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Abstract. In this article, we have derived some integral transforms of the polynomial weighted incomplete
H-functions and incomplete H-functions. The obtained image formulas are of general nature and may, as
special cases, give rise to integral transforms involved with the H-functions and H-functions.
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1. Introduction and Definitions

Special functions are significant in the analysis of differential equation solutions and are cor-
related with a broad variety of issues in several fields of mathematical physics, such as acous-
tics, radio physics, hydrodynamics, and atomic and nuclear physics [2, 5, 6, 7, 23]. Particularly,
H-function and its applications in different sub-fields of related mathematical research have
been defined as significant, see [3, 8, 10, 12, 13]. Incomplete special functions have recently
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been applicable to a broad spectrum of problems relating to reaction, combustion, reaction-
diffusion, electronics and communication, fractional differential and integral equations, other
fields of theoretical mechanics, statistical probability theory, etc. Consequently, several re-
search papers [4, 9, 15, 16, 17, 19, 24, 25, 26] on incomplete special functions have recently
been published by various researchers along with related other higher transcendental special
functions.

On the other hand, integral transformations are extensively used and therefore a huge
amount of work has already been accomplished on the concept and its implementations, one
can refer [1, 14, 18, 20, 27, 28]. The computing of image formulas under integral transforma-
tions of the special functions of one or maybe more variables is significant from the perspective
of the effectiveness regarding these outcomes in the solution for differential and integral equa-
tions. Inspired by such directions of use, several researchers have produced a relatively large
number of image formulas for fundamental transformations concerning a range of special
functions. In this article, we take into account and derive the various integral transforms in-
volved with the product of a general family of polynomials and incomplete H-function or
incomplete H-functions.

The Gamma functions, H-functions and H-functions of incomplete type, that are to be used
in the sequel, are described below:

The familiar lower and upper gamma functions of incomplete type γ(s, x) and Γ(s, x), re-
spectively, are characterized as:

γ(s, u) :=
∫ u

0
vs−1 e−v dv,

(
<(s) > 0; u = 0

)
, (1.1)

and

Γ(s, u) :=
∫ ∞

u
vs−1 e−v dv,

(
u = 0; <(s) > 0 if u = 0

)
. (1.2)

These functions fulfill the corresponding relation:

γ(s, u) + Γ(s, u) = Γ(s), (<(s) > 0). (1.3)

By the use of above defined incomplete gamma functions, Srivastava et al. [22] characterized
the incomplete generalized hypergeometric functions pγq and pΓq. The incomplete generalized
hypergeometric functions pγq and pΓq are widely used in science and engineering problems
(see [11, 12, 10]).

pγq

[
(a1, x), a2, · · · , ap; zb1, · · · , bq;

]
=

∏
q
j=1 Γ(bj)

∏
p
j=1 Γ(aj)

∞

∑
l=0

γ(a1 + l, x)∏
p
j=2 Γ(aj + l)

∏
q
j=1 Γ(bj + l)

zl

l!

=
1

2πi
∏

q
j=1 Γ(bj)

∏
p
j=1 Γ(aj)

∫
L

γ(a1 + s, x)∏
p
j=2 Γ(aj + s)

∏
q
j=1 Γ(bj + s)

Γ(−s)(−z)sds, (|arg(−z)| < π), (1.4)

and

pΓq

[
(a1, x), a2, · · · , ap; zb1, · · · , bq;

]
=

∏
q
j=1 Γ(bj)

∏
p
j=1 Γ(aj)

∞

∑
l=0

Γ(a1 + l, x)∏
p
j=2 Γ(aj + l)

∏
q
j=1 Γ(bj + l)

zl

l!
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=
1

2πi
∏

q
j=1 Γ(bj)

∏
p
j=1 Γ(aj)

∫
L

Γ(a1 + s, x)∏
p
j=2 Γ(aj + s)

∏
q
j=1 Γ(bj + s)

Γ(−s)(−z)sds, (|arg(−z)| < π), (1.5)

with the existence and convergence conditions setout in [22].
Inspired by the applications of pγq and pΓq functions and their representation as Mellin-

Barnes contour integrals, Srivastava et al. [24] presented and researched the incomplete H-
functions as follows:

γm, n
p, q (z) = γm, n

p, q

[
z

∣∣∣∣∣ (a1, A1, x), (aj, Aj)2,p
(bj, Bj)1,q

]
=

1
2πi

∫
L

g(s, x) z−s ds, (1.6)

and

Γm, n
p, q (z) = Γm, n

p, q

[
z

∣∣∣∣∣ (a1, A1, x), (aj, Aj)2,p
(bj, Bj)1,q

]
=

1
2πi

∫
L

G(s, x) z−s ds, (1.7)

where

g(s, x) =

γ(1− a1 − A1s, x)
m
∏
j=1

Γ(bj + Bjs)
n
∏
j=2

Γ(1− aj − Ajs)

q
∏

j=m+1
Γ(1− bj − Bjs)

p
∏

j=n+1
Γ(aj + Ajs)

, (1.8)

and

G(s, x) =

Γ(1− a1 − A1s, x)
m
∏
j=1

Γ(bj + Bjs)
n
∏
j=2

Γ(1− aj − Ajs)

q
∏

j=m+1
Γ(1− bj − Bjs)

p
∏

j=n+1
Γ(aj + Ajs)

. (1.9)

These incomplete H-functions fulfill the following relation (known as decomposition for-
mula):

γm,n
p,q (z) + Γm,n

p,q (z) = Hm,n
p,q (z). (1.10)

The incomplete H-functions γm,n
p,q (z) and Γm,n

p,q (z) characterized in (1.6) and (1.7) exist for x ≥ 0,
under the set of conditions given by Srivastava et al. [24], with

Ω > 0, |arg(z)| < 1
2

Ωπ, and ∆ > 0,

where

Ω =
m

∑
j=1

Bj −
q

∑
j=m+1

Bj +
n

∑
j=1

Aj −
p

∑
j=n+1

Aj, and ∆ =
q

∑
j=1

Bj −
p

∑
j=1

Aj.
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Following Srivastava et al. [24], incomplete H-functions have been implemented and de-
scribed as:

γm, n
p, q (z) = γm, n

p, q

[
z

∣∣∣∣∣ (a1, A1; ζ1; x), (aj, Aj; ζ j)2, n, (aj, Aj)n+1, p
(bj, Bj)1,m, (bj, Bj; ηj)m+1, q

]
=

1
2πi

∫
L

g(s, x) z−s ds,

(1.11)

and

Γm, n
p, q (z) = Γm, n

p, q

[
z

∣∣∣∣∣ (a1, A1; ζ1; x), (aj, Aj; ζ j)2, n, (aj, Aj)n+1, p
(bj, Bj)1,m, (bj, Bj; ηj)m+1, q

]
=

1
2πi

∫
L

G(s, x) z−s ds,

(1.12)

where

g(s, x) =
[γ(1− a1 − A1s, x)]ζ1∏m

j=1 Γ(bj + Bjs)∏n
j=2[Γ(1− aj − Ajs)]ζ j

∏
q
j=m+1[Γ(1− bj − Bjs)]ηj ∏

p
j=n+1 Γ(aj + Ajs)

, (1.13)

and

G(s, x) =
[Γ(1− a1 − A1s, x)]ζ1∏m

j=1 Γ(bj + Bjs)∏n
j=2[Γ(1− aj − Ajs)]ζ j

∏
q
j=m+1[Γ(1− bj − Bjs)]ηj ∏

p
j=n+1 Γ(aj + Ajs)

. (1.14)

The general class of polynomials Su
v(z) proposed by Srivastava et al. [29] and lay it out as

Su
v(z) =

[v/u]

∑
r=0

(−v)ur

r!
Av,r zr,

(
v = 0, 1, 2, · · ·

)
, (1.15)

where, u is positive integer and Av,r ∈ R (or C) are arbitrary positive constants. The notations
(−v)u and ”[, ]”, respectively, represent Pochhammer symbol and greatest integer function.
Srivastava’s polynomials provide as their special cases a number of established polynomials
on customizing the coefficient Av,r appropriately.

2. Integral Transforms

In this segment, some integral transformations of that same class of polynomials weighted
incomplete H and H-functions are obtained.

