CERTAIN INEQUALITIES IN INFORMATION THEORY AND THE
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1. Summary and Introduction. The Cramér-Rao inequality provides, under
certain regularity conditions, a lower bound for the variance of an estimator [7],
[15]. Various generalizations, extensions and improvements in the bound have
been made, by Barankin (1], [2], Bhattacharyya [3], Chapman and Robbins [5],
Fraser and Guttman [11], Kiefer [12], and Wolfowitz [16], among others.

Further considerations of certain inequality properties of a measure of informa-
tion, discussed by Kullback and Leibler [14], yields a greater lower bound for
the information measure (formula (4.11)), and leads to a result which may be
considered a generalization of the Cramér-Rao inequality, the latter following as
a special case. The results are used to define discrimination efficiency and estima-
tion efficiency at a point in parameter space.

2. The first inequality. We use the notation and terminology of [14]. Consider
the measurable transformatlons Tx of the probability spaces (X, 8, u;) onto the
probability spaces (Y, 3, »{™), and suppose for @ ¢ 3 that »{”(G) = u:(Tx'G) for
1= 1or2.

THEOREM 2.1. Let the Ty be such that

2.1) lim » (@) = »(@), i=1,2  Ge3,
N—w
Then
(2.2 I12;x) = hm mf In(1:2;9) = I'(1:2;9);
(2.2) J(1,2;2) = lim inf Jx(1, 2;9) = J’(1, 2; ).
N—=oo

Proor. We first derive a result which is similar to a lemma used by Doob [8].
Using Lemma 3.2 of [14], we have

’ G;
@3) IN12y) = Su™ (G, log (N)E Gji
where the sum is taken over any set of pairwise disjunct G; such that U;G; = y.
Accordingly,

(2.4) lim inf Z4(12;) 2 Zn(G) log ”lgg’;
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746 S. KULLBACK

and therefore
(2.5) lim inf Iy(1:2;9) = I'(1:2;9),

N—ooo
since the right member of (2.5) is the Lu.b. of the right member of (2.4). In
conjunction with Theorem 4.1 and paragraph 5 of [14] and (2.5), the inequalities
(2.2) and (2.2’) follow. These are used herein only in Section 3.

3. An example. Consider N independent observations from the binomial
distributions B(p., q:), for ¢ = 1, or 2, which as N — « approach as limits the
Poisson exponential distributions with means m; = Np;, for ¢ = 1 or 2. It may
be verified readily that

, N! - iqr
(3.1) Iv12;y) = 2 SV =i pigi " log gz;lv—u

= N( plog P 1 @),
<7h og e + q1 log P

y —my Yy ,—my
B2 Iy =X log % = (my — my) + my log 2.
y! mhe ™ my

Using the well known inequality x; log (z1/x:) = 1 — 2., and m; = Np; for
1 = 1 or 2, it is found that

(33) Np log 17’7; + Ng: logg—: = m log 7"ni: + N<1 - @> log L= ™/N

N 1 — my/N
. m my _ ’i) _ m _
=m110gm2+NN o mllogm2+(mz my),
or
(34) lim inf Ty(1:2;y) = I'(1:2;9).

Noowo
" As a matter of fact, for this particular case, as may be readily seen from the
first two members of (3.3),
(3.5) lim Ix(1:2;y) = I'(1:2;y).

Now

4. The second inequality. Suppose ¢1(y), g2(y), and g*(y) are densities satis-
fying the conditions of paragraph 4 of [14]. Then using Lemma 3.1 of [14],

9:1(y) 9:(y)
@) [ae) e 28 o) + [0 log L av(y

— 7(y)
= fgl(y) log gL(y) dv(y) 2 0,

or
*

(4.2) f a1(y) log z;g; dy(y) = f 91(y) log Z_z—(yi)) dy(y)
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In particular, let us take, for real ¢,

«3) #0) = G20, w0 = [¢60) &),
so that (4.2) becomes
(4.4) I' (1:2;y) = at — log Ma(t), a = Ey(y),

with equality if and only if

«5) a) = 0*0) = S8 b,

To investigate further the right member of (4.4) we will use the notation, and,
in particular, the results of paragraphs 4 and 6 of-Chernoff [6]. Clearly
(4.6) I'(1:2;y) = sup (at — log M,(t)) = —log m(a),
t

where ma(a) = inf, e *Ma(t). Note that for the value of ¢ satisfying a = Na(¢(a)) /
M,(t(a)), we have

- = * g*(y)
log me(a) = [g*(y) log dv(y) = 0.
9:(y)

From this, or the results of Lemma 7 of Chernoff [6], it follows that —log m.(a)
is a convex function of a. Limiting ourselves to statistics y for which E,(y) and
Vars(y) are finite, the results of Chernoff [6] may also be derived for the case
a = Ex(y).

