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1 Introduction

The generalized fractional calculus operators popularly known as Marichev—Saigo—
Maeda operators involving the Appell function F5(-) or the Horn function in the kernel
(see for details [3, 6, 7]) are defined in the following form.

Definition 1 Let o1,07,v;1,v,1 € Cand x > 0, then, for Re(n) > 0,

( 01,01,V1,V]1 ) x~1 x 1 !
B - 2 [
0 I'(n) Jo
, , t X
X F3<01:01’v11V1;7];1_ —1- E)j(t)dt (1.1)
X
and
o x—a{ 00
L") () = —— f (t—x) 1t
(oo ) rm /.
/ ’ X L
XF?) O-lro-pvl,vlin;l_zyl—; (t)dt. (1.2)

Here F5(-) denotes the Appell hypergeometric function of two variables.

Definition 2 Let 01,01,v1,v;,7n € C and x > 0, then, for Re() > 0,

’ ’ R
(Dg,lx’o-l’vlvvl’nf) (x) _ (10:—71 oL=Vp—V1 nf) (x)
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d\" -0/ ,—01,~V] +1,—v1,-n+n
= <%) (o "F) @) (n=[Re(n)]+1)

1 n-n-1,0
F(nn)() /(x) ‘

t X
x Fs (—0’1/,—0'1,” —v,—vn—-m;l-—1- ;)f(t) de (1.3)
x

and

01,07,V1,V]

(DEE 1)) - (ke
( zc) (1—01 —O1,= V], = V] +1, n+nf) (l’l — [Re(n)] + 1)

1 d " ’ e
- |_= o1 t— n—n—lta
F(n—n)( dx)x /x (£-%)

X t
x F3 (—01’,—01, vi,n—vi;n—n;1- o 1- —)f(t) de. (1.4)
x

These operators includes Saigo hypergeometric fractional calculus operators, Riemann—
Liouville and Erdélyi-Kober fractional calculus operators as special cases for various
choices of the parameters (see for details [2, 8, 10] and [12]). In a recent paper, Saxena
and Parmar [9] established several interesting Saigo hypergeometric fractional formulas
involving the generalized Mathieu series defined by Tomovski and Pogéany [14]. More re-
cently, Singh et al. [10] established several results by employing Marichev—Saigo—Maeda
fractional operators including their composition formulas and using certain integral trans-
forms involving the extended generalized Mathieu series defined by Tomovski and Mehrez
[13].

The more generalized form of the so-called (p, g)-Mathieu type series has been consid-
ered very recently by Mehrez and Tomovski [4] in the following form:

2d5()»1)an,q()L2 +1,h3 — A2) 2"

(@p
S ’ ' Y>» - -
s 8D, 052) = ; (a2 + )P B(Ay h3 — A2) 1!

(1,750, By A1, A2y A3 € R, min{Re(p),Re(q)} = 03 |z] < 1), (1.5)

where B(x, y; p, q) is the (p, q)-extended Beta function introduced by Choi et al. [1],

1
B(x,%:5,q) = Byg(,9) = / £ (1 — gp-le bl de, 16)
0

when min{Re(x), Re(y)} > 0; min{Re(p), Re(g)} > 0. This (p, g)-Mathieu type series includes
various forms of Mathieu-type series as special cases (see for details [4]).

In our present investigation, we require the definition of the Hadamard product (or the
convolution) of two analytic functions [9]. If the Ry and R, are the radii of convergence of
the two power series

f(2) ::Zanz” (Il <Rf) and g(z) :=anz” (12l < Ry),
n=0

n=0
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respectively, then the Hadamard product is the newly emerging series defined by

oo
(f#8)(2) =Y anbaz" = (gxf)2) (lzl<R), (1.7)
n=0
where
R= lim | %% lim (l'm bn ) Ri-R
=1 — | = 1 . 1 = . ,
n=>X0| Ap10n+1 =0\ Ayl n—00| by S e

so that, in general, we have R 2 Ry - R,.