2.1. Laplace Transform. The traditional Laplace transformation of the f (z) function is known
as:

F(ω) = L { f (z); ω} =
∫ ∞

0
e−ωz f (z)dz, (<(ω) > 0) , (2.1)

if the above integral exists.
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Theorem 2.1. If Ω > 0, µ > 0, |arg(z)| < 1
2 Ωπ, ∆ > 0, <

(
λ + µ min

1≤j≤m

(<(bj)
Bj

))
> 0, <(ω) > 0

and ϑ > 0. Thereupon the laplace transform formula of incomplete H-function Γm,n
p,q holds for x ≥ 0:

L

{
zλ−1 Su

v [c1zϑ] Γm, n
p, q

[
c2zµ

∣∣∣∣∣ (a1, A1, x), (aj, Aj)2,p
(bj, Bj)1,q

]
; ω

}

= ω−λ
[v/u]

∑
r=0

(−v)ur Av,r

r!
(c1ω−ϑ)r

× Γm, n+1
p+1, q

[
c2ω−µ

∣∣∣∣∣ (1− λ− ϑr, µ), (a1, A1, x), (aj, Aj)2,p
(bj, Bj)1,q

]
, (2.2)

if every member in (2.2) exist.

Proof. To proof the result (2.2), use the definition of Laplace transform defined in (2.1), we
obtain

L

{
zλ−1 Su

v [c1zϑ] Γm, n
p, q

[
c2zµ

∣∣∣∣∣ (a1, A1, x), (aj, Aj)2,p
(bj, Bj)1,q

]
; ω

}

=
∫ ∞

0
e−ωzzλ−1

[v/u]

∑
r=0

(−v)ur Av,r
(c1zϑ)r

r!
1

2πi

∫
L

G(s, x)(c2zµ)−sds dz

(change the order of integration)

=
[v/u]

∑
r=0

(−v)ur Av,r
cr

1
r!

1
2πi

∫
L

G(s, x)c−s
2

{∫ ∞

0
e−ωz zλ+ϑr−µs−1dz

}
ds

=
[v/u]

∑
r=0

(−v)ur Av,r
cr

1
r!

1
2πi

∫
L

G(s, x)c−s
2

Γ(ϑr + λ− µs)
ωλ+ϑr−µs ds.

Finally, with the help of (1.7) and (1.9), the right hand side of result (2.2) can be obtained
easily.

Theorem 2.2. If Ω > 0, µ > 0, |arg(z)| < 1
2 Ωπ, ϑ > 0, <

(
λ + µ min

1≤j≤m

(<(bj)
Bj

))
> 0, <(ω) > 0.

Thereupon the laplace transform formula holds for incomplete H-function Γm,n
p,q :

L

{
zλ−1 Su

v [c1zϑ] Γm, n
p, q

[
c2zµ

∣∣∣∣∣ (a1, A1; ζ1; x), (aj, Aj; ζ j)2,n, (aj, Aj)n+1,p
(bj, Bj)1,m, (bj, Bj; ηj)m+1,q

]
; ω

}

= ω−λ
[v/u]

∑
r=0

(−v)u r Av, r

r!
(c1ω−ϑ)r

× Γm, n+1
p+1, q

[
c2ω−µ

∣∣∣∣∣ (1− λ− ϑr, µ; 1), (a1, A1; ζ1; x), (aj, Aj; ζ j)2,n, (aj, Aj)n+1,p
(bj, Bj)1,m, (bj, Bj; ηj)m+1,q

]
, (2.3)
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if every member in (2.3) exist.

Proof. To proof the result (2.3), use the definition of Laplace transform defined in (2.1), we
obtain

L

{
zλ−1 Su

v [c1zϑ] Γm, n
p, q

[
c2zµ

∣∣∣∣∣ (a1, A1; ζ1; x), (aj, Aj; ζ j)2,n, (aj, Aj)n+1,p
(bj, Bj)1,m, (bj, Bj; ηj)m+1,q

]
; ω

}

=
∫ ∞

0
e−ωzzλ−1

[v/u]

∑
r=0

(−v)ur Av,r
(c1zϑ)r

r!
1

2πi

∫
L

G(s, x)(c2zµ)−sds dz

(change the order of the integration)

=
[v/u]

∑
r=0

(−v)ur Av,r
cr

1
r!

