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CERTAIN HYPERGEOMETRIC SERIES RELATED
TO THE ROOT SYSTEM BC

R. J. BEERENDS AND E. M. OPDAM

Abstract. We show that the generalized hypergeometric function 2FX of ma-
trix argument is the series expansion at the origin of a special case of the hyper-
geometric function associated with the root system of type BC . In addition we
prove that the Jacobi polynomials of matrix argument correspond to the Jacobi
polynomials associated with the root system of type BC . We also give a pre-
cise relation between Jack polynomials and the Jacobi polynomials associated
with the root system of type A . As a side result one obtains generalized hook-
length formulas which are related to Harish-Chandra's c-function and one can
prove a conjecture due to Macdonald relating two inner products on a space of
symmetric functions.

1. INTRODUCTION

Various extensions of the classical Gauss hypergeometric function to sev-
eral variables exist in the literature. In this paper we will unify two different
approaches to hypergeometric functions in several variables and the related Ja-
cobi polynomials. We will show that the generalized hypergeometric function
of matrix argument is a special case of the hypergeometric function associated
with root systems. A similar result holds for the generalized Jacobi polynomials
of matrix argument.

One of the generalizations of the classical one-variable hypergeometric func-
tion pFq is the hypergeometric function pFq of matrix argument which was
introduced in 1955 by Herz [8] using Laplace and inverse Laplace transforms.
This idea originated in a paper by Bochner who considered Bessel functions
of matrix argument (see [8] for details). Constantine [2] then found a series
expansion for the pFq,s in terms of so-called zonal polynomials. These zonal
polynomials are the spherical functions of certain irreducible polynomial repre-
sentations of GL(n, R). The zonal polynomials and the hypergeometric func-
tions were studied extensively by Constantine, James and Muirhead (cf. [2, 9,
10, 26] and the references given there). In [9, §8] the analogous situation for
GL(n, C) is treated and the complex zonal polynomials occur. Recently Gross
and Richards [5] treated the cases GL(n, F) (F = R, C or H) simultaneously.
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582 R. J. BEERENDS AND E. M. OPDAM

If we now put k = j diniR F then we can consider k as a parameter in the defi-
nition of pFq in [5, 6.1(1)]. Faraut and Korányi associate in [4] hypergeometric
functions pFq with any so-called symmetric cone and in particular they obtain
the cases k = \ , 1 and 2 above. Hence they extended the number of values for
which one can define these pFq's. From the definition [5, 6.1(1)] or [4, (2.4)] it
is clear how to generalize the definition of the pFfs to arbitrary values of k ,
except for the generalization of the zonal polynomials. Zonal polynomials how-
ever are closely related to the Jacobi polynomials associated with SL(n, F),
i.e. with root system An-X ; these Jacobi polynomials have been generalized to
arbitrary k by Heckman and Opdam in [6 and 7]. By now a different approach
to the generalization of the zonal polynomials is well established in the liter-
ature. This approach is due to Macdonald who noted that the so-called Jack
polynomials are in fact a generalization to arbitrary k of the zonal polynomials
(cf. [20, 21, 22, 30]). The generalized hypergeometric functions pFq of matrix
argument were then defined independently by Korányi [15] and Macdonald [24]
in terms of the Jack polynomials instead of the Jacobi polynomials for An_i.
Let us note here that this paper deals exclusively with the case p = 2, q = I.

The classical Gauss hypergeometric function 2FX can be interpreted in terms
of the rank-one root system of type BC. Heckman and Opdam [6, 7, 27] as-
sociate with any higher rank root system a 2FX hypergeometric function, thus
giving a completely different multivariable generalization of the classical 2Fi.
We will show that the generalized 2FX of matrix argument is in fact the series
expansion "at the origin" of a special case of the hypergeometric function as-
sociated with BC„ . The two variable case has essentially been established by
Yan [32, 33]. In addition we will prove that the Jacobi polynomials as defined
by Herz [8], James and Constantine [10] and Macdonald [24] correspond to the
multivariable Jacobi polynomials associated with BC„ as defined in [6 and 7].

The paper is organized as follows. After some notations and preliminaries
we show in §3 how the Jacobi polynomials associated with An^x are related to
the Jack polynomials. This result also led us to lower and upper hook-length
formulas which generalize the classical (i.e. k = 1) hook-length formula. As
an application we prove a conjecture due to Macdonald [21, §4] relating two
inner products on a space of symmetric functions; this conjecture also follows
from the material in [20, Chapter VI]. In §4 we prove how the generalized
hypergeometric function 2Fi of matrix argument can be obtained as a special
case of the hypergeometric function associated with BC„ . Finally we treat the
Jacobi polynomials associated with BC„ in §5.

2. Notations and preliminaries
a. Jack polynomials and the generalized hypergeometric function of matrix ar-
gument. For unexplained results concerning partitions and symmetric functions
we refer to [19, Chapter I]. A partition X is any sequence X = (Xi, X2, ... , Xn)
of nonnegative integers such that Xi > X2 > ■ ■■ > Xn > 0. The number of
X¡ t¿ 0 is called the length of X and is denoted by l(X). The weight |A| of X
is defined as

(2.1) W = 5>-'>•
Given a partition X = (Xi, X2, ... , X„)  we define the dual partition X' =
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fiC-TYPE HYPERGEOMETRIC SERIES 583

(X'x, X'2, ... , X'm) by X\ = Caxd{j\Xj > /} . Furthermore we put

(2.2) »w=5>-i)*i = E
¡>1 ¡>1

The diagram of a partition X is the set of points (i, j) £ 7? such that 1 < j <
X¡ ; we will simply write (i, j) £ X if (i, j) belongs to the diagram of X. We
write ß < X if \ß\ = \X\ and Y!í=i Pí < Y!¡=i a¡ f°r all fc > 1. This is a partial
ordering on the set of partitions of a given weight. We write ß c X if /if < X¡
for all i.

Denote by A„ the ring of symmetric polynomials in n independent variables
with integer coefficients.   If a = (ax, a2, ... , an) £ (Z+)"   (Z+  the set of
nonnegative integers) then we put \a\ = ax + a2 -i-\-a„ and we let xa denote
the monomial x^xf- ■ ■ -Xn". For a partition X of length l(X) < n we define
the monomial symmetric polynomial mx in A„ by

(2.3) mx = mx(xx,x2,...,xn) = Y^xa,

where the sum is taken over all distinct permutations a of a. If l(X) > n
we put mx = 0. The power sums pr axe defined for each integer r > 1 by
pr = Yli=ixri = m(r) ■ F°r eacn partition X = (Xx, X2, ... , X„) define px =
Pk,Pi2 '"Pk- Finally, Sx will denote the Schur function corresponding to the
partition X (cf. [19,1.3]). It is well known that the sets (mf) and (sf) form a
Z-basis for A„.

We now foUow Stanley's introduction of the Jack polynomials [30, Chapter
I]. For a partition X we write

(2.4) zx = Ylim>mi\,

where m¡ is the number of parts of X equal to /. Let A; be a parameter
and Q(k) the field of all rational functions of k with coefficients in Q. For
convenience we will work temporarily with symmetric functions in infinitely
many variables. In particular we let mx and px denote the symmetric functions
in infinitely many variables in the ring of symmetric functions A as defined in
[19, §2]. The mx form a Z-basis of A and the Px form a Q-basis of A® Q,
the ring of symmetric functions with coefficients in Q. Let A ® Q(k) denote
the ring of symmetric functions with coefficients in Q(k) and define a scalar
product on A® Q(k) by the condition

(2.5) (Px,P»)k=Sxllzxk-lW,
where oxß is the Kronecker delta. We quote the following theorem from [30,
Chapter I].
Theorem 2.1. There are unique symmetric functions Jx = Jxix; k~x) in A®
Q(k) indexed by partitions X, such that

1. (Jx,Jß)k = 0 ifX^ß;
2. if

(2.6) Jxix;k-x) = Y,vx,(k-{)m»ix)

then vxftik~x) = 0 unless ß <X;

X',
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584 R. J. BEERENDS AND E. M. OPDAM

3. If \X\ = l then the coefficient vx^ of xxx2 ■■■x¡ in Jx equals /!.

If we set xn+i = xn+2 = ■ ■ ■ = 0 in Jx then we obtain for any partition of
length l(X) < n a symmetric polynomial Jx(xi, ... , x„; k~x) in A„ ® Q(k),
homogeneous of degree |A|. The Jx(xx, ... , xn; k~x) vanish for l(X) > n
and are linearly independent otherwise [30, Proposition 2.5]. We will call these
symmetric polynomials the Jack polynomials. Throughout this paper n will be
fixed.

Remark 1. Theorem 2.1 is a special case of a more general existence theorem
due to Macdonald [22, Theorem 2.3 and also 20, Chapter VI, §4]. Since we will
only need the case of the Jack polynomial, we refer to [30], where many more
details and results on Jack polynomials can be found. For a different approach
to Jack polynomials also see [21].

Remark 2. In [30, 20, Chapter VI, 21, 22, §1.7 and 24] the parameter a = k~x
is used. We will use a differently later on. To avoid confusion we prefer
to write Jx(x; k~x) instead of Jx(x; k). This explains the rather awkward
notation.

Remark 3. The Jack polynomials reduce to the so-called zonal polynomials
Cx if k = j, although the Cx in e.g. [2] are normalized differently. In fact
Cx(x) = 2W|a|!/;(jc; 2) which can be obtained from [9, (18) and (117)]; the
zonal polynomials Zx in [9, (18) and (116)] have the same normalization as
the Jx so that Jx(x; 2) = Zx(x). If k = 1 the Jack polynomials reduce to the
Schur functions sx, up to normalization. (For these remarks see [30, Proposi-
tion 1.2].)