In this present note, we aim to develop the compositions of the generalized fractional
integral and differential operators (1.1), (1.2), (1.3) and (1.4) for the generalized Mathieu
series (1.5) by using the Hadamard product (1.7) in terms of (p, g)-Mathieu type series and
Wright hypergeometric function.

2 Fractional formulas of the (p, g)-Mathieu type series

The Wright hypergeometric function ,¥(z) (r, s € Ny) having numerator and denominator
parameters r and s, respectively, defined for «y,...,a, € Cand By,..., s € C\ Z; by (see,
for example, [2, 8])

" {(al,Al),...,(ar,A,); } i on +Aum)-- Iloy + An) 2"

(BB (BB |~ & TPy + Bum)--- I (B + Bon) !

(A, ER'(j=1,...,r B eR (=1,...,551+ Y B~ ) A go) (2.1)
j=1

j=1

with

2] <V i= (!:[A;A’> : (E[Bf’)

Also,ifwetake Aj =By =1(j=1,...,r;k=1,...,5) in (2.1), this reduces to the generalized
hypergeometric function ,.F; (r,s € Np) (see, e.g., [2]):

. |:oel,...,ar;z:| LTI, [(al,l),...,(am);z] 22)

,Blwurﬂs; - F(al) Tt F(ar)r ’ (ﬁl» 1)w~>(/35, 1);
The following image formulas or power function are useful in our investigation [10].

Lemma 1 Let 01,07, v1,v},1,0 € C and x > 0. Then the following relation exists:
(a) IfRe(n) >0 and Re(p) > max{0,Re(o; + o] + v1 —n),Re(o] —v})}, then

'@ I'o+n-o1—o]-v)I'(0+v)—0])

IULU{YVI;Vi:rth—l (x) =
(o ) I'e+v)I'(@+n-o1-o0)I (0 +n-o0f-1)

x x0*1=01=01-1, (2.3)
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b) IfRe(n) > 0 and Re(p) < 1 + min{Re(-v;),Re(or + o1 — n),Re(o1 + v| — 1)}, then

(Ialalvlvlntg 1)( ) - I'l-o-v)I'1-o-n+o1+0))(1-0—-n+o01+v})
oo 'l-oI'l-o-n+o1+o0]+v)'(1-0+01—v1)

x x0*1=01=01-1, (2.4)

Lemma 2 Let 01,07, v1,V},1,0 € C and x > 0. Then the following relation exists:
(a) IfRe(n) >0 and Re(p) > max{0,Re(n — o1 — o] + vi),Re(v1 — 01)}, then

(Dalal 1, vlntg 1)( )= ') (oe-n+o1+0] +v))[(0—v1 +07)
F'o—vi)I'(o—n+o1+0))[(0—n+o01+V])

x x@7Mroro1-1, (2.5)
b) IfRe(n) > 0 and Re(p) < 1 + min{Re(v;),Re(n — 01 — o), Re(n — o] — v1)}, then

rl-o-vi))fl-o+n-o1-o)(1-0+n-0]—v1)
rl-o)I'l-o+n-oy—of-v)['(1-0—-0]-v))

01,07,01,V],1

(D) () =

x x0 o101l (2.6)

We begin the exposition of the main results with presenting the composition formulas of
the generalized fractional operators (1.1), (1.2), (1.3) and (1.4) involving the (p, g)-Mathieu
type series by using the Hadamard product (1.7) in terms of the (p, g)-Mathieu type series
(1.5) and the Fox—Wright function (2.1).