1
2πi

∫
L

G(s, x)c−s
2

{∫ ∞

0
e−ωz zλ+ϑr−µs−1dz

}
ds

=
[v/u]

∑
r=0

(−v)ur Av,r
cr

1
r!

1
2πi

∫
L

G(s, x)c−s
2

Γ(ϑr + λ− µs)
ωλ+ϑr−µs ds.

Finally, with the help of (1.12) and (1.14), we arrive at the right hand side of result (2.3).

2.2. Hankel Transform. The Hankel Transform of order ν ∈ C is defined for a suitably con-
strained function f (z):

Hν { f (z); ω} =
∫ ∞

0
z Jν(ωz) f (z) dz, (<(ω) > 0) , (2.4)

if that the improper integral exist and Jν(ωz) is the Bessel function of order ν.

Theorem 2.3. If Ω > 0, µ > 0, |arg(z)| < 1
2 Ωπ, ∆ > 0, <(ω) > 0, −1 < < (λ + ν) +

µ min
1≤j≤m

(<(bj)
Bj

)
< < (λ + ν) + µ min

1≤j≤n

(<(1−aj)
Aj

)
, c1 > 0, c2 > 0 and ϑ > 0. Thereupon the

Hankel transform formula holds for x ≥ 0:

Hν

{
zλ−2 Su

v [c1zϑ]Γm, n
p, q

[
c2zµ

∣∣∣∣∣ (a1, A1, x), (aj, Aj)2,p
(bj, Bj)1,q

]
; ω

}

=
2λ−1

ωλ

[v/u]

∑
r=0

(−v)ur Av,r

r!

(
c1

(
2
ω

)ϑ
)r

×

Γm, n+1
p+2, q

[
c2

(
2
ω

)µ
∣∣∣∣∣
(

1− λ+ϑr+ν
2 , µ

2

)
, (a1, A1, x), (aj, Aj)2,p,

(
1− λ+ϑr−ν

2 , µ
2

)
(bj, Bj)1,q

]
, (2.5)

if every member in (2.5) exist.

Proof. We start with the left handed part of (2.5) and using the definition (1.7), we obtain

L.H.S =
∫ ∞

0
zλ−1 Jν(ωz)

[v/u]

∑
r=0

(−v)ur Av,r
(c1zϑ)r

r!
1

2πi

∫
L

G(s, x)c−s
2 z−µsdsdz
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(change the order of the integration)

=
[v/u]

∑
r=0

(−v)ur Av,r
(c1)

r

r!
1

2πi

∫
L

G(s, x)c−s
2

∫ ∞

0
zλ+ϑr−µs−1 Jν(ωz)dzds,

applying the following formula [5, Vol. II, p. 49, Eq. 7.3.3(19)]

∫ ∞

0
zλ−1 Jν(ωz)dz =

2λ−1

zλ

Γ
(

λ+ν
2

)
Γ
(

1 + ν−λ
2

) , (ω > 0; −<(ν) < <(λ) < 3
2
),

we get,

=
[v/u]

∑
r=0

(−v)ur Av,r
(c1)

r

r!
1

2πi

∫
L

G(s, x)c−s
2

2λ+ϑr−µs−1 Γ(λ+ϑr−µs+ν
2 )

ωλ+ϑr−µs Γ(1 + ν−λ−ϑr+µs
2 )

ds,

finally, as a consequence of (1.7), we obtain the required result.

The concrete evidence below theorem would also be parallel to Theorem 2.3, so it is given
here without proof.

Theorem 2.4. If Ω > 0, µ > 0, |arg(z)| < 1
2 Ωπ, <(ω) > 0, −1 < < (λ + ν)+µ min

1≤j≤m

(<(bj)
Bj

)
<

< (λ + ν) + µ min
1≤j≤n

(<(1−aj)
Aj

)
, c1 > 0, c2 > 0 and ϑ > 0. Thereupon the Hankel transform formula

holds for incomplete H-function Γm,n
p,q :

Hν

{
zλ−2 Su

v [c1zϑ]Γm, n
p, q

[
c2zµ

∣∣∣∣∣ (a1, A1; ζ1; x), (aj, Aj; ζ j)2,n, (aj, Aj)n+1,p
(bj, Bj)1,m, (bj, Bj; ηj)m+1,q

]
; ω

}

=
2λ−1

ωλ

[v/u]

∑
r=0

(−v)ur Av,r

r!