We can write

@7 log ma(a) = log ma(Fx) + (6 — Fx)) rlog m(a)

a=E3(y)
4@ = B (_ dt(b)>
2! db )’
where b is between a and E,(y). But as Chernoff [6] has shown,
log my (Ba@)) = 0, 2 log ma(a) =0,
(48) da a=E3(y)
’ dt(a) _ 1 o) _ 1
da |e=ma  Van(y)’ db Var(y) ,
where Var«(y) is the variance of y for the distribution defined by
(4.9) gx(¥) = € Vg:(y) / Mt (0)).
From (4.6), (4.7), and (4.8) it follows that
(4.10) I'(1:2;9) Z (Ba(y) — Ex(y))?/ 2 Vare(y),

where [13] the right side is the value of I(1:2) for two normal distributions
with common variance Vary(y) and means E;(y) and Ex(y).
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We take y as the linear function y = ey + ce + -+ + cys, where the
random variables y1, ¥z,  + - , ys are such that the requirements already imposed
ony are satisfied and Var«(y) = D % jmicic; cova (¥, ¥)). Then, as is known [13],
the L.u.b. of the right member of (4.10) for possible values of the ¢’s is given by
the quadratic form 5'0%'6, where & is the one column matrix of the differences
6; = E\(y;) — Es(y;) forj = 1,2, --- ; k, and & is the transpose of § while ox
is the matrix of variances and covariance of the y; forj = 1,2, --- , k in the
distribution defined by (4.9).

We thus have the second inequality

(4.11) I(1:2;2) = I'(1:2; y) = 407,
For the binomial distribution, this yields
> (m — p)’ _ poe’ Q0

4.12 log & log & > P~ P2 = 22 = =
@.12) m gp2+ @ ng = 2peqx P p2et + @’ o p2e* + q2
for some value of { between 0 (when p« = p.) and log pig2/qip: (when px = p).
Note that p« = b, and that from our derivation b is between p, and p, .

b. The Cramér-Rao inequality. For the parametric case, where the populations
are neighboring points 6 and 6 + Af in the k-dimensional parameter space and

the y; for j = 1, 2, --- , k are unbiased estimators of the parameters, (4.11)
yields, under suitable regularity conditions [14],

(5.1) (A0)'G(AG) = (A6)H(AG) = (A6)'0(A6),

where A6 is the one column matrix of the Ag; for j = 1,2, -+, k and (A8)’ is

its transpose, while G and H are respectively the matrices (g.5) and (h.g), for
a,8=1,2,---,k, where

s = [16) (- 108.560)) (2 1w ta)) o,

has = f 9(y) (£: log g(y)) (a%, log g(y)> dy(y),

and ¢ is the matrix of variances and covariances of the estimators.

It should be observed that the discussion in Sections 4 and 5 holds whether we
are dealing with a fixed sample size or sequential procedure. For the latter case,
([16] p. 216) let ¢ of the probability spaces (X, 8, u;), be the space of all possible
infinite sequences (z) of observations z;, 2, - - - . Let there be given an infinite
sequence of Borel measurable functions ¢1(xy), ¢o(21 , 2), *++ , (@1, T2, -+ , Z;)
-+, defined for all observable sequences in % such that each takes only the
values zero and one. We further assume that at least one of the functions ¢1(x1),
¢a(1, 2), - - - takes the value one [A(z)], and let n be the smallest integer for
which this occurs. Thus n(x) is a chance variable.

The sequential process is then defined as follows. Take an observation and
find ¢1(x1). If it is unity, the sampling process stops; otherwise sampling con-

“
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tinues. If a second observation is taken and the value of ¢,(z1, x2) is unity, the
process stops; otherwise it continues, and so on. In general, after taking j ob-
servations,

Si(@1, 2, -, ) =0fors =1,2,---,5— 1 1If
¢i(x1, x2, +++, x;) = 1, sampling stops; otherwise it is continued.

If R; denotes the set of all points (zy , 22, - - -) for which the process stops with
the jth observation, then & = U,R; . The variable y is taken as a function of the
observations z, 2, +--, %, (those obtained prior to the termination of the
process of drawing observations).