Theorem 1 Let 01,01,v1,v},1n,0 € C and p, o, 8,7, 21, A2, X3,y € R* such that Re(n) >
0 and Re(o + y) > max{0,Re(o1 + o + vi — n),Re(o] — v{)} with |t| < 1. Then, for
min{N(p), R(q)} > 0, the following formula for fractional integration holds true:

(1{,’;‘” BUBLE "{tg IS:A,SI s (r, a; P\ q; ty)})(x)
= xQFV 0107 lSﬁf‘fI rois D @D, G %)

s L1, +y.y)le+n-o1-oi=vi+y,y)@+vi=01+V,7) ,
(e+vi+y,¥)e+n-o1—o{+y,y)(e+n—0]—vi+y,y);

Proof Applying the definitions (1.5), (1.1) and then changing the order of integration and
using the relation (2.3), we find for x > 0

(Ig;m W1, V1 ”{tQ IS;Aﬂl s (r,a;p,q; ty)})(x)

_ i zuf()‘-l)kB()‘Z + k; )‘-3 - )~2$P> 61) (1(71,(7{,1)1,111,77{tgﬂ/k,l})(x)
N (@ + r2)iB(hg, A3 — Ao)k! VO

k=1

_ yon-o1-0}- IZ Zﬂk (AiB(A2 + kA3 — A2 p, q)
ﬂ + 7"2 MB(A.Z,)\.?, - )\.Z)k,

Fle+yklo+n-o-oj—vi+yKIlo+vi—0oi+vk) (2.7)

Fle+vi+ykle+n—-o1—of+ykI(e+n-of-vi+yk) '
Finally, using the Hadamard product (1.7) in (2.7), in view of (1.5) and (2.1), yields the
desired formula. O
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Theorem 2 Let 01,01,v1,V},1n,0 € C and p, o, 8,1, 71, 2,13,y € R* such that Re(n) > 0
and Re(o - y) < 1 + min{Re(-v;),Re(o; + o1 — n),Re(o1 + v — n)} with |1/t| < 1. Then, for
min{N(p), R(q)} = 0, the following formula for fractional integration holds true:

’ ’ 1
01,07,V1,V]0) 1
(Ix,ool 1 {tg S:/\[i 22,3 (’"’“?P: 9 t_V) })(x)

1
_ ,otn-y-o1-0]-1 ¢lo,B) v e
=X 1 Su s\ P BD G po

s LD,A-o-vi+y,¥)(l-e-n+o1+0]{+y,y),(1-o-n+or+vi +y,y) 1
(I-e0+y,7)(A-g-n+or+o{+vi+y,y)(1-g+o1-vi+y,y)i & [

Theorem 3 Let 01,0),v1,v},1n,0 € C and p, o, 8,17, A1, A2, X3,y € R* such that Re(n) >
0 and Re(o + y) > max{0,Re(n — o1 — of — v),Re(vy — o1)} with |t| < 1. Then, for
min{N(p), R(q)} > 0, the following formula for fractional differentiation holds true:

(Dglxal W1V, ﬂ{tQ 15:)331 ros (r,a;p,q; tV)})(x)

_ woty—n+o1+o] -1 ole.B) . w4
=x ! Sﬂklkz}»s(r’a’p’q’x)

s L1, +y.¥)e-n+or+oi+vi+y,y)e-vi+tor+y.y) ,
(e-vi+y,¥)(@-n+o1+o]+y,y)(e-n+o1+Vvi+y,y);

Proof Applying the definitions (1.5), (1.3) and then changing the order of integration and
using the relation (2.5), we find for x > 0

(Dglxal W1V, W{tQ ls:kﬂl s (r,a;p,q; tV)})(x)
_ i 2a} (1) () (DA e )
= (ag +r2)*(As)ik!
201k ADxBha + kA3 — Aa;p, q)

= x0~ r]+al+al -1
Z (af + r2)*B(Ay + k, A3 — Aa)k!