As in Macdonald's manuscript [24] we write

(2.7) /; = /;(*; A:"1) = Jx(x; k~l)/(Jx(x; k'1), Jx(x; k~x))k

and

(2.8) Yix = Cix(x;k-X) = Jx(x; k~x)/Jx(ln ; k~x),

where by l„ we mean X\ = x2 = • • • = x„ = 1. Next we recall the Pochhammer
symbol

(a)s = a(a+l)...(a + s-l),       a£C,s£Z+,

and define for a partition X = (Xx, X2, ... , Xn) of length l(X) < n ,

(2.9) (a)x = f[(a-k(i-l))Xi,       a£C.

Note that we suppress the dependence on k of (a)x in the notation.
We are now ready to define the generalized 2FX hypergeometric function of

matrix argument. For a, b, c £ C such that (c)x ̂  0 for all X we define

(2.10) 2Fx(a, b;c;x; k~x) = £ ||^/;(x; A:"1)

where the sum is over all partitions X of length < n . This definition and its
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BC-TYPE HYPERGEOMETRIC SERIES 585

extension to pFfs was given independently by Korányi [15, §§3-4] and Macdon-
ald [24, (6.4)]. In [15, (4.2)] Korányi defines the (a)x in terms of generalized
gamma-functions which in turn are given as a certain extension of the Selberg
integral. In doing so he follows the classical case (i.e. k = \) where a well-
known result on zonal polynomials (see e.g. [26, Theorem 7.2.10]) written in
polar coordinates leads in a natural way to the extension of the Selberg integral
for k = j . For general k the extension has been studied by Kadell. Conjecture
2 in [11] states that there exist homogeneous symmetric polynomials such that
if the integrand of Selberg's integral is multiplied by these polynomials then
the integral has a given closed form. Macdonald observed that these symmet-
ric polynomials should be the Jack polynomials Jx, which led to conjecture
C5 in [21]. As stated in Remark 3 the Jack polynomials indeed reduce to the
zonal polynomials for k = j . Kadell established the conjecture in [12] while
Macdonald proves a ^-analogue in [20, Chapter IV]. The result leads to the
coefficients (a)x as defined in (2.9). Constantine [2, §5] was the first to give
definition (2.10) in the case k = \. In order to obtain [2, (25)] from (2.10) one
needs the results stated in Remark 3. James [9, §8] also defines the pFq's for
the complex case, i.e. k = 1. In [5, 5.3(1) and 6.1(1)] the real, complex and
quaternionic case (k = 2) axe treated simultaneously; they use the notation
Zx instead of Cx (sic!). In [4] hypergeometric functions pFq axe associated
with any so-called symmetric cone; as special cases they obtain the cone of real,
complex and quaternionic positive definite matrices.

Now for k = j Muirhead [25] (also see [26, §7.5]) proved that the 2FX as
defined in (2.10) satisfies a system of n partial differential equations. Korányi
[15, §4] states that Muirhead's arguments can be generalized to show that the
same result holds for the general parameter k. This statement is proven by
Yan in [33, §2] (also see [32, Theorem A]); the proof follows closely that of the
case k = \ . To describe the result we define for i = 1, 2,... , n the operators
Ai(a,b,c;k) by
(2.11)

A,-(fl,b,c;k) = Xi(l- x¡)d2. + (c - k(n - 1) - (a + b + 1 - k(n - l))x¡)dx¡

+ k ¿ x;{l~XihXi-k ¿ x;{l~Xihx¡
jMJti [Xi    XJ> j-uM iXi    XJ>

where we have written dXi = d/dx¡, d2 = d2/dxf, etc. One now has the
following result [15, §4; 32, Theorem A; 33, §2].

Theorem 2.2. The hypergeometric function 2Fx(a, b ; c ; x ; k~x) is the unique
symmetric function in the n variables xx, ... , x„ that satisfies

Aj(a, b, c; k)F = abF,       i = 1,2, ... , n,

and which is analytic at x\ = • • • = x„ = 0 and normalized by F(0) = 1.

Corollary 2.3. The hypergeometric function 2Fi(a, b; c; x; k~x) satisfies

(2.12) A(a, b, c ; k) 2FX = nab 2FX
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586 R. J. BEERENDS AND E. M. OPDAM

where A(a, b, c; k) is given by
n

A(a,b,c; k) = J^A/ia, b, c; k)
1=1
n n

(2.13) -Y,XiH-xi)dl + 2k    Y,    #-TT*
n

+ ¿Tic-k{n-l)-{a + b+l-kin- l))x¡)dx¡.
¿=i

Macdonald [24] gives an independent proof of Corollary 2.3 along the same
lines as the proof for k = \ by Muirhead [25 or 26, Theorem 7.5.4]. Note that
the case n = 1 reduces to the ordinary Gauss hypergeometric equation.

One can use Theorem 2.2 to prove that
2.Fi(a, b;c;xx, ... ,xn;k~x)

(2.14) = n(l-xir^1(c-.,û;c;^,...,^;A:-1).

In fact, if we put w, = x¡/(x¡ — 1) for i = 1,..., n then it is not very hard
to calculate the operators A, in the «-coordinate and to show that the right-
hand side of (2.14) again satisfies the requirements of Theorem 2.2. This result
is stated as Proposition 4.2 in [33] (also see [32, (3.3)]). The transformation
properties of the operators A, are treated systematically in [16].

Another result we will need later on is the generalized Gauss summation
formula

oisï      Ftn  h-r-x  ■ i-^ - TT r(g - k(i - l))Y(c - a - b - k(i - 1))
(2.15)    2Fx(a,b,c,ln,k   )-llnc_a_k{i_imc_b_k{i_l)y

which will certainly hold when Re(b-k(n - 1)) > 0, Re(c-b-k(n - 1)) > 0,
Re(c-b-a-k(n-l)) > 0 and Rek > - min(± , «°(»-ffi-')), M£z±^zM^iil).
Often the notation Yn(c; k~x) = y(k, «)l"l"=i ^(c - k(i - 1)) is introduced
where y(k, n) is a constant which is author-dependent (see e.g. [24, §6, 32, §1,
33, §4], and for the case k = \ [26, §2.12]). The Gauss summation formula
(2.15) is due to Macdonald and is obtained from the extension of the Selberg
integral mentioned earlier. In fact, just as in the classical case (so k = \ ;
see [26, Theorem 7.4.2]), Macdonald uses the extension to obtain an integral
representation for the 2Fx(a,b; c;yx, ... ,yn;k~x); this result is also stated
by Yan [33, §4 (10)]. Then Macdonald observes that one can take vi = ••• =
y„ = 1 in this integral representation and then use the ordinary Selberg integral
to obtain (2.15).
b. Root systems and Jacobi polynomial. Let (ex,e2, ... ,en) be the standard
basis in R" and let (•, •) denote the usual inner product for which this basis
is orthonormal. Let V denote the hyperplane in R" orthogonal to the vector
ex+e2-l-Yen ■ The inner product on R" induces an inner product on V which
we shall also denote by (•,♦)• We identify the dual space of R" with R" and
the dual space of V with V by means of these inner products. We consider R"
as the standard real form of C" and extend (•, •) to a complex bilinear form on
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C" . The complexification of V in C" will be denoted by Vc. Again we identify
their dual spaces by means of (•,♦). We use tx, t2, ... , t„ as coordinates with
respect to (ex.e„). Then V = {(tx ,...,t„)eW\ £"., t¡ = 0} .

In V we consider the set of vectors

RA = {±(ei-ej)\l<i<j<n}.

This set forms a root system of type An_x in V. We choose

SA = {ex-e2,e2-e-i, ... , e„-X - e„}

as basis for RA and we let R¿ denote the set of positive roots relative to this
choice. In R" we consider the set of vectors

RB = {±e¡, ±2e¡, ±(ek ± e¡)\i =1, ... ,n;  l<k<l < n}

which forms a root system of type BCn . We choose

SB = {ex-e2,e2-e3, ... , e„_i - en, en}

as basis for RB and let Rg denote the corresponding set of positive roots. The
Weyl group of Rx will be denoted by Wx . Here we introduced the convention
that X stands for either A or B. Let Px be the weight lattice of Rx . So

PA = {X£ V\2(X, a) I (a, a) £ Z Va € RA},
and similarly for PB . The set of dominant weights will be denoted by P£ :

P+ = {X£Px\(X,a)>0Va£Rx}.
If we write

RB = {a£RB\2a <£ RB},

then R°B is a root system of type Cn . Denote by cox, co2,..., con the funda-
mental weights of Cn , so that for i= 1,2,..., n one has

(2.16) C0i = ei+e2 + --- + ei.

Then
PB = Zcoi + Zco2 + ■■■ + Zcon = Zex + ... + Zen = Zn

and
P£ = Z+cox + Z+co2 + ■■■ + Z+con.

Note that

RA = {a£ RB\(a, con) = 0},        SA = {a £ SB\(a, con) = 0},

and that we can consider WA as subgroup of WB . We let n denote the orthog-
onal projection along co„ onto V, then

k(0 = '--(¿'«)<»„,        t = (ti,..., tn)£Rn.