Thus the results in (4.11) and (5.1) hold for fixed sample size or sequential
procedures.

6. Quadratic forms. Certain useful results with respect to quadratic forms,
which are essentially corollaries of known theorems, are needed for the subsequent
discussion.

Lemma 6.1. If both X'AX and X'CX are positive definite quadratic forms
(matric notation) such that X'AX =z X'CX, then

(a) the roots of |A — AC| = 0 are real and =1;

®) 14] = IC);

(¢) any principal minor of A is not less than the corresponding principal minor
of C, (determinant or guadratic form);

@ Y'c'y z Yv'A7Y;

(e) any principal minor of C™* is not less than the corresponding principal minor
of A7 (determinant or quadratic form).

Proor. Results (a), (b), and (c) are immediate corollaries of theorems 44 and
48 in Ferrar [10]. Since A™ = C'CA™ and C™* = C'AA™", there exists a non-
singular matrix B such that (Bécher [4], p. 301) C™* = B’AB and A™ = B'CB.
Thus applying the transformation X = BY gives A

X'AX = Y'B'ABY = Y'C'Y, X'CX = Y'B'CBY = Y'A™'Y,
and (d) and (e) then follow.

7. Efficiency. With respect to the estimators y; of Section 5, the discrimination
efficiency at a point P in the k-dimensional parameter space (P.8.) is defined by

, _ (de)' H(ds)
(7.1) : A= m .
We take (d6)'G(d6) as the basis of the metric of (P.S.). The g for a,8 = 1, 2,
-+, k, are the components of a covariant tensor of the second order which is
called the fundamental tensor of the metric (Eisenhart [9]). Since (d6)’'H(d) =<
(d6)’G(d6) and both forms are positive definite, the roots of

(7.2) |H — 2G| =0,
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are real, positive, and all <1. Accordingly there exists a real transformation of
the 6’s such that at a point P in (P.S.) the forms in (7.1) may be written as

o= Mt e 4 Nodyi

(7.3)
i+ - + i
and M1, Az, *+ ¢, M, are the roots of (7.2) (Eisenhart [9] p. 108). If we write
2
(74) cos’ a; = dy: i=1,2,-,k,

i+ e+ dgi’
then (7.3) may be written as
(7.5) AN =Acos’a + A cos’ay + -+ + A cos’ a .

The directions at the point P determined by cos ey =1, cosay =1, -+, are
known as the principal directions determined by the tensor h.s (Eisenhart [9],
p. 110). Furthermore, at the point P the finite maxima and minima of X defined
by (7.1) are given by the principal directions at the point and are indeed the
roots of (7.2). Since (d8)'G(d#) is positive definite, \ is finite for all directions
(Eisenhart [9], par. 33). .

As the estimation efficiency of the estimators y1, y2, -+, yx, we take the
product of the discrimination efficiencies for the principal directions at the point
P, that is,

(7.6) Eff = )\1)\2 A )\k = |H| / IGl § 1,

which is invariant for all nonsingular transformations of the parameters, with
equality holding if and only if the estimators are sufficient [14].

8. Asymptotic efficiency. Suppose we have n independent observations from
an l-variate population with k¥ parameters. It is also of interest to consider,
instead of (7.1), the asymptotic discrimination efficiency at a point P in (P.S.)
defined by

_ (d8)'o(dh)
&0 N @y o)’

where the elements of the matrix G are computed for a single observation from
the l-variate population. Since (d6)'s'(d8) = n(d6)'G(d6) and both forms are
positive definite, the roots of

n large,

(8.2) o™ — MG =0

are real, positive and 1. Asin Section 7, the roots of (8.2) are the finite maxima
and minima of (8.1) at a point P in (P.S.) and are given by the principal direc-
tions determined by the tensor ¢*° at the point.

. Asthe asymptotic estimation efficiency of the unbiased estimators y1 ,y2, -+ - , 4k
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(cf. Cramér [7], pp. 489, 494) we take the product of the asymptotic discrimina-
tion efficiencies for the principal directions at the point P, that is,

Asymp Eff = Mg ++- M = |67 /0G| £ 1, . nlarge,

the equality holding for all n if the estimators are sufficient and (4.5) is satisfied.
If |¢| |G| — n™, then the asymptotic efficiency approaches unity and \; — 1 for
1=12 -,k
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