I'lo+yk)[(o—-n+o1+0]+Vvi+yk)(0—vi+01+yk) Lk (2.8)

T'lo-vi+yk)I'o—-n+o1+0]+yk)[(0—n+o01+V]+yk)

Finally, using the Hadamard product (1.7) in (2.8), in view of (1.5) and (2.1), yields the
desired formula (1.3). O

Theorem 4 Let o1,07,v1,v{,n,0 € C and p, o, 8,7, 71, A2, X3,y € R* such that Re(n) > 0
and Re(o — y) <1 + min{Re(v]),Re(n — o1 — o7),Re(n — o1 — v1)} with |1/t| < 1. Then, for
min{N(p), N(q)} = 0, the following fractional differentiation formula holds true:

01,0, ,v1,V], 1
(Dx,lool ' 1n{ - 1SlfflAz,h%(r,cz;‘v,q;t—y)})(x)

1
_ wo—y-n+o1+o] -1 o(a,B) . .
=X 1 Su rais\ HEGD G x_V

A (L1),A-o-vi+y,¥)hQ-0+n-0o1—0o{+y,¥),(l-g+n-o]{-vi+y,y) L
(I-o+y,¥)(Q-0+n-o1-0of—vi+y,y),(1-0-0{-vi+y,7);  av
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3 Certain integral transforms

With the help of the results established in the previous section, in this section, we shall
present certain very interesting results in the form of several theorems associated with
Beta, Laplace and Whittaker transforms. For this purpose, first we would like to define
these transforms.

Definition 3 The Euler-Beta transform [11] of the function f(z) is defined, as usual, by

1
B{f(z);a,b} = ] 211 -2 (2) d. (3.1)
0
Definition4 The Laplace transform (see, e.g., [11]) of the function f(z) is defined, as usual,
by
L{f(2);t} = / e “f(z)dz  (Re(t) >0). (3.2)
0

The following integral involving the Whittaker function [10]:

1
pF(Q:i:v+,0)

oo
tp’le’%‘”W at)dt=a " ————
/o lal) r(1-«+p)

1
(Re(a) >0,Re(p £ v) > —§>, (3.3)
is useful in this section, where W, , is the Whittaker function [5, p. 334].
The following interesting results in the form of theorems will be established in this sec-
tion. As these results are direct consequences of the definitions (3.1), (3.2), (3.3) and The-
orems 1 to 4, they are given here without proof.

Theorem 5 Let 01,01,v1,v},1n,0 € C and p, o, 8,7, 21, A2, X3,y € R such that Re(n) >
0 and Re(o + y) > max{0,Re(o1 + of + vi — n),Re(o] — v)} with |t| < 1. Then, for
min{N(p), R(q)} = 0, the following Beta-transform formula holds true:

B{(I5y e, (raspgs (2)))) ) <L)

/
_ Loty+n-o1-o]-1 (a,8) . "
=X ! F(m)SMv)»l,)»z,)ne, (I", ap, X )

LD, d+y,y)le+y,v)(0+n-o1—of—vi+y,¥)@+vi—0o]+y,¥);
*5‘1’4 / ’ , X" .
(I+m+y,y)e+vi+y,¥)(e+n-o1-o +y,¥)(e+n—-0o]-vi+y,y);

Theorem 6 Let o1,0(,v1,v{,n,0 € C and p,«, B,1r,71, A2, X3,y € R* such that Re(n) > 0
and Re(o — y) <1 + min{Re(-v1),Re(o1 + o — n),Re(oy + vi — 1)} with |1/t| < 1. Then, for
min{N(p), R(q)} = 0, the following Beta-transform formula holds true:

K /’ ) /, _ Z y
B{([Zlogl vi,v) ’l{tg 151(3'{?,%2&3 <r,a;p,q; <E> )})(x):l,m}

 oyenoreo1 (@) s L
=ux T (m)S 5 00 (r,a,p,q, XV

(L1, +y,y)Q-0=-vi+V,¥)
* 5y
I+m+y,y),l-0+vy,y),

(I-e-n+o1+o{+y,y)(1-0-n+or+vi+y,y) 1
l-o-n+o1+o{+vi+y,y),(L—0+01—v1+y,y)x" '
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Theorem 7 Let 01,01,v1,v{,n,0 € C and [, B,7, 71, 2,73, v € R such that Re(n) >
0 and Re(o + y) > max{0,Re(n — o1 — oy — v),Re(v; — o1)} with |t| < 1. Then, for
min{N(p), R(q)} = 0, the following Beta-transform formula holds true:

B (Dg}x’al’vl'uyn{tQ’lez‘A’SI)M,AB (ra;p, q;(2))}) (x) : [, m}

!
_ LOty-ntor+o;-1 (,B) o e
=X ! F(m)Su,M,Az,As (r’ LGP X )

(1,1),(l+)/,)/),(Q+)/,}/),(Q—T]+Ul+0’1/+Vi+)/,)/),(Q—V1+(71+)/,}/); y
*5‘114- ’ ’ X
(I+m+y,y)e-vi+y,v),(e-n+o1+oi+y,¥)(e—n+o1+v;+y,7);

Theorem 8 Let 01,01,v1,V},1,0 € C and pn,a, 8,1, 71, 2,13,y € R* such that Re(n) > 0
and Re(o — y) < 1 + min{Re(v}),Re(n — 01 — o),Re(n — o{ — v1)} with |1/t| < 1. Then, for
min{R(p), R(g)} > 0, the following Beta-transform formula holds true:

oo [ o z\”
B{ <D§:10;’1 v1vin {tQ lsizﬁ),lz,/\s (r, ap,q; (E) ) })(x) l,m
o-y-n+o1+o] -1 (a,8) . . 1
=X 1 F(m)SMy)\b)LZv)% r,a;p,q; X7

- LD, I+y,y),(I-0-vi+V,¥)
(I-0+y,y)(1-0+n-01-0{—vi+y,¥),

l-o0+n-0o1-0o{+y,y),(l-0+n—0,-vi+y,y); 1
(I+m+y,y),1-0—0] =V, +y,y); x|

Theorem 9 Let 01,01,v1,v{,n,0 € C and p,o, B,7, 71, A2, A3,y € R such that Re(n) >
0 and Re(o + y) > max{0,Re(o1 + o] + vi — n),Re(o] — v)} with |t| < 1. Then, for
min{N(p), R(q)} = 0, the following Laplace-transform formula holds true:

L{z™! (Ig;ﬂ{'vl’vi’" {tQ‘lS(O"ﬂ) (ra;p,q;(2))}) (%)}

Hoh1,A2,A3

+y+n-o1—0] -1 14
T wn) (g (F
= o PESTEREL N2 ok L

Wy L1, U+y,y)s@+y.¥)@+n-o1—o{—vi+y,¥)(@+vi—of +¥, )i (%) .
(e+vi+v,¥)le+n-o1—0oi+y,y)(@+n-0] —vi+Vy,7); s

Theorem 10 Let 01,07,v1,V},n,0 € Cand o, 8,7, 21, A2, A3,y € R such that Re(n) > 0
and Re(o — y) <1 + min{Re(-v;),Re(o1 + 0] — n),Re(o1 + vi — n)} with |1/t| < 1. Then, for
min{N(p), N(q)} > 0, the following Laplace-transform formula holds true:

Y
’ ! z
ol onn(3 o

—y+n—-o1—0] -1 Y
~ xQY*N-01-0} S(a’ﬂ) . i l
- s itz \ P EHED D xS

_— LD, +y,y)(I-0-vi+y,¥y),(1-0-n+o1+0{+V,¥),
(I-e0+y,y)(1-g-n+o1+0{+Vvi+¥,¥),

(I—Q—n+01+VE+V,y);( l)y}

(I-g+o01—v1+y,Y); \xs

Page 7 of 11
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Theorem 11 Let o1,0(,v1,v;,1,0 € C and w,a, B, 1,11, A, A3,y € R* such that Re(n) >
0 and Re(o + y) > max{0,Re(n — o1 — of — v;),Re(vy — 01)} with |t| < 1. Then, for
min{N(p), R(q)} = 0, the following formula Laplace-transform holds true:

LI (DL S, (rasp s (2)7))) @) )

+y—n+o1+0] -1 14
B xQ y—-n+oi+o; S(a'ﬁ) ) ) X
= o wirdars\PEP D

s @Dty yheryy)e-n+ortoi +vi+y.y)le-vi+or+y,y)(% 4
> (e-vi+v,¥)l@-n+or+o{+y,y)(@-n+o1+vi+y,y); s