Since SA = {a £ SB\n(a) = a} it follows that {n(cüi)\i =l,2,...,n-l} is
the set of fundamental weights for v4„_i so that

(2.17) PA = n(PB).
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Also now = w on for ail w £ WA . Let Qx be the root lattice ZRX and put
Qx = Z+R+ . Then

QB = pB = zn,      QA = vnzncPA

and also
(2.18) Q+A = VnQ+B

(if A = E^i1 ¿¿fa - et+i) + b„en eßjandleF then bn = 0).
Next we want to introduce the tori corresponding to the ö-lattices. In gen-

eral, a compact torus 7¿, is a Lie group of the form R"/L where LcR" is a
lattice of rank n . Choose a Z-basis Si, ... , en of L, then D = {£"=1 t'e'\^ <
ti < 1} is an open dense subset of a fundamental domain. Normalized Haar
measure on 7¿ is then given by

where cYu is Lebesgue measure and volL = volD is independent of the choice
of a basis. By looking at it this way it follows easily that for a surjective con-
tinuous group homomorphism <f>: Tix -* 7i2 one has

(2.19) /   f(t)dt= I   (fo<p)(t')dt',        f£C(TLl).
JTh JTLl

Now let TA and TB be the compact tori defined by
TB = iRn/2niQB = iRn/2niZ"

and
TA = iV/2niQA = iV/2ni(VDZn).

Later on we will also consider their complexifications HA and HB , i.e.

HB = Cn/2niQB = C/2niZn

and
HA = Vc/2niQA = Vc/2ni(VcnZn).

We use the map
n

J21)*)    (mod 2niZn) -* (e'>, ... ,etn)       (tj £ iR V;')

to identify TB with {(xi,..., x„) £ C"| \xj\ = IV;} . It follows that TA = {x £
TB\xiX2 ■ • • xn = 1} . Consider the group homomorphism defined by

<f>: TAx iR/2niZ —> TB,
((h,..., t„Y ,i)^(tx + t,t2 + t,...,tn + ty,

where ( )* denotes equivalence class; multiplicatively <f> is given by

((xx, ... , xn), x) £ TA x Sx -> (xxi ,XX2, ... , XXn) £ TB.

From (2.19) then follows that for / € C(TB) we have

(2.20) f f(x)dx= /       f(sx'x,sx'2, ... ,sx'n)dx'ds,
JTb JseS1 Jx'€TA
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where dx', ds and dx are normalized Haar measure on TA, Sx and TB re-
spectively.

Let C[PB] denote the group algebra over C of PB . If X £ PB then we write
ex for the corresponding element of C[PB]. Multiplication in C[PB] is defined
as exe>L = ex+ß for X, ß £ PB . This group algebra C[PB] can also be considered
(and we will do so) as the algebra of functions on HB generated over C by
the exponentials ex with X £ PB . Here ex denotes the function ex(i) =£<*•'>
where íeC" (when restricted to TB , ex is the character corresponding to X).
In particular ee'(i) = e'> if t = (tx, ... , t„) e C . An element / £ C[PB] will
be called exponential polynomial; it is a finite sum of the form

/=£>*.
XePB

The support of / is the (finite) set {X £ PB\cx ̂  0} . The Weyl group WB acts
on PB and hence also on C[PB]. An element x £ C[PB] is called invariant
(under WB) if w • / = / for all w e WB and it is called skew-invariant if
w ' f = detw • f for all w £ WB . We write C[PB]W" for the subalgebra of
C[PB] consisting of all W^-invariant elements in C[PB]. An invariant element
/ £ C[PB] can be written as

X€P¿

where mf is defined as

(2.21) mf=   Y,   e^        ^Pb-
fieWB'X

Here WB • X denotes the W^-orbit of X. The analogous concepts for (PA, WA)
will be denoted by C[PA], C[Pa]Wa and mf ; these will be considered as func-
tions on HA.

We now introduce the Jacobi polynomials associated with the root system
Rx (as always X stands for either A or B). Our reference for this material
is [6, §§2-3, 7, §8]. For X £ Px we write ILr(A) for the convex hull of the
orbit Wx ' X intersected with X + Qx . Note that n^-(A) is equal to the set
of all ß £ Px with X - ß £ Qx and the W^-conjugates of such ß. Let m
be the number of Jf^-orbits in Rx. Define Z%Z = Cm as the vector space
of W^-invariant functions on Rx with values in C. We call elements of Jf
multiplicity functions on Rx and we denote by ka the value of k £ Z%Z on
a £ Rx ■ For the ^„_i-case there is only one WA -orbit so that we will simply
write k = ka for all a £ RA . For the 5C„-case there are three WB -orbits; we
will write
(2.22) kx = ke¡,       k2 = k2e¡,       k3 = ke¡±ej.
Introduce the following (multivalued) function on Hx :

(2.23) Sx(k)= J] (ela - e-?a)2k°,       /eel.
a6RJ

Now let k £ 3? be such that ka > 0 for all a £ Rx . We endow C[PX]W" with
a (Hermitian) inner product as follows:

(2.24) (f,g)x,K= f f(x)gJx~)\âx(K)(x)\dx,       fi,g£C[Px]Wx.
Jtx
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590 R. J. BEERENDS AND E. M. OPDAM

Note that Ui<ji^iei~ei) - e~î(ei~e^) = Tl^ie« - ee>) as functions on TA so
that

(2.25) (fi,g)A,K= f fi(x)gjx)\[\xl-x]\2kdx,        k>0.

Define the Jacobi polynomials PX(X, k) on HX(X £ Px) associated with Rx
and multiplicity function k £ Z%Z by means of the following two properties:

1. Px(X,k) = Y,ß£nx(X)YniX'K)e>l with W>K) = 1 and r^(A,/c) =
YßiX,K) for all w £ Wx .

2. (Px(ß, k) , Px(v, k))x,k = 0 for all v £ P+ with ß - v £ Qx .
Note that in [6, Definition 3.13; 7, §8 and 28, §2] the Jacobi polynomials

are parametrized by ß = wqX £ Px instead of X £ Px . Here wq denotes the
longest Weyl group element. For the case X = B we have wq = -I.

One may replace 2 by the condition that Px(X, k) satisfies

(2.26) Lx(k)Px(X ,k) = (X,X + 2Px(k))Px(X , k) ,
where

(2.27) px(K) = \ Y, k°a
a£Rx

and Lx(k) is the so-called generalized radial part of the Laplace-Beltrami op-
erator. It is given by

(2.28) Lx(k) = Lx(0) + Y ka coth 2Q 'da '
aeRx

where L^(0) denotes the ordinary Laplacian on R" (in the case X = B) or on
V (in the case X = A) and da denotes differentiation in the direction of a.
We also note that because of the Weyl group invariance of Px(X, k) one may
write

Px(X,k)=        J2        d^ml
p€P+ ,X-/i€Qx

with mx as defined in (2.21) and dxx = 1. The condition X - ß £ Qx is often
denoted by ß -< X, which gives the usual partial ordering on weights. In order
to avoid confusion with < for partitions we do not use this notation.

Finally we define for X £ C" and k £ Z%Z the generalized Harish-Chandra
c-function by

T((Â, QV) + \ka)Y((pX(K), QV) + \ka + ka)

+ Y((X,aV) + lk«+ka)Y((px(K),aV) + Lka)
(2.29) cx(X,K)=  J]

where Y denotes the usual gamma-function and av = 2a/(a, a) (we should
warn the reader that this definition differs from [6, §6 and 28, §2] by a change of
X into —X). For specific values of the ka this is the well-known product formula
of Gindikin and Karpelevich for the classical Harish-Chandra c-function. Later
it will be convenient to have pb(k) explicit; with the convention (2.22) one has

(2.30) 2Pb(k) = (kx + 2k2) (¿ eA + 2k3 ¿(« - />,.
\i=X     J i=X
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3. The connection between Jack and Jacobi polynomials
In this section we want to describe the precise relationship between Jack

and Jacobi polynomials. In order to do so we first study in some detail the
relationship between partitions and weights.

We associate with a partition X = (Xx, X2, ... , Xn) of length l(X) < n the
vector X = Xxex +X2e2 H-hX„en in R" . By (2.16) we have X = (Xx -X2)cox +
(X2 -Xf)co2 H-h (A„_i - X„)con-X + X„co„ so that X £ P£ . On the other hand,
if X £ P¿ then X = aiCOi H-\- ancon with a¡ £ Z+ so that by (2.16) we have
a = Xxex-\-vX„en with X,: = ax H-\-a¡, which determines a unique partition
(Xi,..., Xtt). From the partition X = (XX,..., Xn) we also obtain

n(X) = (Xx - X2)n(cox) + ■■■ + (A„_i - Xn)n(ton_x) £ Pj
where, as before, n is the orthogonal projection along <y„. The partitions
X = (Xx, ..., Xn) and X + a(l,..., 1) = (Xx + a,... , Xn + a)(a £ Z+ and
0 > -An) correspond of course to the same weight in P%. One obtains a
one-to-one correspondence between weights in P% and partitions if we fix the
weight of the partitions. Let us extend the notion of the weight of a partition
to any vector in R" ; so for X = Xxex H-h X„e„ in R" we put |A| = £)*m, A,.
We then write

Pd = {X = Xxex +--- + Xne„£ PB\ \X\ = d},       d£ Z.
For X, ß £ P¿ one has of course n(X) - n(ß) = X - ß so that n is one-to-one
on P¿ . Now let X and ß be partitions with \X\ = \ß\. This gives us X, ß £ PB
with \X\ = \ß\ and hence

(3.1) A-/« = Ç í¿(Aj,-ßj) j iet-eM) £ QA c QB.

