, then

A congruence p on a semigroup S is called idempotent-separating if every p-class contains
at most one idempotent. It is known [10] that there is a maximum such congruence on any
regular semigroup and that this congruence is contained in Jf . Hence we have the following
corollary to Theorem 1.3:

COROLLARY 1.7. If S is a regular semigroup, and iff} and /i are respectively the minimum
band congruence and the maximum idempotent-separating congruence on S, then / i£J?.

2. The intersection of a with $ and r\. It is clear that, if S is a regular semigroup, then a v /?,
the smallest congruence containing both a and /?, is the universal congruence SxS, since
Sl(a v p) is both a group and a band. Since rf2 P we must also have that a v r\ = Sx S.
The nature of a n p and a n r\ is not quite so easy to determine.

Some preliminaries are needed. By a result of McLean [11], which is a special case of a
theorem of Clifford [1] (see also [4, Ex. 1, p. 129]), any band B is a semilattice Y of rectangular
bands Er The semilattice Y is isomorphic to B\r\, the maximum semilattice homomorphic
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image of B, and the rectangular bands Ea are the //-classes in B. A semigroup which is the direct
product of a rectangular band £ and a group G will be called a rectangular group; such a semi-
group is regular (indeed completely simple) and its idempotents form a subsemigroup.

By a theorem of Fantham [6], a band of groups in which the idempotents form a sub-
semigroup (what we are calling an ISBG-semigroup) can be described in terms of a band B
with maximum semilattice homomorphic image B\r\ = Y and ^-classes £„ (a e Y), a collection
of groups Ga indexed by Y, and a system of homomorphisms $„ 9 : Gx -> Gp for all a, ft in Y
such that a ^ /?, satisfying the condition that 0a> f4>ft y = 0a> y if a ^ /? ^ y. (The homomor-
phism <£a> „ is the identical automorphism of Ga for each a in Y.) The semigroup is then the
disjoint union of the rectangular groups Ea x Ga, the product in the semigroup of (ea, aa) and
(/„, fy,) being (<?,/„, (aa^a_ y)(b04>ft y)), where y is the product a0 of a and J? in X. The product
eaffi is evaluated in the band B, while the product (aa</>a, y)(bft<j>p3 y) is evaluated in the group G r

If the idempotents of an ISBG-semigroup form a commutative subsemigroup, Fantham's
structure theorem specializes to the structure theorem for SG-semigroups discovered earlier by
Clifford [1] (see also [4, Theorem 4.11]).

Following Dubreil [5], we call a subset U of a semigroup S left unitary if s e U whenever
us e U for some u in U. A right unitary subset is defined dually. A unitary subset is one which
is both left and right unitary. The following lemma is useful.

LEMMA 2.1. A regular semigroup S is an RU-semigroup if and only if E is a left unitary
subset of S.

Proof. We must show that, if £ is a left unitary subset of S, then it is also right unitary
and a subsemigroup. If eeE and xe=feE, then (efx)2 = efxefx = ef3x - efx and so
efx e E. Applying the left unitary property of E twice, we conclude that x e E. Thus E is
right unitary.

To show that £ is a subsemigroup of S, consider two elements e,/of E and let y be an
inverse of ef. Then (ef)y e E and so by the left unitary property of E we obtain first that
fyeE and then that y e E. Hence by the right unitary property of £ we deduce that e /e £ as
required.

An important property of RU-semigroups is contained in the next lemma:

LEMMA 2.2. If a and b are elements of an RU-semigroup S, then ab e £ if and only if
ba e £.

Proof. If ab e £, then, for any inverse b' of b,

(babb'f = ba{bb'b)abb' =b{abfb' = babb'

and so babb' e £, from which it follows that ba e £, since £ is right unitary. The other half of
the lemma follows by symmetry.

The next theorem identifies those ISBG-semigroups that are also RU-semigroups:

THEOREM 2.3. An ISBG-semigroup is a VBG-semigroup if and only if all its structure
homomorphisms are one-to-one.
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Proof. Consider the ISBG-semigroup 5 = U { £ a x C , : a e Y), with structure homo-
morphisms <f>x< f : Ga -> Gp (a j£ /?)• For each a in 7 let la be the identity element of Gx. The
subsemigroup of idempotents of S is

Suppose first that E is unitary. If aa$Xt ^ = 1 ,̂ where aa e <7a and a ^ /?, then

By the unitary property of E we conclude that (fa, aa) e E. Thus aa = la and so ̂ >a_ ^ is one-to-
one.