Theorem 12 Let 01,01,v1,v;,n,0 € C and o, 8,7, 21, A2, A3,y € R such that Re(n) >0
and Re(o — y) <1 + min{Re(v]),Re(n — o1 — o{),Re(n — o] — v1)} with |1/t| < 1. Then, for
min{N(p), R(q)} = 0, the following Laplace-transform formula holds true:

K /’ ) /, _ Z y
L{zl_l (Di,loé’l v {te 15%\?/\2,)»3 (r, ap,q; (Z) ) })(x)}

0-y—-n+o1+0] -1 14
_ X ! S(a:ﬂ) ra;p,q; 1
- ) ) 7 )
s HoA1,A2,A3 xS

*5'1/3 (1,1);(l+]/;}/),(1_Q_Vi+V,J/),
(I-0+y,y)(1-0+n-01-0]-vi+y,y),

(1—Q+n—al—o{+y,y),(1—g+n—01’—v1+J/,J/);<l)y
(1-0-o0f =V, +y,¥) xS ’

Theorem 13 Let o1,07,v1,v(,n,0 € C and w,a,B,r, 11, 2, A3,y € R* such that Re(n) >
0 and Re(o + y) > max{0,Re(o1 + o] + v; — n),Re(o] — vi)} with |t| < 1. Then, for
min{N(p), R(q)} > 0, the following integral formula holds true:

o0 / i
/ Flea% W (62) { (1(07,;01,‘)1’”1'” { t"’lsfﬁ’x’?,xz,xg (’”’ a;p, q; (wtz)”) })(x)} dz
0

xQ*V“?—‘Tl—”{—l @f) wx\?
= §! Sl’v,)hlv)\Z))LS napq; ?

LD, G+c+l+y,y),G=¢c+l+y,y),
*6W4 1 ,
G-t+l+y,y)@+vi+y,y)

(Q+J/,y),(9+n—o’1—0{—\)1+J/,y),(9+vi—0{+%y);<@>y
(0+n-o1—oi+y,¥)(e+n-o]{-vi+y,y) 8

Theorem 14 Let 01,01,v1,v{,n,0 € C and 1, o, B,7, A1, Ao, A3,y € R* such that Re(n) >0
and Re(o — y) <1 + min{Re(-v1),Re(o1 + of — n),Re(oy + vi — )} with |1/t| < 1. Then, for
min{R(p), R(g)} > 0, the following integral formula holds true:

1 s Lo VLV | -1 cle,f) wz\”
27e 2% W, (82)1 | Lo S s | DB - (%) ¢ dz
0

x@-V+n-01-07~1 ) w\”
:TSH'ALM,M r,a;p,q; E
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o |G GHEHlay ) G-t +lvy,y),(A-g-vi+y,y),
* W 1
G-t+l+y,y)(d-0+v,y)

(1—Q—77+<71+<7{+y,y),(1—g—77+01+v{+y,y);(w>y
(1—Q_77+01+01/+Vi+V’V)»(1—Q+01—V1+)’»V); x8 '

Theorem 15 Let o1,07,v1,v},1,0 € C and p,a, B,r, A, , A3,y € R* such that Re(n) >
0 and Re(o + y) > max{0,Re(n — o1 — of — v]),Re(v; — o1)} with |t| < 1. Then, for
min{N(p), R(q)} = 0, the following integral formula holds true:

00 ! !
[ e e e (O S (g o)

’
B x@+)/—n+cf1+al—ls(a'ﬁ) ‘ ‘ wx Y
= Y wiriaag\ P EP D\ ~5”

.oV L1, G+c+1+y, ), G-C+1+y,y)
1
G-t+l+y,¥)@=-vi+y,¥)

(e+y,7),(0—n+o0 +01,+Vi+V’V):(Q_V1+Ul+V’V);<Wx>y:|
s

(e-n+or1+o{+y,¥)(@-n+o1+Vv+V,y)