Now assume that ß < X as partitions so that Yl'j=i ßj ^ lZ'j=i A; for all / > 1
and equality holds for i = n. Then we see from (3.1) that X-ß £ Q¿ c QB .
If on the other hand X - ß £ QB with X, ß e PB and |A| = \ß\ then by (2.18)
we have X - ß £ QfA and since Xj — ßj > 0 for all j it follows from (3.1)
that ß < X as partitions. Finally we note that if ß c X as partitions then
X - ß = lZ"=xÍXí - ßf)ei £ QB . Hence we have obtained:
Lemma 3.1. (i) Let ß and X be partitions with \X\ = \ß\. Then n(X) - n(ß) =
X - ß and

ß < X as partitions <$X-ß£QA~<$X-ß£ QB.
(ii) If ß and X are partitions such that ß c X then X - ß £ QB .   D
For future reference we prove here the following result.

Proposition 3.2. Let X be a partition which we also consider as element of PB .
Then

{partitions i/|3 partition ß with v < ß, ß c X} = {v £ P£\X-v £ Q^}.

Remark. The set {v £ P£\X - v £ Q^} is precisely the intersection of UB(X)
with the positive Weyl chamber of BC„ .
Proof. The inclusion c is obvious since ß c X implies that X - ß £ QB while
v < ß as partitions also implies ß- v £ Q^ (Lemma 3.1). Hence X-v £ QB .
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Next we prove the other inclusion. So let v = Yf¡=x v¡e¡ in PB with X-v e QB .
Write X = £"=, kid . We have to show that 3ß = £"_, //,é?; in P¿ with ^ c X,
i.e. /i, < A, and such that ß - v £ Q¿ (since then \ß\ = \v\ and hence also
v < ß as partitions by Lemma 3.1). We know that

n-l
X = v + Ya¡(e¡ - ei+x) + anen ,       a¡ £ V

í=i

Put Oq = 0 and let i €{1,2,..., n}. Since X¡ > 0 one has v¡ + a¡ -a¡-X > 0
so that from v¡■. -\-h vn < a¡-X it would follow that vi+x + vi+2 -\-\-un <
Û/-1 - Vi < a¡ and similarly vi+2 -\-\- vn < ai+x, ... , v„ < an-X. So, starting
with i/i -I-1- vn > 0 = ao, we can choose i €{1,2,..., n} such that

(3.2)

Now define

then

Vj + vi+i H-\-un>a¡-X   and
Vj + vj+x +-.. + u„< aj-i   fox j = i + I,..., n.

ß = v + ax(ex-e2) + --- + fl/-i(e¿-i - e¡)
+ (vi+x + ■■■ + v„)(e¡ - ei+x) + ■■■ + v„(e„-x - e„)

Xj, j= 1,2, ...,/- 1;
; v¡ + vi+x +-.. + v„- û,_i , ;' = i;

0, j = i+l,... ,n.
Since by (3.2)

A,-i > Xi = v¡ + at - a,_i > v¡ + vi+x -\-\-vn- a¡_x > 0

we see that ß is indeed a partition, i.e. ß £ PB . Furthermore, since a¡ £ Z+
and v¡ £ Z+ for all /' it is clear that ß - v £ QfA . It remains to show that
ß c X, i.e. Xj - ßj > 0 for all j. This is clear for j ^ i while for j = i we
have

X¡ - ßt = (ví + a¡ - a¡-x) -(v¡ + .-- + v„- a¡-X) = a¡ - (vi+x + •• • + vn)

which is nonnegative by (3.2) again. This proves the proposition.   D

As in §2b we now take ex £ C[PB] and consider it as function on TB . By
restriction we can view it as function on TA and we will denote this restriction
by (eA)~ . One has

(3.3) (exr = enW

since n is the orthogonal projection onto V and n(Zn) = V nZ" = QA . We
extend the restriction to C[Pß] by linearity so that from / £ C[PB] we obtain
/ £ C[PA]. For d £ Z we write C[PB]d for the collection of / = T,xcx^X
in C[PB] in which the sum is taken over X £ P¿. Then / —» / is obviously
injective on C[PB]d. Note that since n commutes with WA it follows that
if C is a W^-invariant subset of PB then n(C) is a H^-invariant subset of
PA (here WA is considered as subgroup of WB). Hence if f £ C[Ps] is WA-
invariant then / £ CtP^]^-4.   Let X be any partition.   The Jack polynomial
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Jx(xi, ... , xn;k~x) is a symmetric polynomial in Xy,... ,xn and homoge-
neous of degree |A|. We put x¡ = eu = ee'(i) for t = (ii,... , tn) £ C" and con-
sider Jx (X £ PB) as If^-invariant element of QPb]!^ (cf. subsection 2b). The
same applies to the monomial symmetric polynomial mx = mx(xi, ..., x„).
From the definitions of mx (in (2.3)) and m£ (cf. (2.21)) and the fact that
n(WA-X) = WA-n(X) it follows immediately that

(3-4) mx = m*(k).

On C[PB]d we introduce an inner product (•, ')Ae>k—which is an 'extended
version'of the inner product (',')Atk in (2.25)—by

(3.5) ifi,g)Ae,k= Í fix)J(x~)ll\xi-Xj\2kdx,       k>0.
JTB t<j

For any partition X of length l(X) < n we define h*(X) by

(3.6) MA)=   II i*.'j-i+l + k-liXt-J))
(ij)ex

and h*(X) by
(3.7) h*(X)=   J] (X'j-i + k-l(Xi-j+l)).

(i,j)ex
The factors in (3.6) are the so-called 'lower hook-lengths' at (i, j) £ X while
the factors in (3.7) are the so-called 'upper hook-lengths' at (i,j) £ X (cf.
[30, §5 or 21, §4]); they both reduce to the ordinary hook-length at (i, j) if
k = 1. We can now state the exact relationship between the Jack and the Jacobi
polynomials.
Proposition 3.3. Consider the Jack polynomial Jx(x;k~x) as junction on TB
under the change of coordinates x¡ = eu = eei(f) if t = (t\,..., tn) eC". Let
PA(ß, k) denote the Jacobi polynomial associated with An-X. Then

(3.8) Jx(-;k-x) = K(X)PA(n(X),k).
Proof. Let x' = (xx, ... , x„) £ TA and s £ Sx (see subsection 2b). Then
f(sx') = sdf(x') for / 6 C[PB]d and IUkjÍsxí - sXj)\ = \Uí<jÍXí - Xj)\.
Hence

(3.9) ifi,g)Ae,k = (f,~g)A,k,        fi,g£C[PB]d.
In [21] (also see [20, Chapter VI, §§9-10]) Macdonald notes that the Jack poly-
nomials Jx axe also characterized (up to normalization) as the symmetric poly-
nomials of the form (2.6) that satisfy

iJx,J(t)Ae,k = 0, ß<X.

By restriction to TA we obtain WA-invariant polynomials Jx in QPß]^ which
by (3.9) will satisfy

iJx,Jp)A>k = 0,       ß<X.
Moreover, by (2.6), (3.4) and Lemma 3.1 they will have the form

Jx = Y cxvin*.
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But these two properties characterize exactly the Jacobi polynomials PA(n(X), k),
up to normalization (cf. subsection 2b).    Now the coefficient of rnAm  m
PA(n(X),k) equals 1 while the coefficient of mAw in Jx equals vxx(k~x) (cf.
(2.6)). Stanley has shown in [30, Theorem 5.6] that the coefficient vu(k~x) of
mx in Jx equals h*(X). Hence the proposition follows.   D

To our knowledge the result (3.8) has never been stated in this precise form in
the literature although it is probably known (cf. [23, p. 316, ex. (5)]). In a sense
the two variable case of Jack polynomials was already studied by Koornwinder
and Sprinkhuizen-Kuyper in [14, §4].

For the product of the ordinary hook-lengths (so k = 1 ) there is the well-
known 'hook-length formula' [19, Chapter I, Ex. 1(4)]. From Proposition 3.3
we obtain a generalization to arbitrary k of this hook-length formula. Let us
introduce the notation a\ = Y(a+1) and (b)k = Y(b + k)/Y(b) for a, b, k £ C
(so (b)k reduces to the Pochhammer symbol for k £ Z+). Whenever we write
i < j we will mean 1 < i < j < n .

Corollary 3.4. For any partition X = (Xx, X2, ... , X„) we put

ßi = k(n - i + I) + Xi - I   for i = 1,2, ... , n.
Then we have for k £ C,
(3.10) K(X)IJx(ln ; k~x) = cA(n(X) + pA(k), k)
or, equivalently,

(3 11) ha) k~W iK-itt!
(3.11) ^-uuk-iy.Ui^j^M-^-
In particular

(3.12) h*(lcon)/J¡(0n(ln;k-x) = l.
Proof. From [28, Corollary 5.2] one obtains that

PA(ß, k)(e) = l/cA(ß + pA(k), k)

where e £ HA is the unit element. But e £ HA corresponds to x = 1„ so
that we obtain the corollary from (3.8). To obtain (3.11) we note that pA(k) =
jk^2"=i(n-2l+l)e¡ and (n(X), e¡-ej) = X¡-Xj so that we obtain from (2.29)

(Note that this is a rational function of k .) The product

Y[r(k(j-i+i))/Y(k(j-i))

reduces to Y["=xY(ik)/Y(k). Moreover, the value of Jx{ln;k~x) has been
determined by Stanley [30, (2.10)] and is given by

(3.13) Jxiln;k-X)=   J] (n-i+l+k-x(j-l)).
(i,i)ex
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This can be rewritten as

k~w f[(k(n - i + l))x¡ = fc-W ff Y(k(n -i+l)+ Xt)/Y(ki)
1=1 ¡=i

and thus we obtain (3.11). Since n(lco„) = 0 the final result follows from the
normalization of the c-function.   D

Of course it is not hard to get (3.12) directly from (3.6) and (3.13). The
case k = 1 of (3.11) is the hook-length formula in [19]. One can give a direct
proof of the 'lower hook-length formula' (3.11 ) in the following way. Given X =
(Xx, ... , X„) we consider for k £Z+ the partition k • X = (kXx, ... , kXn). For
convenience we assume l(X) = n . Let X' = (X\,..., X'm) so that X\ = l(X) = n
and m = l(X') = Xx. Then the dual of k'X is (X'x, ..., X'x, X'2,..., X'2, X'm,...,
X'm) where each X'j is repeated k times. If we now use [19, Chapter I, (1.7)]
then it follows that the km + n numbers

kXi+n-i      (l<i<n),       k(j-l)+l+n-X'j       (1 <j < m, 0 < / < Jfc-1)
are a permutation of 0, 1,2,... , km + n- 1. This proves that

n m   k—X
J(kX¡ + n - i) J] Y[(n - X'j + k(j -l) + l) = (km + n- l)\/(k - 1)!