(
c1

(
2
ω

)ϑ
)r

×

Γm, n+1
p+2, q

[
c2

(
2
ω

)µ
∣∣∣∣∣
(

1− λ+ϑr+ν
2 , µ

2

)
, (a1, A1; ζ1; x), (aj, Aj; ζ j)1,n, (aj, Aj)n+1,p,

(
1− λ+ϑr−ν

2 , µ
2

)
(bj, Bj)1,m, (bj, Bj; ηj)m+1,q

]
,

(2.6)

if every member in (2.6) exist.

2.3. Euler’s Beta Transform. The integral transform of Euler’s Beta type for a given function
f (z) is characterized as:

B { f (z); ζ, η} =
∫ 1

0
zζ−1 (1− z)η−1 f (z) dz (2.7)

with <(ζ) > 0 and <(η) > 0.



250 S. MEENA, S. BHATTER, K. JANGID & S.D. PUROHIT

Theorem 2.5. Let ∆ > 0, Ω > 0, σ > 0, µ > 0, |arg z| > Ω π
2 , <(ζ) + σ min

1≤j≤m
<
(

bj
Bj

)
> 0,

<(η) > 0, c1 > 0, c2 > 0, and x ≥ 0. Then the transform of the incomplete H-function of Euler’s Beta
type is given as:

B
{

Su
v [c1zσ] Γm, n

p, q

[
c2zµ

∣∣∣∣∣ (a1, A1, x), (aj, Aj)2,p
(bj, Bj)1,q

]
; ζ, η

}

= Γ(η)
[v/u]

∑
r=0

(−v)ur Av,r

r!
(c1)

r ×

Γm, n+1
p+1, q+1

[
c2

∣∣∣∣∣ (a1, A1, x), (1− ζ − σr, µ), (aj, Aj)2,p
(bj, Bj)1,q, (1− ζ − η − σr, µ)

]
, (2.8)

if every member in (2.8) exist.

Proof. To prove the result, we begin with the left-hand side of the assertion (2.8); in part of
(2.8), use the definitions (2.7) and (1.7), we get

B
{

Su
v [c1zσ] Γm, n

p, q

[
c2zµ

∣∣∣∣∣ (a1, A1, x), (aj, Aj)2,p
(bj, Bj)1,q

]
; ζ, η

}

=
∫ 1

0
zζ−1(1− z)η−1

[v/u]

∑
r=0

(−v)ur Av,r
(c1zσ)r

r!
1

2πi

∫
L

G(s, x) (c2zµ)−s ds dz

change the order of the integration

=
[v/u]

∑
r=0

(−v)ur Av,r
(c1)

r

r!
1

2πi

∫
L

G(s, x)c−s
2

∫ 1

0
zζ+σr−µs−1(1− z)η−1dz ds

apply Beta formula (2.7), we obtain

=
[v/u]

∑
r=0

(−v)ur Av,r
(c1)

r

r!
1

2πi

∫
L

G(s, x)c−s
2

Γ(ζ + σr− µ s)Γ(η)
Γ(ζ + η + σr− µ s)

ds

finally, as a consequence of (1.7), we get the desired result.

Theorem 2.6. Let Ω > 0, σ > 0, µ > 0, |arg z| > Ω π
2 , <(ζ) + σ min

1≤j≤m
<
(

bj
Bj

)
> 0, <(η) > 0,

c1 > 0 and c2 > 0. Thereupon the transform formula holds:

B
{

Su
v [c1zσ] Γm, n

p, q

[
c2zµ

∣∣∣∣∣ (a1, A1; ζ1; x), (aj, Aj; ζ j)2,n, (aj, Aj)n+1,p
(bj, Bj)1,m, (bj, Bj; ηj)m+1,q

]
; ζ, η

}
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= Γ(η)
[v/u]

∑
r=0

(−v)ur Av,r

r!
(c1)

r ×

Γm, n+1
p+1, q+1

[
c2

∣∣∣∣∣ (a1, A1; ζ1; x), (1− ζ − σr, µ), (aj, Aj; ζ j)1,n, (aj, Aj)n+1,p
(bj, Bj)1,m, (bj, Bj; ηj)m+1,q, (1− ζ − η − σr, µ)

]
, (2.9)

if every member in (2.9) exist.