Conversely, suppose that each structure homomorphism is one-to-one. Then if

we must have that aa0a_ y = \y, where y =a/?, from which it follows that aa = la. Thus E is
left unitary, which by Lemma 2.1 is all we need.

As an obvious corollary we have

COROLLARY 2.4. An SG-semigroup is a USG-semigroup if and only if all its structure
homomorphisms are one-to-one.

The next theorem and its corollary give useful information about an p.

THEOREM 2.5. The intersection a np of the minimum group congruence a and the minimum
band congruence p on a regular semigroup S is equal to ts if and only if S is a VBG-semigroup.

Proof. The first part of the argument will be useful again and accordingly is stated as a
lemma.

LEMMA 2.6. If S is an RU-semigroup, then E is a o-class.

Proof Certainly E satisfies the condition

of Marianne Teissier [20]; for if xey e E for some e in E, we can successively deduce, for any
/ i n E, that

yxe e E (by Lemma 2.2),

yx e E (since E is unitary),

yxfe E (since £ is a subsemigroup),

and xfy e E (by Lemma 2.2).

Hence, by Teissier's result, there is a congruence p on S such that £ is a p-class. By Lemma
1.2 every idempotent of S/p is a p-class in 5 containing an idempotent. Hence Sjp contains
only one idempotent and so (being regular) is a group. If a is the minimum group congruence
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on S, then clearly the identity element of Sja is a ff-class containing E. But a £ p and so we
conclude that £ is a a-class.

Returning now to the proof of Theorem 2.5, we see that, if 5 is a UBG-semigroup, then
£ is a ff-class.

Also, in any semigroup that is a union of groups it is clear that the J^-classes are precisely
the maximal subgroups. In a band of groups we can also say that 2/C is a congruence and that
J? = /?. Thus in the UBG-semigroup S under consideration two ^-equivalent elements are
necessarily of the form (ea, aa), (ea, ba). If the elements are also a-equivalent, we can deduce
that

(fo, ajb~'), (ea, l j)e<7,

and by the lemma it follows that (ea, aj)~l) e £, i.e., that ax = bx. We have thus shown that
a np = is.

Conversely, suppose that S is regular and that a n p = ts. Then, if e and/are idempotents
and if (e,f) e P, we have that (e,f) e a n /? = is and so e = / . Thus ft is idempotent-separating
and so, by [10, Theorem 2.3], is contained i n ^ . By Theorem 1.3 it follows that jS = Jff = Jif *.
Now each ^f-class is an idempotent element in SIP and so by Lemma 1.2 each 34?-class con-
tains an idempotent of S. Hence by Green's theorem [7] (see also [4, Theorem 2.16]) each
^-class is a group. Thus S is a union of groups and, since J f is a congruence, is even a band
of groups.

It remains to show that £ is a unitary subsemigroup. In fact we show—and this is clearly
sufficient—that £ is a a-class, which is then necessarily the identity element of Sja. Certainly
the identity element of S/CT is a subset £ ' of S containing £. If x e £' , then x is in some maximal
subgroup He (where e e E) and so (x, e) e a n #F = a n/J = is; that is, x = e. Hence £ ' = £
and so the proof of Theorem 2.5. is complete.

COROLLARY 2.7. If S is a regular semigroup, then a n j3 is the minimum UBG-congruence
on S.

Proof. The minimum group and band congruences on S/(cr n /?) are respectively o-/(<x n /?)
and /?/(<; n /?). Their intersection is (o-/(c7 n /?)) n (/?/(ff n /?)) = (<r n /?)/(cr n /?) = iS/(an/)) ar>d so
by the theorem S/(CT n j?) is a UBG-semigroup.

Now let p be a congruence on S such that 5/p is a UBG-semigroup. If T' is the minimum
group congruence on Sjp, then T' = T//>, where T is a congruence on S containing p. Moreover
T is a group congruence on S, since S/T ^ (S/p)/r'. Similarly / , the minimum band congruence
on S/p, is equal to y/p, where y is a band congruence on S containing p. Since Sjp is a UBG-
semigroup, we have that i ' n / = is/p; that is,

and so T n y = p. But T 2 <J and y 2 i? and hence p=Tn}>2<7n/J. Thus c n j3 is the mini-
mum UBG-congruence on S.

Corresponding results concerning t] are now obtained fairly easily.
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THEOREM 2.8. The intersection ann of the minimum group congruence a and the minimum
semilattice congruence n on a regular semigroup S is equal to the identical congruence is if and
only if S is a VSG-semigroup.