1=1 j=2 1=0

and hence, with X and X' interchanged
¿i n

Y(k)\\(kXi + Xx-i)Yiih-Xj + kiJ-l))k=Yikn + Xx - 1),        k£Z+,
i=X j=2

where n = X\. If we apply this successively to the partitions (X¡, X¡+x, ... , X„)
fox I = 1,2,... , n and multiply the resulting identities then one obtains (3.11 )
for k £ Z+ . Since we are dealing essentially with polynomial identities (3.11)
follows for k £ C.

One may ask whether a similar formula holds for the 'upper hook-length'
h*(X) as defined in (3.7). The next proposition shows that this is indeed the
case.

Proposition 3.5. For any partition X = (Xx, X2, ..., X„) we put v¡ = k(n-i)+X¡
for i = 1,2, ... , n . Then we have for k £ C,

(3.14) h-m =-tU^-
Ux<i<j<niv'- VJ - ik - l))k

or, equivalently,

(3.15) W  n in-i + k-xj) = limCÁ-nW-Pf) + °>k\
i  (ij)ex £^°      cAi-pAik) + e,k)

In particular

(3.16) h*ilcon)l    J]   in-i + k~xj) = l.
'   (i,y")6(/«)
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Proof. Let X and X' be as above. Note that {kij - 1) + I + n - X'j\j = 1, I =
0, 1, ... , k — 1} is the set of integers {0, I, ... , k - 1} . If we delete this
set of integers from the km + n numbers above and subtract k - 1 from the
remaining set then we obtain that the kim - 1) + n numbers

k(Xj-l) + n-i+1       (1 </<«),
k(j - 2) +1 + n - X)       (2<j<m,l<l<k)

are a permutation of 1,2,... ,k(m — l) + n. One now proves (3.14) exactly
as above for h*(X). To prove (3.15) we first note that

f[vi\ = f[Y(k(n-i) + l)   n (k(n-i)+j).
i=x i=x (i,j)ex

Since Y[i<j^ik(j-i-l)+l+k)/Y(k(j-i-l)+l) reduces to UU^ik(n-i)+l)
we thus obtain that

iw»%V.».%n,(*(»-o+v>
YjXj - Xj + kjj -i-l) + l)Yjkjj - i) +1)

ii nku -i-i) + i)Y(Xi - Xj + ku -i) + iyn
Hence from (3.14) we have

'   (ij)ex i<j    K  KJ      '      M' ^

In order to calculate the limit as e -> 0 in the cA -functions we may as well
consider lime^,0cA(-n(X) - pA(k - e), k)/cA(-pA(k - e), k). As in the proof
of Corollary 3.4 we have

limcA(-n(X) - pA(k - e), k)/cA(-pA(k -e),k)
£-»0

= lim TT  r(A; " A' - {k - e)U - i))r{k -{k~ £){j - i)]
e^o fi Y(-(k - e)(j - i))Y(Xj - Xi -(k- e)(j - i) + k) '

KJ

If we write the right-hand side as n,<j ¡x.-Xi-ik-e\(j-i)\ ̂  taen we can ta'ce
the limit e —► 0. A simple calculation then shows that

T-r (Xj - Xj - k(j - i) + k)Xi_x. = n (k(j -/-!)+ l)xt-xj
11    (Xj-Xi-k(j-i))Xi-Xj        11    (fc(/-i) + l)Wj

which proves (3.15). Since n(lcon) = 0 one immediately obtains (3.16)   D

Remark 1. To get (3.10) in the same form as (3.15) one can divide (3.10) by
cA(pA(k), k) which equals 1.

Remark 2. The partition (n - 1, n — 2, ... , 1,0) corresponds under n with
pA(l) £ PA . Hence both partitions (ßi,...,ß„) from Corollary 3.4 and
(vi, ... , v„) from Proposition 3.5 correspond to n(X) + pA(k).
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The two expressions (3.10) and (3.15) can be used to give the relationship
between the two inner products (•, -)k in (2.5) and (•, •),*,,* in (3.5). Stanley
has shown [30, (3.8)] that

(3.17) (Jx,Jx)k = K(X)h*(X)
so that from (3.10) and (3.15) we obtain that

(JxlK(X), JxlK(X))k = h*(X)IK(X)=  JJ "'i'+f-ui    n
U.fiex u    l)

. cA(n(X) + pA(k), k)~x lixncA(-n(X) - pA(k) + e, k)/cA(-pA(k) + s,k).
e—>0

The polynomials Jx/h*(X) axe denoted by P% in [20, Chapter VI]. If we now
compare this result with [7, Theorem 8.5] (cf. [28, Theorem 2.1]) then it follows
that

(Jx/h.(X),Jx/h,(X))k
n n-i + k~xj        (PA(n(X),k),PA(n(X),k))A,k

^n-i+l + k-iU-l) (UDA.k

so that from (3.8) and (3.9) we obtain the following result.

Corollary 3.6.

,,   ,v (Jx. Jx)k TT n-i + k~xj
{,U'k(Jx,Jx)Ae,k     ¿^n-i+l+k-Hj-iy

This corollary proves conjecture (C4) in [21, §4], a result which also fol-
lows from the material in [20, Chapter VI, §10]. The well-known constant
(1, l)Ae,k = ITb n,<, l*¿ - Xj\2kdx is given by (kn)\/(k\)n ('Dyson's conjec-
ture'; see e.g. [28, §4]).

A straightforward combination of (3.10), (3.15) and (3.17) shows that for
arbitrary X one has

raw n «»-<>+;>(3.18) {h'

= cA(n(X) + pA(k), k)  Mim cA(-pA(k) + e,k)
£-oeA(-n(X) - pA(k) + e,k)'

For X = lcon this result has a nice interpretation in the theory of Jacobi poly-
nomials in §5 (cf. Corollary 5.3; also see (5.17)).

Finally we mention the following consequence of (3.10), for which we do not
have a direct proof. Let us identify con with the partition (1, 1, ..., 1) = (1").
For a partition X = (Xx, ... , Xn) define x(X) = (Xx - X„,XX - A„_i, ... ,XX -
X2, 0). From the diagram of Xx • con one sees immediately that t(A') = (t(A))'
if l(X) = n . Also t2(A) = A - X„ • co„ . Hence if we define xq(X) = x(X) +X„'CO„
then To is an involution on partitions. Note that 7t(t(A)) = 7r(Tn(A)) with n as
always. We now have

Corollary 3.7. Let X = (Xx, ... , X„) be a partition. Then

Jx(ln;k-x)IK(X) = Jx(X)(ln;k-x)lh(x(X)).
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Proof. Let wq denote the longest Weyl group element in WA ; wq acts as
(ex,e2, ... ,en) -* (e„, en-\, ... ,e{). Then w0R+ = -R+ where -R+ =
{-a\a £ R¿~} and hence -wq permutes the elements in R¿ . Since WA acts as
orthogonal transformations it follows immediately from the definition of cA in
(2.29) that cA(-woX, k) = cA(X, k). It is easy to check that -w0n(X) = n(x(X))
and since -w0pA(k) = pA(k) we obtain from (3.10) that h„(X)/Jx(l„ ; k~x) =
cA(-w0n(X) + pA(k), k) = h*(x(X))/JT{X)(l„ ; k~x).   a

4. HYPERGEOMETRIC FUNCTIONS

In this section we will show that the hypergeometric function 2FX as defined
in (2.10) is a special case of the hypergeometric function associated with root
system BC„ as defined in [6, §6 or 7, §7]. Recall from Corollary 2.3 that the 2Fi
is an eigenfunction of the operator A(a, b, c; k) given by (2.13). In the paper
[10] by James and Constantine A(a, b, c; k) for k = \ and special values of
a, b and c occurs, after the change of variables x¡ = cos21¡ (i = 1,..., n), as
the radial part of the Laplace-Beltrami operator on the Grassmann manifold.
Since this space has a type B root system it is then clear that for general a, b, c
and k the operator A(a ,b,c;k) is the generalized radial part of the Laplace-
Beltrami operator associated with root system BCn in the sense of §2. This
result was also noted by Korányi in [15, §4]. We now describe explicitly how to
interpret A(a ,b,c;k) as a generalized radial part.

For i = I,... , n we put y, = cosht¡ (t¡ £ C) and we let z¡ be the v'th ele-
mentary symmetric polynomial in yx, ... ,yn for j = 1, ... , n . Furthermore
we let

(4.1)      Xi = \(l-yi) = \-\(et' + e't>) =-sinn2 \U,        i=l,...,n.