2.4. Srivastava-Whittaker Transform. For the Whittaker function Wk,µ(z) of the second kind
it is known that

W0,µ(z) =
( z

π

) 1
2 Kµ

( z
2

)
, and Wµ+ 1

2 ,±µ(z) = zµ+ 1
2 e−

z
2 , (2.10)

where Kν(z) denotes the modified Bessel function (or the Macdonald function) of order ν.
In fact, we also have

K 1
2
(z) =

( π

2z

) 1
2 e−z. (2.11)

Such reduction formulas as those depicted by (2.10) and (2.11) have led to several general-
izations of the classical laplace transform. We recall here the following unification and further
generalization of all these generalized laplace transforms with their kernels involving the Whit-
taker function Wk,µ(z) or the modified Bessel function Kν(z), which was given by Srivastava
[21]:

S (ρ,σ)
λ,k,µ {F(t); s} =

∫ ∞

0
(st)σ− 1

2 e−
1
2 λst Wk,µ(ρst) f (t)dt, (<(s) > 0) , (2.12)

if that the improper integral in (2.12) exists.

Theorem 2.7. Let Ω > 0, ν > 0, δ > 0, |arg z| < Ω π
2 , ∆ > 0, < ((ρ + λ)s) > 0, and <(σ) +

ν min
1≤j≤m

(<(bj)
Bj

)
> |<(µ)| − 1. Thereupon the Srivastava-Whittaker transform holds true for x ≥ 0:

S (ρ,σ)
λ,k,µ

{
Su

v [c1tδ]Γm, n
p, q

[
c2tν

∣∣∣∣∣ (a1, A1, x), (aj, Aj)2,p
(bj, Bj)1,q

]
; s

}

=
ρµ+1/2

s1/2

(
2

λ + ρ

)1+σ+µ [v/u]

∑
r=0

(−v)ur Av,r

r!

(
c1

(
2

(λ + ρ)s

)δ
)r

×

∞

∑
l=0

Γ(µ− k + l + 1/2)
Γ(µ− k + 1/2)

(
λ− ρ

λ + ρ

)l
×

Γm, n+2
p+2, q+1

[
c2

(
2

(ρ + λ)s

)ν
∣∣∣∣∣ (µ− σ− δr, ν), (−µ− σ− δr− l, ν), (a1, A1, x), (aj, Aj)2,p

(bj, Bj)1,q, (k− σ− δr− l − 1/2, ν)

]
,

(2.13)

if every member in (2.13) exist.
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Proof. Just as in our demonstration of the other theorems in this section, we begin with the
left-hand side of the assertion (2.13), make use of the Mellin-barnes type contour integral in
(1.7) which defines the incomplete H-function Γm, n

p, q (z), change the order of the integration and
then apply the following known formula (see, for example, [6, Vol.II, p. 337, Entry 6.9 (8)]):

∫ ∞

0
tρ−1 e−ζtWk,µ(η t) dt

=
ηµ+ 1

2 Γ(ρ + µ + 1
2)Γ(ρ− µ + 1

2)

(ζ + 1
2 η)ρ+µ+ 1

2 Γ(ρ− k + 1)
2F1

ρ + µ + 1
2 , µ− k + 1

2 ;
2ζ−η
2ζ+η

ρ− k + 1;


=

ηµ+ 1
2 Γ(ρ− µ + 1

2)

(ζ + 1
2 η)ρ+µ+ 1

2 Γ(µ− k + 1/2)

∞

∑
l=0

Γ(ρ + µ + l + 1
2)Γ(µ− k + l + 1

2)

l!Γ(ρ− k + l + 1)

(
2ζ − η

2ζ + η

)l
,(

<(ζ + η/2) > 0; <(ρ) > |<(µ)| − 1
2

)
. (2.14)

We are thus led easily to the right-hand side of the assertion (2.13) of Theorem 2.7.