Proof. First, if S is a USG-semigroup, then it is a UBG-semigroup in which P = t\ and so,
by Theorem 2.5, a nn = an/f = ts.

Conversely, if a n n — is, then certainly a n p = is and so S is a UBG-semigroup. If e and
/ a r e idempotents of S, then e /and/e are both idempotent, since the idempotents of S form a
(unitary) subsemigroup. Hence (effe) e a. We also have that (ef,fe) e rj, since S//j is commu-
tative; hence (effe) e an n — is, that is, ef=fe. Thus S is a USG-semigroup.

An argument closely similar to that employed in the proof of Corollary 2.7 gives us

COROLLARY 2.9. If S is a regular semigroup, then anrj is the minimum IJSG-congruence
on S.

3. The congruences K, £ and £,. We must first show that every regular semigroup has a
minimum RU-congruence K, a minimum ISBG-congruence ( and a minimum SG-congruence
<!;. The first and third of these are consequences of the following theorem:

THEOREM 3.1. Let S be a regular semigroup. Then

(i) S is an RU-semigroup if and only if, for all x, y in S, [x2 = x, (xy)2 = xy] => \_y2 = y];

(ii) S is an SG-semigroup if and only if, for all x, y in S, [x2 = x] => [xy = yx~\.

Part (i) is simply a restatement of Lemma 2.1. Part (ii) is due to Clifford [1] (see also
[4, § 4.2]).

It follows that a congruence p on a regular semigroup S is an RU-congruence if and only if

[(x2, x) e p, ((xy)2, xy) e p] - [(y2, y) e p] .

A routine argument now shows that the intersection of a non-empty family {p,: i e 1} of
RU-congruences is again an RU-congruence. Since the universal congruence S x S is an
RU-congruence, it follows that there exists a minimum RU-congruence K on S. An exactly
parallel argument establishes the existence of <!;, the minimum SG-congruence on S.

We have been unable to find a characterisation of ISBG-semigroups comparable to the
characterisations of RU-semigroups and SG-semigroups in Theorem 3.1, and so we require a
more complicated argument to establish the existence of a minimum ISBG-congruence on
an arbitrary regular semigroup. First, let us call a regular semigroup an RIS-semigroup if its
idempotents form a subsemigroup. Then a regular semigroup 5 is an RIS-semigroup if and
only if, for all x, y in 5",

[x2 = x, y2 = y] =* [(xy)2 = xy].

Hence by our previous argument we can deduce the existence of a minimum RIS-congruence
Aon S.
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Next, let us call a regular semigroup a BG-semigroup if it is a band of groups. We shall
show that there exists a minimum BG-congruence on any regular semigroup S. Let /? be the
minimum band congruence on S and let a = p n (ExE), where £ is the set of idempotents of
5. Let 7i =a*, the congruence on S generated by a. Then n is the minimum BG-congruence
on S, as we shall show.

We first establish that S/n is a band of groups. To do this it will be sufficient to show that
in S/n the minimum band congruence coincides with J f ; for we can then deduce by Lemma
1.2 that every «?f-class contains an idempotent (and so is a group), and that J f is a congruence.
Notice first that P/n (which exists since n £ /?) is the minimum band congruence on Slit. Next,
consider two idempotents en, fn in S/n; by Lemma 1.2 we can assume that e,feE. If
(en, fn) e Pin, then (e, f)eP (by definition of Pin). Thus ( e , / ) e j 8 n ( £ x £ ) = a S J i and so
en=fn. It follows that pin is an idempotent-separating congruence on S/TC and so, by Theorem
1.3 and [10, Theorem 2.3],

Pin £ 2tf> c ^ * c pin>

which gives us the result we require.
Suppose now that n' is a BG-congruence on S; we must show that n £ n'. For this it

will be sufficient to show that a £ n'. If (a, b) e a, then in particular a and b are idempotents of
S and so an' and for' are idempotents of S/n'. If /?' is the minimum band congruence on
5/7i', then P' = y/n', where y is a band congruence on S containing n'. Certainly y3j? , the
minimum band congruence on S. Now (a, b) e a £ /? £ y and so (arc', for') e y/n' = /}'.
But S/7t' is a band of groups by hypothesis and so /?' coincides with JF. We thus have that
(an', bn') e 2^ and so, since an' and bn' are idempotents, it follows by [4, Lemma 2.15] that
an' — bn'. Thus (a, b) e n' and so n £ n' as required.