Finally we let Wj denote the jth elementary symmetric polynomial in the x¡.
(Recall from §2b that et¡ = ee¡(t) for t = (tx, ... , tn) £C .)

From (4.1) it is clear that from a symmetric function in the variables jc, one
obtains a WB -invariant function on HB . In this sense we can consider the func-
tion 2Fx(a, b; c; x; k~x) asa WVinvariant function on HB . A straightfor-
ward calculation shows that under the change of coordinates (4.1) the operator
A(a ,b,c;k) becomes

-A(a,b,c;k)=Yjd2 + kY, (cothi(i, + tj)(dti + dtj)
1=1 i<j   ^

(42) + coth X-(U- tj)(dt¡ -dti)^
n

+ ̂ 2 H2a + 2b+l-2c)cothtfitt
i=i

+ (2c-a-b- I -k(n- l))coth^tid).

If we compare this with (2.28) and recall the notation (kx, k2, k$) in (2.22)
then we see that

(4.3) A(a,b,c;k) = -LB(kx, k2, ki)
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with
kx=2c - a-b -I - k(n - 1),

(4 4) k2 = a + b + \-c,    k3 = k.
For later use we note that

(4.5) kx+2k2 + k3(n-l) = a + b.
There are many places in the literature where the operator LB(kx, k2, k3) is
defined by (4.2) and then calculated in the y-coordinates. For some more ref-
erences see [1, §7] where the operator is also given in the z-coordinates.

Now let / £ Z+ and consider 2FX (-/, b ; c ; x ; k~ ' ). Since
(4.6) (-/), = (-l)Xi (-/ - k)x2 •••(-/- kin - l))xn
and (-l)x¡ =0 if Xx > I + 1 we see that

(4.7) 2Fx(-l,b;c; x; k~x) = £ ^ff (Jx, Jx)~xJx(x; k~x)

is a polynomial. In (4.7) the sum is taken over all partitions X = (X\,... ,Xn)
such that / > A. > A2 > ••• > A„ > 0. This is equivalent to A c (/") =
(I, I, ... , 1). Note that the partition (/") corresponds to the weight lcon £ PB
with con as in (2.16).

To formulate the next lemma we need some notations and results concern-
ing Hß-invariant differential operators. In [3, Chapter II, §2, §§a and b] it
was shown by explicit construction that LB(ki, k2, kf) is contained in an n-
dimensional commutative algebra 2 of WB -invariant differential operators
with rational functions in the y,- as coefficients. For special values of the pa-
rameters ki,k2, ki this follows from the well-known fact that the algebra of
invariant differential operators on a Riemannian symmetric space is commuta-
tive (cf. [6, Remark 2.11]). In [27, Theorem 3.6.a] it is shown that such a result
holds for arbitrary root systems and arbitrary parameters (2 is denoted by
S^(0, k) in [27]). In any case one obtains that the so-called Harish-Chandra
homomorphism y: Z3 —► Q.[tx, ... , tn]WB is an algebra isomorphism for all
values of {kx, k2, k3). Here C[tx, ... , tn\WB is the algebra of PFß-invariant
polynomials on C" . One can describe y as follows. Let Q[3^\ denote the
algebra of polynomials in kx,k2, £3 and A„ the Weyl algebra of differential
operators in the variables z¡ (j = I, ... , n) with polynomials in the z¡ as coef-
ficients. Then we let 3! be the algebra consisting of those D £ C[Z%Z\ ® A„ that
commute with LB(kx,k2,kf). The Jacobi polynomial Ps(A; k) then satisfies

(4.8) D<t> = y(D)(X + pB(K))4>,        D £ 3S,
for some y(D) £ C[Jf] ® C[tx, ... , í„]Wb . For more details we refer to [6, §2
and 27, §§2-3].
Proposition 4.1. If I £ Z+ then 2Fx(-l, b; c; x; k~x) considered as function
on HB under the change of coordinates (4.1) satisfies
(4.9) Lb(k)2Fx = (Icon, lcon + 2pB(K)) 2FX,
where k = (kx,k2, k3) is related to (b, c, k) as in (4.4) with a = -I. Fur-
thermore
(4.10) 2Fx(-l,b;c;x;k-x)=cB(lco„+pB(K),K)PB(lcon,K)(i).
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In particular 2Fi (-/, b ; c ; x ; k"x ) satisfies (4.8) for ail D £ 2.
Proof. For A = lcon = (/") we get from (2.30) that

(A, X + 2pB(K)) = nl(kx +2k2 + k3(n- I) + I) = -nab,
where the last equality follows from (4.5) with a = -I. The first statement
of the proposition now follows immediately from (4.3) and (2.12). From (4.7)
and (2.6) we obtain

2Fi(-l,b,c,x,k   )- ^  2.   {c)kW    (Jx,Jx)m"M
XCil") u<X    v   M N  Á '    x/

where wy(x) = Y,a€S .„xa . The support of this polynomial in x\,... ,xH,
i.e. those a = (ai, ... , a„) for which the coefficient of Xa is nonzero, is
contained in the set {(ai , ... , a„)|0 < a, < /}, since v < (ln) implies
v¡ < I for all i. Applying the transformation x¡ = \ - \(et¡ + e~'') will
result in a WB -invariant polynomial on HB with its support contained in
{(ai, ... ,a„)||a,| < /}. Considered as vectors in R" this set is precisely
TIB(lcon). Hence 2Fx(-l, b ; c ; x ; k~x) isa Us-invariant polynomial of the
form

£     d(v,b,c,l,k)e"
vÇXlB{l(ûn)

for certain constants d(v, b, c, I, k). As we have seen above, it is also an
eigenfunction of Lb(k) . As stated in §2b these two properties characterize
the Jacobi polynomials PB(lcon, k) up to normalization. From [28, Corollary
5.2] we obtain that PB(X, tc)(e) = c^(A + pb(k), k)~x where e £ HB is the
unit element. Since Jx is a homogeneous polynomial of degree \X\ it follows
from the definition of the 2FX that 2Fx(-l, b; c;0; k~x) = I. Since e £ HB
corresponds to x = 0 the second statement in the proposition follows. The
final statement is a standard result using the form of the operators in 2 and
the commutativity of 2 (cf. [6, p. 341]). This completes the proof.   D

In Proposition 4.3 we will show that cB(lcon+pB(K), k) = 2~2nl(b)^f(c)^).
Now let Fb(X,k; h) denote the hypergeometric function associated with

the root system BC„ as defined in [6, §6 or 7, §7]. Here A e C" , sel and
h £ HB . Recall from [6 or 7] that for A £ P£ one has

(4.11)     FB(-(X + pB(K)),K;i)=cB(X + pB(K),K)PB(X,K)(i),        t£C".

(One can ignore the sign in FB since w0 = -1 e WB and FB is H^-invariant.
Also see the remark after the definition of the Jacobi polynomials.)

Theorem 4.2. Let 2Fx(a, b; c; x; k~x) be defined by (2.10) andlet FB(X, k; h)
be the hypergeometric function associated with the root system BC„ . Then

2Fx(a,b;c;x;k~x) = FB(-(X + pB(ic)) ,k;í)

where x = (xx, ... , xn), k = (kx,k2,k3), t = (tx, ..., t„) € C and

Xi = \ - \ieli + e'1-),        i = l,..., n,
A = - aco„,    a + b = kx + 2k2 + k-¡(n - 1),
c = ki+k2 + k3(n - I) + j,    k = ki.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BC-TYPE HYPERGEOMETRIC SERIES 601

Proof. We first want to prove that for general parameter a the function 2Fi,
considered as a Hß-invariant function under the change of coordinates (4.1),
satisfies the system of equations (4.8). As was shown in [6, §2], D as differen-
tial operator in the z-coordinates has polynomial coefficients (our coordinates
zx,... , z„ are indeed the z-coordinates for this case as defined in [6, §2]).
Hence D as differential operator in the w -coordinates has polynomials coeffi-
cients. Moreover, the Jx(x;k~x) can be expressed as weighted homogeneous
polynomials in the w¡ since the w¡ are the ;'th elementary symmetric polyno-
mials in the Xi. By 'weighted homogeneous' we mean that we take the degree
of Wj to be j . When we consider (4.8) in the w-coordinates it can now be sep-
arated into its weighted homogeneous parts. In each of the resulting equations
the parameter a occurs polynomially. Since we have shown in Proposition 4.1
that the 2FX satisfies (4.8) for a = -I with I £ Z+ we can conclude that the
2FX satisfies (4.8) for all a. Since 2FX is analytic in |x,| < 1 we obtain from
[6, Theorem 6.9] that
(4.12) 2Fx(a, b; c; x; k~x) = d(X, k)Fb(-(X + Pb(k)), k; i)
where (a, b, c, k, x) correspond to (X,k, t) as stated in the theorem (cf.
(4.4) and Proposition 4.1) and d(X, k) is a constant depending meromorphi-
cally on A and k . It remains to show that d(X, k) = 1. Now Conjecture 6.11
in [6] states that (for arbitrary root systems and arbitrary A) FB(X, k; e) = 1
where e £ HB is the unit element. As in Proposition 4.1 it would then follow
that d(X, k) = 1. Although the conjecture has recently been established by
Opdam [29] we will not use this result and present an alternative proof instead.
First of all, just as in the group-cases, it follows from the construction of the
hypergeometric function (which is the spherical function in the group-case) that

lim eK-P°W(ht)FB(-ß, k ; ht) = cB(ß, k)
t—»—oo

where ht = (tv)' with t £ R and v = (vx, ... , vn) and ß in the positive Weyl
chamber of BC„ . If we take ß = -aco„ + pB(tc) with Rea < 0 then it follows
that
(4.13) lim e-a(0n(ht)FB(acon-pB(K),K;h,) = cB(-aco„ + pB(K),K).