Theorem 16 Let 01,01,v1,V;,n,0 € Cand o, 8,7, 21, A2, A3,y € R such that Re(n) > 0
and Re(o — y) <1 + min{Re(v]),Re(n — o1 — o7),Re(n — o1 — v1)} with |1/t| < 1. Then, for
min{N(p), R(q)} = 0, the following integral formula holds true:

o0 -1 —Lls, Lo VIV | o1 olef) wz\Y
@ e Weg(82)) | Do B S \ P BD t =)
0

ngy—n+al+ol’—1 ) w\”
= Tsﬂ,kl,kz,kg rla;p)q; x—a

LD,G++l+y,7),G-C+l+y,y),1-0-v{+y,7)
* 6V 1
(§—T+l+)/,)/),(1—Q+)/,)/),

(l-¢+n-o1-o{+y,y),(l-g+n-0o{—n +%V)P;(K>y
(I-o+n-oi—o{-m+y,y)(1-0-of-vi+y,y);\x8/ |

4 Concluding remark and observations

In this paper, we have established 16 interesting generalized fractional integrals and
derivative formulas including their composition formulas by using certain integral trans-
forms involving generalized (p, g)-Mathieu type series. The (p, g)-Mathieu type series (1.5)
considered by Mehrez and Tomovski contains several special cases as various forms of the
Mathieu type series presented in [4]. In particular, if we take p = g in (1.5), we get the p-
Mathieu type series defined as

B
2a, (A1)uBy (Ao + 1, A3 — Ay) 2"
(t,B) n\/N1)nDp\/\2 3 2
S r,a;p;z) = adl
M,M,Az,kg,( p ) Z (dg’t +12)EB(Ag, Az — Ay) 1!

n>1

(1,1, 0, B, A1, hay A3 € RY,Re(p) = 0; 2] < 1). (4.1)

Page9of 11



Agarwal et al. Advances in Difference Equations (2019) 2019:221 Page 10 of 11

Again, if we take p = g = 0 in (1.5), we get the generalized Mathieu type series defined as

a B) _ 261,, ()\l)n()\z) +
M)tl A2, A3(V’a Z) VDZI (da rz)“ }\‘3) I’I' (M!rxa)ﬂ7}“1!)"27)"3 [S R b |Z| < 1) (4'2)

Furthermore, if we put X, = A3 in (4.2), we get the well-known definition of the Mathieu
type series defined earlier by Tomovski and Mehrez [13] as

ﬂ n
Sffffl)(r, a;z) = Z %% (om0, B2y €RY, 2] < 1). (4.3)
n>1 n
The results established in this paper contains various special cases such that, if we take
p=qgand p = g =0, we can obtain thirty two new results. We left these as an exercise for
the interested reader. Furthermore, if we take p=q =0, A; =4, Ao = A3, 0 = p, 01 = 0 and
o, = o', we recover the 16 known results in corrected form recorded in [10]. Furthermore,
all the corollaries obtained earlier by Singh et al. [10] in the same paper can also be written
correctly by our results. For example, the corrected version of the first result of Singh et
al. [10] as given in Theorem 1 should read as follows.

Corollary 1 Let 01,01,v1,v},n,0 € C and p, o, 8,7, A1, A2, A3,y € R* such that Re(n) > 0
and Re(p + y) > max{0,Re(o; + o + vi — n),Re(o] — v)} with |t| < 1. Then, for x > 0, the
following formula for fractional integral holds true:

2 58 s2) ) 0

o1-0] -1 ola,B) .
= x0tV+n-o1-0] S:M (r, a,xy)
T (L1, (e+y,¥)(e+n-o1—0of—vi+y,y),(@+Vv;—of+ y,y);xy
e+vi+y,y)hle+n-o1—oi+y,y)(@+n-0o{-vi+y,y);
Similarly other results can easily be written in corrected forms and we left this as an
exercise to the interested reader.
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