It follows fairly easily from Lemma 1.2 that the property of being an RIS-semigroup is
inherited by homomorphic images. The corresponding fact for BG-semigroups seems to
follow most easily from the characterisation of such semigroups due to Clifford [2], who
showed that a semigroup Sis a BG-semigroup if and only if (1) a e 5a2 n a2S for every a in S;
(2) Sba = Sba2, abS = a2bS for every a, b in S. It is clear that any homomorphic image of S
also has these two properties. If S is an arbitrary regular semigroup we can therefore conclude
that S/(A v n) is both an RIS-semigroup and a BG-semigroup: that is, S/(X v n) is an ISBG-
semigroup. Also, if p is any congruence on 5 for which 5/p is an ISBG-semigroup, then
clearly p 2 A and p a n , and so p 2 X v n. Thus A v n is the minimum ISBG-congruence on
S. For convenience we shall write ( instead of X v n.

We have already seen that the property of being an RIS-semigroup and the property of
being a BG-semigroup are inherited by homomorphic images. It follows immediately that
any homomorphic image of an ISBG-semigroup is again an ISBG-semigroup. The corre-
sponding fact for SG-semigroups follows from Lemma 1.2 and from the characterization of
SG-semigroups given by Theorem 3.1 (ii).

Remark. We have shown that any congruence containing ( is an ISBG-congruence. A
consequence of this, which will be of use later, is that the intersection p of a non-empty family
of ISBG-congruences p, is again an ISBG-congruence; for each p{ contains £ and so p con-
tains £.
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It is important to notice that a homomorphic image of an RU-semigroup need not be an
RU-semigroup. Consider for example the USG-semigroup S which is the disjoint union of
two non-trivial isomorphic groups Gt and Go, the semilattice Y being {0, 1} and $j 0 being
any isomorphism from Gt onto Go. Then Go is a two-sided ideal of S and so an obvious
homomorphic image of S is S/Go, the Rees factor semigroup of S modulo Go, defined in [18]
(see also [4, § 1.5]). It is immediate that S/Go is not an RU-semigroup, since it contains a
zero.

It is thus not immediately obvious that on an RU-semigroup the minimum SG-congruence
and the minimum USG-congruence will coincide. In fact they do, as the next theorem shows.

THEOREM 3.2. If £, is the minimum SG-congruence on an RU-semigroup S, then Sjl; is a
USG-semigroup.

Proof. Let 36 = {(ea, ae)\ e e E,a e S}, where E is the subsemigroup of idempotents of
S. Now, for every e in E and every a in S we have that (e^)(a^) = (a^)(eQ, since the idem-
potents of iSy£ are central. Hence (ea, ae) e £. Thus 36 £ (̂  and so 36* £ £ since ^ is a con-
gruence.

Conversely, by Lemma 1.2, every idempotent of S/36* is of the form e36*, where e is an
idempotent of S. Now clearly

for every e in E and a in S. Thus the idempotents of S/3E* are central and so S/3E* is an SG-
semigroup. Hence 3c* 2 £ and, combining this with the conclusion of the previous paragraph,
we obtain that 36* = £.

Now, if a and b are elements of S, then (a, b) e 36* if and only if b can be obtained from a
by a finite sequence of elementary ^.-transitions (in the sense of Clifford and Preston [4, p. 18]).
The proof of Theorem 3.2 depends on the following lemma.

LEMMA 3.3. IfS is an RU-semigroup, then any element obtained from an idempotent ofS by
means of an elementary ^-transition is itself idempotent.

Proof. It will be sufficient to consider the case where/, an idempotent of S, is transformed
by an elementary 36-transition thus:

/ = p e a q -* paeq,

where p,qe S. The cases where one or both of p and q are absent, or where paeq changes to
peaq, can all be dealt with in a similar way.

We have that peaq e E. Using Lemma 2.2 and the hypothesis that £ is a unitary sub-
semigroup, we successively deduce that eaqp e E, aqp e E, qpa e E, qpae e E and paeq e E.
Thus the lemma is proved.