t—»—oo

Now use the Kummer relation (2.14) for the 2FX, multiply (4.12) by e~a(°n(ht)
and let t —► -oo. Then one obtains that

n
d(X,K)cB(X + pB(K),K)=  lim e-aa,"(ht)T\(l-Xi)-a

t—►—oo *■■*■
1=1

•2Fx(c-b,a;c;xx/(xx - 1), ... ,xn/(x„- l);k~x)
where (a, b, c, k, x) correspond to (A, k, t) as above. In particular Xi/(x¡ - 1)
tends to 1 as t -> -oo . Also 1 - x, = ¿ + \(eVit + e~Vit) with v¡ > 0 for all
i so that e-a(0"(ht) U"=iil ~ x¡ya tends to 4na as t -► -oo. Hence it follows
that

diX, K)cBiX + pBiK), k) = 22na2Fiic - b, a; c; 1„ ; k~x).
The Gauss summation formula (2.15) then implies that

diX,K)cB{X+PB{K),K)-2       [[nb_k{i_l))T{c_a_k{i_l))
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under the appropriate conditions. The result d(X,n) = 1—and hence the
theorem—now follows from Proposition 4.3 below and analytic continuation
in A and k .

Proposition 4.3. With k = (kx, k2, kf) we have

(4 14)     c„(-aco  +d»(k)   k) - 22"a 17 T{C ~ k{i ~ l))T{b ~ fl ~ fe(l' " 1)}
(4.14) cB(   ao;„ + ^(K),K)-2     [[r{b _ k{i _ l))r{c _ a _ k{i _ {))

where c = kx+k2 + \ + k3(n -I), b = kx + 2k2 + k3(n - 1 ) - a and k = k3.
In particular one has for -a = I £ Z+ that

(4.15) cB(lo)n + pB(K), k) = 2-2nl(b){ln)l(c\in).
Proof. Note that RB = {av|a € RB} and that (aco„, e¡ - ef) = 0 so that
with k = (k\, k2, ki) as in (2.22) one obtains from the definition (2.29) of the
c-function and the explicit expression of pB(tc) in (2.30) that

c (  nr»  4- n irt   ^ - 17 r(^i + 2k2 + 2k3(n - i) - 2a)rj2kx + 2k2 + 2k3jn - /))
cBi-aco„ + pBiK), k) - || + 2^2 + 2^(w _ + 2jt2 + 2h{n _    _

1=1

r(fci +k2 + kjjn - i) - a)rjkx + 2k2 + fc3(« - /))
' r(rC! + k2 + /c3(n - i))F(fci + 2A:2 + rc3(« - i) - a)

nYjki + 2k2 + k3j2n - i - j) - 2a)Tjki + 2k2 + k3j2n - i - j + 1))
r(fc, + 2k2 + k3i2n - i - j))T(kx + 2k2 + k3(2n -i-j+ 1) - 2a)'

X<i<j<n

In the products of the form Y[i<:j r[^tlSJn-7-7+i>)) mcTe is a lQt °f cancellation
in successive quotients and only Y["~x n^2S"n-',-j) remains. If we substitute this
into our expression for the c-function then we obtain

/ L.     t \     ^     TT     r(2fc,+2*2 + 2fc3(«-/))cB(-aco„ + pB(K), k) = I I r   ,        .—    . .    ".fr L(2rCi -l- 2k2 + 2k3(n - i) - 2a)

Y(kx +k2 + ki(n- i) - a)Y(kx + 2k2 + k3(n - i) - 2a)
Y(kx+k2 + k3(n-i))Y(kx+2k2 + k3(n-i)-a)    '

If we put zx = kx + k2 + k3(n - i) and z2 = zx - a and use the duplication
formula for the T-function then it follows that

, L     r  s     s     T\22^Y(zi + ^)Y(z2 + k2-a)cB(-acon + Pb(k) ,k) = H 2Xxx    22z2T(z2 + j)r(z2 + k2)

which proves the proposition since 2zi-2z2 = 2a, zx + \ = c -k(i - I) and
z2 + k2 = b- k(i - 1).   D

The case n = 2 of Theorem 4.2 has essentially been established by Yan [32,
Proposition 7] and [33, Proposition 6.5].

Note that Theorem 4.2 proves in particular that FB(aco„ - pB(K), k ; e) = 1
since 2Fi(a, b;c;0; k~x) = 1.

5. Jacobi polynomials
In this section we will treat the Jacobi polynomials and in particular we will

show that the Jacobi polynomials as defined by Herz, James and Constantine
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and, more recently Macdonald coincide with Jacobi polynomials associated with
BCn.

Let us recall that in the one-variable case the Jacobi polynomials P¡^(x)
can be defined on the interval [-1, 1] by

(5.1) p^ß){x) = ^-LL]L2Fx(-l,l + a + ß+l-,a+l-,^(l-x)).
It seems natural to conjecture that a nice class of orthogonal polynomials in
several variables can be obtained from the 2Fx(a, b ; c; x ; k~x) as defined in
(2.10). Indeed, for k = j Herz [8, §6] defines Jacobi polynomials in n variables
x = (xx,... ,xn) by

(5.2)
P(a,ß)(x, _ A r(a + /+l + (/-l)/2)
1      W"M       r(a-(i-l)/2)

• 2Fx(-l, -I + a + ß + Un + 1) ; a + Un + 1) ; x ; 2).
As Herz remarks, for n > 1 this set of polynomials is "obviously incomplete"
and he wonders how to define a complete set of Jacobi polynomials. This
problem was picked up again by James and Constantine [10]. For any partition
A they define generalized Jacobi polynomials Px associated with the Grassmann
manifold as an expansion of the form

Pxix) = Y,uMx'>2)
f

for certain (undetermined) coefficients uXfl [10, (14.1)]. Then they use the
radial part of the Laplace-Beltrami operator on the Grassmann manifold to
find a recurrence relation for the coefficients uX/l [10, Theorem 15.1]. For
the special case A = (/") they give P(/n) explicitly [10, (15.4)] but they do
not mention any relation with the Herz Jacobi polynomials as given by (5.2).
Macdonald's development of Jacobi polynomials for general k in [24] follows
that of [10]. Let us describe the results of [24] here.

Let ¿(a, ß, k) be the differential operator

-Eia,ß,k)=J2xiil-Xi)dl + 2k     ¿     X/j.l~^dXl
1=1 i,j=X;ifij   ^   ' >'

n

+ J2ia+l-ia + ß + 2)Xi)dXr
i=i

For a, ß > 0 and any partition A define the Jacobi polynomial G[p'ß\x ; k~x)
in the n variables x = (xx, ... , x„) as the polynomial of the form

(5.3) G(°>ß)(x; k~x) = YJUXtl(a,ß,k)Ciß(x; k~x)
ßCX

that satisfies
Eia,ß,k)G^ß\x;k-x)

= üa + ß + 2 + 2kin - l))\X\ + 2(n(A') - kn{X)))G(°'ß)ix ; k~l),
where iix and «(A) are given by (2.8) and (2.2) respectively. The (7¿ \x; k~x)
axe normalized by the requirement that the coefficient uxx of Ylx in (5.3) equals
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(-1)'A'. It is now crucial that one can formulate (5.4) in terms of the root
system BCn . This is suggested not only by the case k = \ in [10] but also
by the fact that after the change of variables x¡ = ¿(1 -y¡) one obtains from
E(a, ß, k) the operator -|Z)a'^'5' with y = k-\ that was defined by Vretare
[31, p. 816] (Vretare also defined Jacobi polynomials and showed that these were
eigenfunctions of Da'P'y ; also see [3]). We have
(5.5) E(a, ß,k) = -A(a,b,c;k)
where
(5.6) c = a+ 1 +k(n- 1),    a +b = a +ß + I + k(n - 1)
(this explains why we choose to use k~x instead of a in the theory of Jack
polynomials). Note that for k = ¿ and a = -I one obtains the parameters
in (5.2) and that for n = 1 this reduces to the familiar parameter change
in the classical Gauss hypergeometric function in (5.1). Often the parameter
p = k(n - 1) + 1 is introduced (e.g. in [8], where k = j so that p = \(n + 1),
and also in [24]). If we combine (4.3) with (5.5) and also (4.4) with (5.6) then
we obtain that
(5.7) E(a,ß,k) = LB(kx,k2,h)
where
(5.8) kx=a- ß,    k2 = ß + \,    ky = k.
If we put y = k-\ = k-j,-\ then the transformation (a, ß, y) <-> (ki,k2,kf)
given by (5.8) is very well known in the literature on Jacobi polynomials asso-
ciated with BC„ (see e.g. [1, §7] and the references given there). As for the
eigenvalue in (5.4) we note that for A = (Xx, ... ,Xn), which we identify as
usual with Ai^i -I-Y X„en , we have by (2.30)

(X,X + 2Pb(k)) = (kx + 2k2)\X\ + 2A-3¿Xi(n - i) + ¿A2
i=i i=i

= (kx+2k2 + 2ki(n-l) + l)\X\
n n

-2fc3$>(i-l) + 5>(A/-l).
i=i /=i

From the definition of n(X) in (2.2) and the relations (4.4) then follows that
(X,X + 2Pb(k)) = (kx + 2k2 + 2k3(n - I) + l)\X\ + 2(n(X') - hn(X))

= ia + b + kin-l) + l)\X\ + 2(«(A') - kn{X)).
Hence by (5.6)

(X,X + 2Pb(k)) = (a + ß + 2 + 2k(n - l))\X\ + 2(n(X') - kn(X))
so that with (5.7) we can reformulate (5.4) in terms of the root system BC„ as
follows

LB(K)G{xa'ß)(x; k'1) = (X,X + 2pB(K))G[a'ß)(x;k-x).
Here k = (kx, k2, k}) is related to (a, ß, k) as in (5.8).