Theorem 2.8. Let Ω > 0, ν > 0, δ > 0, |arg z| < Ω π
2 , < ((ρ + λ)s) > 0, and <(σ) +

ν min
1≤j≤m

(<(bj)
Bj

)
> |<(µ)| − 1. Thereupon the Srivastava-Whittaker transform holds true for x ≥ 0:

S (ρ,σ)
λ,k,µ

{
Su

v [c1tδ]Γm, n
p, q

[
c2tν

∣∣∣∣∣ (a1, A1; ζ1; x), (aj, Aj; ζ j)2,n, (aj, Aj)n+1,p
(bj, Bj)1,m, (bj, Bj; ηj)m+1,q

]
; s

}

=
ρµ+1/2

s1/2

(
2

λ + ρ

)1+σ+µ [v/u]

∑
r=0

(−v)ur Av,r

r!

(
c1

(
2

(λ + ρ)s

)δ
)r

×

∞

∑
l=0

Γ(µ− k + l + 1/2)
Γ(µ− k + 1/2)

(
λ− ρ

λ + ρ

)l
×

Γm, n+2
p+2, q+1

[
c2

(
2

(ρ + λ)s

)ν
∣∣∣∣∣ (µ− σ− δr, ν), (−µ− σ− δr− l, ν), (a1, A1; ζ1; x), (aj, Aj; ζ j)2,n,

(bj, Bj)1,m, (bj, Bj; ηj)m+1,q,

(aj, Aj)n+1,p
(k− σ− δr− l − 1/2, ν)

]
, (2.15)

if every member in (2.15) exist.

Remark 2.1. If we set ζ j (j = 1, · · · , n) = 1 and ηj (j = m + 1, · · · , q) = 1 in Theorem 2.2, Theorem
2.4, Theorem 2.6 and Theorem 2.8, then we get Theorem 2.1, Theorem 2.3, Theorem 2.5 and Theorem
2.7, respectively.
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3. Special Cases

By specialization the parameters in incomplete H-functions, incomplete H-functions and
general polynomial class, we may obtain the established findings that are accessible in the
literature. For example, if we take

(i) Su
v(z) = constant = 1, then Theorem 2.1, Theorem 2.3, Theorem 2.5 and Theorem 2.7

depleted to known outcomes of Srivastava et al. [24],
(ii) Su

v(z) = constant = 1, ζ j (j = 1, · · · , n) = 1 and ηj (j = m + 1, · · · , q) = 1, then
Theorem 2.2, Theorem 2.4, Theorem 2.6 and Theorem 2.8 depleted to known outcomes
of Srivastava et al. [24],

(iii) x = 0 and Su
v(z) = constant = 1, then Theorem 2.1, Theorem 2.3, Theorem 2.5 and

Theorem 2.7 depleted to known outcomes of integral transforms involving H-function,
(iv) x = 0, Su

v(z) = constant = 1, ζ j (j = 1, · · · , n) = 1 and ηj (j = m + 1, · · · , q) = 1, then
Theorem 2.2, Theorem 2.4, Theorem 2.6 and Theorem 2.8 depleted to known outcomes
of integral transforms involving H-function,

(v) x = 0, Su
v(z) = constant = 1, ζ j (j = 1, · · · , n) = 1, ηj (j = m + 1, · · · , q) = 1 and

Aj = Bj = 1 then Theorem 2.2, Theorem 2.4, Theorem 2.6 and Theorem 2.8 depleted to
known outcomes of integral transforms involving Meijer’s G-function.

Here, we have derived certain image formulas under certain integral transforms of the poly-
nomials weighted incomplete H-functions and incomplete H-functions. It is to note that the
incomplete H-function generalizes incomplete H-function, incomplete Meijer G-function, in-
complete Wright function, incomplete hypergeometric functions and many other classical spe-
cial functions. In addition, the polynomials family produces a number of known polynomials
as their particular cases on a properly specialized bound sequence. As a consequence, by
assigning correct specific values to arbitrary sequences and constraints, our key findings can
be used to obtain a range of image formulas containing polynomials and a variety of specific
functions.
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[5] A. Erdélyi, W. Magnus, F. Oberhettinger, and F.G. Tricomi, Higher Transcendental Functions, McGraw-Hill
Book Company, New York, Toronto and London, Vols. I and II (1954).
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