Returning to the proof of Theorem 3.2, we note again that every idempotent of S/Z can be
expressed as e£, where e is an idempotent of S. Suppose therefore that (e£)(al;) =f£, where
a e S and e,/are idempotents; if we can show that a£, is an idempotent of S/£, then the desired
result will follow by Lemma 2.1.
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Since ^ = 3£*, there is a finite sequence

/ - > ... -> ea

of elementary 36-transitions connecting / to ea. Applying Lemma 3.3 repeatedly to this
sequence, we find that ea is an idempotent of S. But by hypothesis S is an RU-semigroup and
so it follows that a is an idempotent of S. Thus certainly a£ is an idempotent of S/£, which
was what we required.

An analogous result holds for ISBG-congruences as follows.

THEOREM 3.4. IfC, is the minimum ISBG-congruence on an RU-semigroup S, then S/£ is a
UBG-semigroup.

Proof. We must show that the set of idempotents of S/( is left unitary. If e a n d / a r e
idempotents of S and (e()(a() = (/£)> t n e n certainly (ea,/) e £, (for £ £ £) and so, by Lemma
3.3, ea is idempotent. It follows that a is an idempotent of S and so certainly at, is an idem-
potent of S/f. This completes the proof.

Now let S be an arbitrary regular semigroup. It is clear that the congruence £ v K on S
is an ISBG-congruence, since it contains £. It is not, however, immediately obvious that
C v K is an RU-congruence. This is in fact the case, and will follow from the next lemma.

LEMMA 3.5. The minimum ISBG-congruence on SJK is (£ v K)IK.

Proof. We have already observed that S/(£ v K) is an ISBG-semigroup. Hence (£ v K)/K
is an ISBG-congruence on S/K, since

SI(tVK)^(SlK)l((tVK)lK). (2)

Suppose now that p' is an ISBG-congruence on S/K. Then p' = pJK, where p is an ISBG-
congruence on S containing K. Thus p 2 ( and p~S.K and hence p 2 { v K. Thus
p' 2 (C v K)/K, SO that (( v K)/K is indeed the minimum ISBG-congruence on S\K.

It now follows by Theorem 3.4 that (S/K)/((C V K)/K) is a UBG-semigroup. Hence
5/(C v K) is a UBG-semigroup by virtue of (2). Thus we have

THEOREM 3.6. Let S be a regular semigroup and let £ and K be respectively the minimum
ISBG-congruence and the minimum RU-congruence on S. Then ( v K is the minimum UBG-
congruence on S.

A similar argument, depending on Theorem 3.2 rather than Theorem 3.4, gives us

THEOREM 3.7. Let S be a regular semigroup and let £ and K be respectively the minimum
SG-congruence and the minimum RU-congruence on S. Then £, v K is the minimum USG-
congruence on S.

Comparing these last two theorems with Corollaries 2.7 and 2.9, we obtain

THEOREM 3.8. Let S be a regular semigroup and let a, /?, n, £, f and K be defined as above.
Then a n j ! = ( v K and a n r\ = £ v K.
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Our results are substantially simplified if we restrict our attention to RU-semigroups (for
which K is the identical congruence); we obtain an/} = ( and a r\r\ = i>. For such semigroups
we also have

THEOREM 3.9. In an KU-semigroup S, the intersection ar\2^ of the minimum group
congruence a with Green's relation #F is the identical congruence is.

Proof. First, by Lemma 2.6, the set E of idempotents of S is a <r-class. Hence, if
(x, e) eon Jti?, then x = e; for x e E by the preceding remark, and then x = e since .Jf is
idempotent-separating [4, Lemma 2.15].

If (a, b) e a r\ 2%* and a' is any inverse of a, then (ad, a) e ^ . By Green's Lemma [4,
Lemma 2.2], x -* xa' and y -> ya are mutually inverse one-to-one mappings of Ha onto Haa.
and Haa. onto Ha respectively. In particular ba' e Haa. and so (aa', ba') e JO*. Since a is a
congruence we certainly have (aa', ba') e a; hence (aa', ba') ean $F. By the remark in the
previous paragraph we therefore have

ad = ba'. (3)

The next phase in the argument has some claim to independent interest and so is given
as a lemma.

LEMMA 3.10. Let S be an arbitrary regular semigroup. If (a, b) e Jif, then for every inverse
a' of a there exists an inverse b' ofb such that a'a = b'b.

Proof. Let (a, b) e ffl and let a' be an inverse of a. By an argument dual to that used in
the proof of formula (3) we obtain

(a'a, a'b) e Jf. (4)

By a theorem of Miller and Clifford [12] (see also [4, Theorem 2.18 (ii)]) there exists an inverse
b' of b such that (a1, b') e ^f. Repeating the argument that gave us formulae (3) and (4) we
now obtain (for this particular b')

(a'b, b'b) e JT (5)

and so, by (4) and (5), we have that (a'a, b'b) e 3^. Since #F is idempotent-separating [4,
Lemma 2.15] we thus obtain that da = b'b as required.