Recall from §2b the Jacobi polynomials PB(X, k) associated with root system
BCn and from §4 the change of coordinates (4.1). Also recall the definition of
A*(A) in (3.6) and the explicit value of Jx(l„ ; k~x) from (3.13). The proof of
the next theorem is similar to the one given for Proposition 4.1.
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Theorem 5.1. For any partition X one has

where k = (ki,k2,kf) = (a- ß, ß + \,k) and x, = j - \(ee< + e~e')(i) for
i= 1,... , n .
Proof. From (5.3) and the definition of Clx (and Jx) follows that

HCX u<ßJK(ln >*     >

Note that the coefficient of mx equals uxxvxx(k~l)/Jx(ln', k~x). As we have
seen in Proposition 3.2 the set

{partitions v | 3 partition ß with v < ß, ß c X}

coincides with the intersection of T1B(X) with the positive Weyl chamber of
BCn . Let us denote this set by IT£(A) so that

G(xa'ß)(x;k-X)=   Y,   d(a,ß,v,k)mv(x)
v&l+B(X)

where d(a, ß, v, k) are certain constants and the coefficient of mx is as
above. Applying the transformation x,■ = \ - \(eu + e~u) will result in a
WVinvariant polynomial on HB which has as support the H^-orbit of the ele-
ments in ITg(A), which is Ilg (A). Hence Gxß' isa Ifß-invariant polynomial
of the form S3i/enaa) d'ia > ß » v » k)e" ^or certain constants d'(a, ß, v, k).
We have seen above that Gx"'ß' is an eigenfunction of Lb(k) with eigenvalue
(X, X + 2pB(K)) where k = (ki, k2, kf) = (a - ß, ß + \, k). As in Proposi-
tion 4.1 these two facts allows one to conclude that the Gxß' axe exactly the
Jacobi polynomials PB(X, k) , up to normalization. Now the coefficient of ex
in G(?'ß) will equal

l\W uxxVxx(k-x)      2-2WK(X)
4)    Jx(ln;k-X)     Jx(ln;k-X)'

Here the factor (—|)'^' enters because of the coordinate change. Since the
coefficient of ex in PB(X, k) is 1, the theorem follows.   D

For A = (/") = lcon £ PB we can combine (4.10) and Theorem 5.1 to obtain
that with k = (aci , k2, fc3) = (a - ß, ß + \ , k) one has
(5-9)

G[°'ß)(x;k-X)=  T    ,t       22n'h*il(0"r ,Fi(-l,b;c;x;k-x)
l<0n Jl<on(ln',k-X)cB(lC0n + pB(K),K)¿

where b = a + ß + I + k(n - 1) + I and c = a + I + k(n - 1). From
(3.12) we have h*(lco„) = Jiw„(ln', k~x) while in (4.15) we have shown that
cB(lco„ + pB(K), k) = 2_2/,/6(/n)/(c)(/»). Hence we have obtained the following
result.
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Corollary 5.2. One has

G^ß)(x;k-X) = {Sk±2Fi(-l, b; c;x;k-x)

where b = a + ß + 2 + k(n - I) +1 and c = a + k(n - 1) + 1.   D

The first result in this direction was obtained by Koornwinder in the two
variable case and with y = 0 (cf. [14, (4.13)]). Using a different method
Corollary 5.2 has also been obtained very recently by Kaneko [13, Theorem 5].

Corollary 5.3. In 2Fi(-l, b ; c; x ; k~x) the coefficient of Q(/n)(x; k~x) equals

<5-'°> 'A* 'u'^-l-^W-     -> = '"■ = <'">•(c)xkw     (Jx, Jx)k (c)x
Proof. In general the coefficient of Ylx in (?ja,ß' is (-1)'A' while for X = lcon
we can read off the coefficient of YliWn in 2Fi(-l, b ; c ; x; k~x) from (4.7).
Thus Corollary 5.3 follows immediately from Corollary 5.2. Based on (3.12),
(3.17) and the definition of h*(X) in (3.7) it is easy to give a direct proof of
(5.10). Using (3.16) one can also obtain (5.10) as the special case A = (/") of
(3.18) (note that n(l") = 0).   D

Corollary 5.2 gives explicit expressions for the coefficients uXfl(a, ß, k) of
(a    -
(/"Yip. in the expansion (5.3) of G^„'ß . In fact

ÎS11Ï u tc   R   k\-<   n   ibMch') JßQn\k   ') nr-íl"\
(5.11) u(l.hjtia,ß,k) - (-/),(ô)(/s)(c)/| {Jßf Jp)kkM .        A»C(/),

where Jß(ln; k~x) and (J^, Jp)k are known (see (3.13) and (3.17)), c = a +
k(n - 1) + 1 and b = a + ß + k(n - 1) + 1 +1. For general A Macdonald [24,
§9] writes

(5.12) 0«-»-g(-l)W^|l^;:|l)»)^>(. + ^ + 2 + 2t(«-l))^

for certain coefficients cX/ß . Expansions like this were first studied extensively
by Koornwinder and Sprinkhuizen-Kuyper in [14] for the two variable case. As
for the case k = j in [10] Macdonald obtains from the differential equation
(5.4) a recurrence relation for these coefficients. Solving this recurrence relation
then leads to the following expression for these coefficients cX/p. :

(5.13) cxlp(C) = £ J} (Aaw') A/C + 2PW - 2PiX(i)))
T   i=l  ^ ' '

where C = a + ß + 2 + 2k(n - 1), p(X) = n(X') - kn(X) and the sum is
over all standard tableaux A = A(0) D A(1) D ••• D A(r) = ß of shape X/ß.
In particular \X\ - \ß\ = r and |A(i)| - |A('-1)| = 1. For a definition of the
generalized binomial coefficients (x) for partitions ß cX see, e.g., [24, §6, 32,
§2 and 17, §3]. Although the partitions which occur here are known from the
work of Lassalle [17], the resulting sum over all standard tableaux of shape X/ß
seems hard to evaluate. For the case A = (/") we obtain from (5.11) a simple
explicit expression for cynyß(C).
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Corollary 5.4. Let cX/ß be defined by (5.12). Then

lC{ln)/lt(a + ß + 2 + 2k(n-l))
jb)(p)

(5 14) {b)»

where b = a + ß + 1 +k(n — l) + l ,c = a + k(n - 1) + 1 and Jß(l„ ; k~x) and
(Jß » Jß)k are given by (3.13) and (3.17).   D

Note that the right-hand side of (5.14) does not depend on a and ß . Let
us consider some special cases. First we take / = 1, so that ßc_(ln) is the set
{(ls)\s = 0,l,...,n}. From (3.13) and (3.17) follows that J{X¡)(ln; k~x) =
(")s\ and ks(J(Xs), J(i*))k = s\(k(s - 1) + 1)(h) . An easy calculation shows that
in general (-/)(/») = (-l)nl(k(n -l) + l)(¡*). Hence we have

and so the expression for u^«.^^) in (5.11) reduces to

msï u -( u'(nYb)V'Wv){5A5) "(i-).(i-) - C-i) W (*)<,.,(<:)(,.,■
It follows that

(,16)     ^»(.îO-^B-O^i^ixi*-).
a result which was previously obtained by Macdonald [24, (9.21)']. In fact
Macdonald gives the expansion even for G^Zß\x; k~x) with 0 < r < n. In
order to compare (5.16) with [24, (9.21)'] we note that for n > s we have

%}p. = nf[(b + k(n-l)-k(n+s + i-2))

and that for general / our pairs (c, b) and (a, ß) correspond to (A, C -
k(n - 1) - 1 + /) and (a, b) respectively in [24, §9].

Another special case we want to mention is ß = (ln~x, I - r) with r £
{0,1,...,/} so that in particular \X\ - \ß\ = r. We omit the details of the
calculation. The results are as follows.

<5-17>     <-'«-n,|^ = 0f,    ,=(/-',/-,).
Note that the identity (5.10) is the special case r = 0 of (5.17). Also note the
relation with (3.18). If A = (/") and ß = (ln~x, I - r) then there is only one
standard tableaux of shape X/ß, namely the tableaux A = A(0' D A(1) D • • • D
¿W = ß with A(,) = (/"_1,/-/'). Hence the sum in (5.13) reduces to one term
only. Now it is not very hard to show that with A and ß as above one has

f[(iC + 2p(X)-2p(X^)) = rl{^p
«=i (D)f
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so that
,(6V) Tlßll~l)\

Hence it follows from (5.14) that (5.17) is equivalent to

(5.18) TjA('-^-     "     Mr
VA(0;      (l-r)\(k)r

fox r = 1,2, ... , I. From (5.18) follows easily that for i = 1, 2, ... , I

( A« \     „     .,kn + i
{x(^) = {k-l)T+-T>

a result which also follows immediately from the much more general results
obtained by Lassalle in [17, §3]. For the case k = \ the binomial coefficients
for partitions were introduced by Constantine. For references and more details
concerning the case k = \ we refer to [26, §7.5] (also see e.g. [10]) while for k
arbitrary we refer to [24, 33 and especially 17 and 18].
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