From (3) and Lemma 3.10 we now deduce that

a = ad a = bda = bb'b = b.

Thus ffn/ = is, and so the proof of Theorem 3.9 is complete.

Since n, the maximum idempotent-separating congruence on S, is contained in Jf, and
since ( £ t, £ a, we have the following corollary to Theorem 3.9.

COROLLARY 3.11. In an R\J-semigroup S,
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None of these results is true for regular semigroups in general. Consider for example a
Brandt semigroup S = ^#°(G; I, /; A), where | /1 ^ 2. (For an explanation of the notation
see [4, §§3.1, 3.3].) Then S is not a union of groups. Moreover, it has been shown by Preston
[17] that any non-trivial homomorphic image of S is a Brandt semigroup ^°(G'; I, I; A),
where G' is a homomorphic image of G; hence no non-trivial homomorphic image of 5 is a
union of groups. It follows that <7 = <!;=( = SxS. Also, it is easy to show that ix = Jt? and
that ((a)jj (b)kl) e J f if and only if / = k and j = /. Thus, if the group G contains more than
one element, we have

4. UBG-congruences. In this final section we establish the result:

THEOREM 4.1. JfS is a regular semigroup, then the intersection of a group congruence x and
a band congruence y is a UBG-congruence on S. Conversely, any UBG-congruence p on S can
be expressed in this way, and x and y are uniquely determined by p.

Proof. We have already observed (at the beginning of § 3) that the intersection of a
family of ISBG-congruences [RU-congruences] is another ISBG-congruence [RU-congruence].
Hence the intersection of a family of UBG-congruences is a UBG-congruence. Now, if T is a
group congruence and y a band congruence, then certainly both x and y are UBG-congruences,
for the class of UBG-semigroups contains both the class of groups and the class of bands.
Hence x n y is a UBG-congruence.

Conversely, let p be a UBG-congruence on S, and let x' and y' be respectively the minimum
group congruence and the minimum band congruence on S/p. Since S/p is a UBG-semigroup
we must have that t'ny' = is/p by Theorem 2.5. Now x' = x\p, where x is a group congruence
on S containing p; and similarly y' = y/p, where y is a band congruence on S containing p.
We thus have that (t/p) n (y/p) = is/p, from which it follows that t n y = pas required.

It remains to show that x and y are uniquely determined by p. Suppose that riny1 =
T2 n V2> where xl3 x2 are group congruences and ylt y2 are band congruences. Then •>>! n y2 is
a band congruence and, by Lemma 1.2, there exists for every a in S an idempotent e such
that (a, e) e yY n y2- Suppose now that (a,b)eyi. There exist idempotents e,/such that

(a, e)ey1ny2, (b,f)ey1ny2. (6)

Hence (e,/) e yl and since xx is a group congruence we certainly have that (e,f) e xt. Thus

( e . / J e ^ n h =T2ny2 c y2

and it follows from (6) that (a, b) e y2. Thus yx £ y2, and by symmetry we also have yt 2 y2.

We may now assume that yt = y2 = y, so that x^r\y =x2r\y. If (a, b) e xu then

(a-a-ba, a-b-ba) e x1.
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Since S/y is a band,

(ay)(ay)(by)(ay) = (ay)(by)(by)(ay) ( = (ay)(by)(ay))

and so (aaba, abba) e y. Thus

(aaba, abba) s Tt n y = T2 n y £ T2.

Since T2 is a congruence, it follows that (eaf, ebf) e T2, where e = a'a a n d / = (ba)(ba)'. Now
er2 and/r 2 are both equal to the identity element of the group Sjx2 and so

ax 2 = (ex2)(ax2)(fx2) = (ea/>2 = (ebf)x2 = bx2;

that is, (a, b) e x2. Thus xt £ T2, and by symmetry we also have x1 c x2. This completes the
proof.

Finally, we have

THEOREM 4.2. If S is a regular semigroup, then the intersection of a group congruence x
and a semilattice congruence e is a \JSG-congruence on S. Conversely, any \JSG-congruence p
can be expressed in this way, and x and e are uniquely determined by p.

The proof is closely similar to that for the previous theorem and is omitted. The unique-
ness of T and e is in fact a corollary of Theorem 4.1.
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